|
Encyclopaedia of DesignTheory: An association scheme |
This example is the (ordinary) cube. The labels are the coordinates of the vertices and each colour represents the positions where one of the four matrices forming the association scheme has the entry 1.
000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
If white, yellow, black and red label matrices A0, A1, A2, A3 respectively, then we have the equations
A0² = A0 | A0A1 = A1 | A0A2 = A2 | A0A3 = A3 |
A1A0 = A1 | A1² = 3A0 + 2A2 | A1A2 = 2A1 + 3A3 | A1A3 = A2 |
A2A0 = A2 | A2A1 = 2A1 + 3A3 | A2² = 3A0 + 2A2 | A2A3 = A1 |
A3A0 = A3 | A3A1 = A2 | A3A2 = A1 | A3² = A0 |
The algebra spanned by these four 8×8 matrices is the Bose-Mesner algebra of the association scheme.
This association scheme is the Hamming scheme H(3,2).
The six faces of the cube form a partially balanced design based on this association scheme. In detail: the blocks are
000, 001, 010, 011 |
100, 101, 110, 111 |
000, 001, 100, 101 |
010, 011, 110, 111 |
000, 010, 100, 110 |
001, 011, 101, 111 |
For more pictures like this one, see the Web page for the book Association Schemes: Designed experiments, algebra and combinatorics by R. A. Bailey, Cambridge University Press, Cambridge, 2004.
Table of contents | Glossary | Topics | Bibliography | History
R. A. Bailey,
Peter J. Cameron
20 November 2002