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Phase transitions

Phase transition

Change in financial market structure across the banking crisis
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Figure 2: ES(Ta, Tb) matrices for � = 1000, for NYSE (left) and LSE dataset
(right). A block-like structure can be observed in both datasets, with periods of high
structural persistence and other periods whose correlation structure is changing faster.
The 2007-2008 financial crisis marks a transition between two main blocks of high struc-
tural persistence.
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Figure 3: �ES�(Ta) and q(Ta) signals represented for � = 1000 and L = 100, for
both NYSE (left graph) and LSE (right graph) datasets. It is evident the anticorrelation
between the two signals. The financial crisis triggers a major drop in the structural
persistence and a corresponding peak in q(Ta).
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Figure 4: z(Ta, Tb) matrices for � = 1000, for NYSE (left) and LSE dataset
(right). A block-like structure can be observed in both datasets, with periods of high
structural persistence and other periods whose correlation structure is changing faster.
The blocks of high similarity show higher compactness than in Fig. 2.
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Phase transitions

What is a phase transition?

in Physics
- Change in the system state (liquid to solid) as consequence of a change

in the parameters (temperature, pressure)
- Change in the internal energy
- Change in the system entropy
- Emergence of collective properties
- Order parameter becomes finite (symmetry breaking)
- Appearence of long-range correlations near the transition point
- Appearance of “soft modes”

in General
- Change in the system state
- ?
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Tipping Points

Tipping Point

the point at which small changes or incidents can cause large changes

- An object at a point of unstable equilibrium
- A rare phenomenon becoming rapidly more common
- The point at which a technology becomes dominant and the “winner

takes all”
- A change happening as a consequence of a small cause that cannot

be easly reverted
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Simple stylized banking model

UK banking system data from BoE
We use form supervisory reports from Bank of England (BoE) for the years
2011, 2012 and 2013.

Lending (unsecured, secured and undrawn)
Holdings of equity and fixed-income securities (marketable securities)
issued by banks;
Credit default swaps (CDS) bought and sold
Securities lending and borrowing (gross and net of collateral);
Repo and reverse repo (gross and net of collateral);
Derivatives exposures (with breakdown by type of derivative)

UK banks have to report their 20 largest counterparties to the BoE
semi-annually. If the top 20 does not have at least six UK-based
counterparties, banks report exposures to up to six UK-based
counterparties in addition to the top 20. Branches of foreign banking
groups in the UK are not included. There are 176 UK banks reporting to
BoE.
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Simple stylized banking model

UK Banking Network

Figure 1: The figure shows the exposure network 2013 H1 as used in the model calibration.
Nodes are banks, directed edges are exposures from one bank to another. Size of the nodes
varies proportionally to the size of banks’ balance sheets. Nodes are coloured according to
bank type with blue for LB, red for BS, green for IB, black for OB and magenta for CB.

Table A.1. For the stability analysis of the UK banking system, we only use
banks in the largest connected component. The insolvency of banks that are
not part of the largest component is not influenced by counterparties. Hence,
these banks are not relevant for the propagation of insolvencies caused by
counterparty failure.

3.3.2. Interbank network structure
The topology of the interbank networks in 2011 H2, 2012 H2 and 2013 H1

resembles a core-periphery structure with LB and IB (except in 2011 H2) in

12
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Simple stylized banking model

UK Banking Network

(a) In-degree (b) In-weight

(c) Out-degree (d) Out-weight

Figure 2: Networks representing average in- and out-degree (subplots (a) and (b), respec-
tively), and average in- and out-weight (subplots (c) and (d)) to and from a bank of a
particular bank type to banks of other bank types for the period 2013 H1. The graphs are
visualization of the information presented in Tables D.8, D.6, D.7 and D.5. It becomes
clear that LB and IB form a central role in the exposure network with the majority of BS,
OB and CB situated in the periphery.

the core and BS, OB and CB in the periphery. The core-periphery structure
has been observed in other studies on interbank network topology (Boss et al.,
2004; Fricke and Lux, 2014; van Lelyveld and Veld, 2012; Langfield et al.,
2014).

Tables D.8 and D.7 report the average and STD of in- and out-degree from
one bank type (columns) to another (rows), or vice versa. The information
for 2013 H1 from the tables is pictured in Figues 2a and 2c. The figures show
the average in-degree from bank types to a particular bank type and the out-
degree from a bank type to other bank types for the exposure network in
2013 H1.

The degree analysis is limited by the number of links banks have to report

13
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Simple stylized banking model

Phase transition in a Stylized Banking System

We propose a model combing the balance sheet based model12, with the
contagion model3 creating a stylized banking system4.
We distinguish between normally operating banks and distressed banks:

S

i

(t) =
I

1 if bank i is operating normally
0 if bank i is distressed .

