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Outline

» two didactic examples

» agent-based simulation — traders
» disease spreading on network

» definition of macroscopic unstable equilibria and
bifurcations

» folds & Hopf bifurcations
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Agent-based simulation — traders
[Siettos et al, EPL 2012]

» N traders, buying & selling

v

each trader k has internal state si, evolving

e Vhts, + plet —pe if skl <1
Sknew = { 0 reset if sk > 1 «<buy
0 reset if sk < —1 «sell

v

pi random number of news ~ Pois(nx(1 + gR+))At

» R. avg rate of buys/sells over past period T

v

g gain

£* jump size

v
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nx rate of good/bad news other than buys/sells ECERER



Agent-based simulation — traders

=>Matlab animation
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Example: collective behaviour of agents
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Definition of equilibrium?
» positive feedback

» others buying =good news =buy
» others selling =bad news =sell
» stochastic system has stationary density with (in
projection) 3 well-separated local maxima
stable equilibria:

» everyone buys as fast as possible
» everyone sells as fast as possible
» balance

» Balance Req = RJefq— RJe’q: in the long run
meanR = Req:

Req = tlirpo meansert,t+7] R(S)

(mean of conditional stationary density)
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Proposed definition of (unstable) equilibrium

Include feedback loop:
bias p = [£" —£7](t) = k[R(t) — Rref]
Rref is equilibrium if

Rref = t"lll meanse(t,t+7] R(S)

» The long-time mean of feedback loop input is zero.

» For large numbers N of traders:
> E[R(t)_ Rref]2 —>N—-oo,t—00 0

» Resulting equilibrium Rer independent of
choice of feedback loop for N — .
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Bifurcation diagram in bias parameter
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2nd example — disease spreading on network
[Gross et al, PRL 2006]

» network with N nodes (individuals) with state either
S (susceptible) or I (infected)

» kN links (initially random, k ~ 10)

» at every step:

» I'individual recovers with probability r

» infection travels along SI link (infects S node)
with probability p

» SI link is rewired (keep S node, replace I node
by random other S node) with probability w

» system has parameter range where disease-free
and endemic equilibrium coexist
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2nd example — disease spreading on network
[Gross et al, PRL 2006]

o Parameter sweep
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Proposed definition of (unstable) equilibrium

» Choose reference fraction of infected I ef

» at every step:

if I <Iref, infect Ier—1I individuals along SI links
if I >Ief, “cure” I—I e individuals

» Ief is equilibrium value if
mean artificically cured = mean artificially infected

after transients have settled
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Proposed definition of (unstable) equilibrium

mean control input & regression curve
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Newton iteration & continuation with uncertainty

Linear regression with Gaussian process

root x, of regression curve y, with error bar
(easy to find with Newton iteration)

measurement with error bar

linear regres&ion curve yr(x) with error bar
X
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Procedure for continuation with uncertainty

1. find roots (bifurcations) of regression curve y,(x)

2. determine where to measure next:

» x for which measurement y,(x) £ o,(x) would
minimize error bar of root for updated y,, or

» X where measurement y,(x) + o-(x) changes
root the most

Both are nonlinear optimization problems on
current regression curve y, (cheap in principle).

3. optimal new x not necessary, only sensible x

4. stop if expected effect on x is not worth additional
measurement.
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Example - traders fold continuation

2 system parameters:

» bias €t — ¢~ (also control input)
» self-referentialness g
= 2 base variables: Rret, 9.

Run with feedback: bias=[&g" —& ](t) = k[R(t) — Rref]
after transients, read off

» mean[et —¢&7],

» Reqg = meanR
=equilibrium surface in space (g, et — €7, Req)

. dReq
fold condition:

(Rref,9) =1
e EXETER



Matlab demo
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Example - traders fold continuation

Comments

» during continuation regression surface always
evaluated near boundary

= results less accurate (larger uncertainty)
= large correlation parameter

» at end standard continuation for entire regression
surface

= more accurate (interpolation)
= small correlation parameter
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Disease on network equilibrium continuation
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Oscillations

Ring of nonlocally coupled phase oscillators
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Chimeras Abrams
Strogatz

Laing
| Omelchenko

5 -2 ﬁ:G 0] Omell<%henko
k= —— ki Sin(Bx— 0, + a Zakharova
N = j5in(6k ! ) Wolfrum

1= Schoell

for example

1
Gkj = G(xk— X)) = > [1+Acos(xk—x))]
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Continuum limit (Ott-Antonsen)

Bifurcation diagram for continuum limit OE Omel'chenko,
. . Nonlinearity 2013
chimera=rotating wave

1
coupling function G(x)= by [1+Acosx]
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Continuum limit (Ott-Antonsen)

Bifurcation diagram for continuum limit OE Omel'chenko,
. . Nonlinearity 2013
chimera=rotating wave

1
coupling function G(x)= by [1+Acosx]
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Conclusion

» Stabilizing feedback loop makes it possible to
define macroscopic

» equilibria (stable/unstable)

» periodic orbits (stable/unstable)

» fold, Hopf, pitchfork, period-doubling
bifurcations

in @a computable manner.

» Examples studied until now

» interaction of traders
» disease spread on network
» chimeras on rings of phase oscillators
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