Observing emerging bifurcations in complex systems

Jan Sieber University of Exeter (UK)

Outline

- two didactic examples
 - agent-based simulation traders
 - disease spreading on network
- definition of macroscopic unstable equilibria and bifurcations
- folds & Hopf bifurcations

Agent-based simulation — traders

[Siettos et al, EPL 2012]

- N traders, buying & selling
- \triangleright each trader k has internal state s_k , evolving

$$s_{k,\text{new}} = \begin{cases} \mathrm{e}^{-\gamma \Delta t} s_k + \rho_k^+ \varepsilon^+ - \rho_k^- \varepsilon^- & \text{if } |s_k| < 1 \\ 0 & \text{reset} & \text{if } s_k \geq 1 \Leftarrow \text{buy} \\ 0 & \text{reset} & \text{if } s_k \leq -1 \Leftarrow \text{sell} \end{cases}$$

- ▶ p_k^{\pm} random number of news ~ Pois $(n_{\pm}(1+gR_{\pm}))\Delta t$
- R_± avg rate of buys/sells over past period T
- ▶ g gain
- ε[±] jump size
- $ightharpoonup n_{\pm}$ rate of good/bad news other than buys/sells

Agent-based simulation — traders

⇒Matlab animation

Example: collective behaviour of agents

Definition of equilibrium?

- positive feedback
 - others buying ⇒good news ⇒buy
 - others selling ⇒bad news ⇒sell
- stochastic system has stationary density with (in projection) 3 well-separated local maxima stable equilibria:
 - everyone buys as fast as possible
 - everyone sells as fast as possible
 - balance
- ► Balance $R_{eq} = R_{eq}^+ R_{eq}^+$: in the long run mean $R = R_{eq}$:

$$R_{\text{eq}} = \lim_{t \to \infty} \text{mean}_{s \in [t, t+T]} R(s)$$

(mean of conditional stationary density)

Proposed definition of (unstable) equilibrium

Include feedback loop:

bias
$$p = [\varepsilon^+ - \varepsilon^-](t) = k[R(t) - R_{ref}]$$

R_{ref} is equilibrium if

$$R_{\text{ref}} = \lim_{t \to \infty} \text{mean}_{s \in [t, t+T]} R(s)$$

- The long-time mean of feedback loop input is zero.
- ► For large numbers N of traders:
 - $E[R(t) R_{\text{ref}}]^2 \rightarrow_{N \rightarrow \infty, t \rightarrow \infty} 0$
 - ► Resulting equilibrium R_{ref} independent of choice of feedback loop for $N \to \infty$.

Bifurcation diagram in bias parameter

2nd example — disease spreading on network

[Gross et al, PRL 2006]

- network with N nodes (individuals) with state either S (susceptible) or I (infected)
- ► kN links (initially random, k ~ 10)
- at every step:
 - I individual recovers with probability r
 - infection travels along SI link (infects S node) with probability p
 - SI link is rewired (keep S node, replace I node by random other S node) with probability w
- system has parameter range where disease-free and endemic equilibrium coexist

2nd example — disease spreading on network

[Gross et al, PRL 2006]

Proposed definition of (unstable) equilibrium

- Choose reference fraction of infected I_{ref}
- at every step:

```
if I < I_{ref}, infect I_{ref} - I individuals along SI links if I > I_{ref}, "cure" I - I_{ref} individuals
```

I_{ref} is equilibrium value if
 mean artificically cured = mean artificially infected
 after transients have settled

Proposed definition of (unstable) equilibrium

mean control input & regression curve

Newton iteration & continuation with uncertainty Linear regression with Gaussian process

Procedure for continuation with uncertainty

- **1.** find roots (bifurcations) of regression curve $y_r(x)$
- 2. determine where to measure next:
 - ► x for which measurement $y_r(x) \pm \sigma_r(x)$ would minimize error bar of root for updated y_r , or
 - x where measurement $y_r(x) + \sigma_r(x)$ changes root the most

Both are nonlinear optimization problems on current regression curve y_r (cheap in principle).

- 3. optimal new x not necessary, only sensible x
- **4.** stop if expected effect on *x* is not worth additional measurement.

Example - traders fold continuation

- 2 system parameters:
 - ▶ bias $\varepsilon^+ \varepsilon^-$ (also control input)
 - self-referentialness g
 - \Rightarrow 2 base variables: R_{ref} , g.

Run with feedback: bias = $[\varepsilon^+ - \varepsilon^-](t) = k[R(t) - R_{ref}]$ after transients, read off

- ▶ mean[$\varepsilon^+ \varepsilon^-$],
- $ightharpoonup R_{eq} = mean R$
- \Rightarrow equilibrium surface in space $(g, \varepsilon^+ \varepsilon^-, R_{eq})$

fold condition:
$$\frac{\partial R_{\text{eq}}}{\partial R_{\text{ref}}}(R_{\text{ref}}, g) = 1$$

Matlab demo

Example - traders fold continuation

Comments

- during continuation regression surface always evaluated near boundary
 - ⇒ results less accurate (larger uncertainty)
 - ⇒ large correlation parameter
- at end standard continuation for entire regression surface
 - ⇒ more accurate (interpolation)
 - ⇒ small correlation parameter

Disease on network equilibrium continuation

Oscillations

Ring of nonlocally coupled phase oscillators

Abrams Strogatz Laing I Omelchenko O Omelchenko Zakharova Wolfrum Schoell

Abrams Strogatz Laing I Omelchenko O Omelchenko Zakharova Wolfrum Schoell

.

Continuum limit (Ott-Antonsen)

Bifurcation diagram for continuum limit chimera=rotating wave

OE Omel'chenko, Nonlinearity 2013

coupling function
$$G(x) = \frac{1}{2\pi} [1 + A\cos x]$$

$$\frac{\pi/2 - \alpha}{0.3}$$

$$0.2$$

$$0.1$$

$$0$$

$$0$$

$$0$$

$$1$$

$$A$$

$$2$$

Continuum limit (Ott-Antonsen)

Bifurcation diagram for continuum limit chimera=rotating wave

OE Omel'chenko, Nonlinearity 2013

coupling function
$$G(x) = \frac{1}{2\pi} [1 + A\cos x]$$

Conclusion

- Stabilizing feedback loop makes it possible to define macroscopic
 - equilibria (stable/unstable)
 - periodic orbits (stable/unstable)
 - fold, Hopf, pitchfork, period-doubling bifurcations

in a computable manner.

- Examples studied until now
 - interaction of traders
 - disease spread on network
 - chimeras on rings of phase oscillators