We consider a system of N banks that borrow and deposit money into
each-other though an interbank network

1P. Gai et al. (2007). In: Journal of Risk Finance 8.2, pp. 156–165.
2E. Nier et al. (2007). In: Journal of Economic Dynamics and Control 31.6,

pp. 2033–2060.
3J. P. Solorzano-Margain et al. (2013). In: Computational Management Science,

pp. 1–31.
4S. Heise et al. (2012). In: The European Physical Journal B 85.4, pp. 1–19.
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Simple stylized banking model

Balance Sheet

Liabili&es	Li(t)	 Assets	Ai(t)	

Deposits	

L̂i (t)
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Simple stylized banking model

Systemic risk

Liabili&es	Li(t)	 Assets	Ai(t)	

Deposits	
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Annika Birch and TA "Systemic Losses Due to Counter Party Risk in a Stylized Banking System" Journal of Statistical Physics
156 (2014) 998 - 1024
Annika Birch, Zijun Liu & TA "A counterparty risk study for the UK banking system" ssrn.com/abstract=2599891, under
submission

T Aste (UCL, SRC) Phase Transitions in Banking Systems CoSyDy, QMUL, 06/07/16 14 / 24



Simple stylized banking model

Dynamics
Balance Sheet Equation: a bank operate normally if A

i

(t) Ø L

i

(t), it is
in distress otherwise. The state of a bank at time t + 1 is

S
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I
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i
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0 if A

i

(t) ≠ L

i
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The state of the system is associated with two main quantities:
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i

(t)
¸ ˚˙ ˝

Non-Counterparty-dependent assets

Counterparty-dependent assets:q
j

g

i ,jSj

(t)

mean: a‡;
Variance: ‡2

mean: b‡pt

H
om

ogeneous
system

:
a
l
l

b
a
n
k
s

s
a
m

e
s
i
z
e

a
n
d

b
a
l
a
n
c
e

s
h
e
e
t

q
u
a
n
t
i
t
i
e
s

a
r
e

r
a
n
d
o
m

l
y

d
i
s
t
r
i
b
u
t
e
d

w
i
t
h

T Aste (UCL, SRC) Phase Transitions in Banking Systems CoSyDy, QMUL, 06/07/16 15 / 24



Simple stylized banking model

Dynamics
Balance Sheet Equation: a bank operate normally if A

i

(t) Ø L

i

(t), it is
in distress otherwise. The state of a bank at time t + 1 is

S

i

(t + 1) =
I

1 if A

i

(t) ≠ L

i

(t) Ø 0
0 if A

i

(t) ≠ L

i

(t) < 0 .

The state of the system is associated with two main quantities:

Non-Counterparty-dependent balance sheet
L

i

(t)
¸ ˚˙ ˝

Liabilities

≠ Â
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Onset of a fragile state with irreversible dynamics

Fixed Point Solutions (Normal distribution)

p

t+1 = �(bp

t

≠ a) p = �(bp ≠ a)
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b= 7

a2= 1.96

a1= 5.04

p

Φ
(b
p
−

a
)

Small a (large non-interbank assets):
only one solution p = 1
- all banks functioning normally

Large a (small non-interbank assets):
only one solution p = 0
- all banks in distress

Intermediate a: three solutions
- one unstable and 2 stable solutions

The central fixed point is unstable and forms a barrier.
The dynamics becomes irreversible.
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E�ciency, Resistance, Failure and Recovery Cost

E�ciency, Resistance, Failure and Recovery

Let us consider a banking system put to stress by decreasing non-interbank
assets (i.e. increasing a ) with interbank assets unchanged (i.e. b

constant)
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Fraction of surviving banks as a function of a given
b. Solid lines indicate stable fixed points, dotted lines
unstable fixed points.

For b = 7, starting from fully oper-
ating banks (i.e. p0 = 1) an infinite
avalanche can bring down the system
when a2 ¥ 5.04. Once all banks are
distressed, a needs to be lowered to
a1 ¥ 1.96, in order for the system to
return to a stable state. The di�er-
ence between a2 and a1 is the capi-
tal to be injected into the system to
reverse the state
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Numerical results: robustness of analytical results

Interbank network e�ect: simulation results
18
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θ = 0.3

(B)
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θ = 0.0

θ = 0.0

Fig. 7 The figure shows the fraction of surviving banks p evaluated by initializing
the liabilities and assets of banks’ balance sheets with Normal distributions (A)
and Students’t distributions with 2 degrees of freedom (B) with varying mean µL

and fixed standard deviation �L for liabilities, fixed mean µA and fixed standard
deviation �A for assets plotted against (µL � µA)/(�2

A + �2
L)1/2. Each symbol is

the average of the fraction of surviving banks of 100 simulations. The error bars
are the standard deviation of the 100 simulations. To compute the blue line, we
set the average fraction of interbank loans to zero, i.e. � = 0.0, for the red line �
was set to 0.1 and for the green line � was set to 0.3. The underlying structure
of the exposure networks are Erdős-Rény networks with connection probability
� = 0.1 and M = 500 banks. The black lines accompanying each plot are the fixed
points of the Iteration Function 12 plotted against a � b which is approximately
(µL � µA)/(�2

A + �2
L)1/2. Note that b is changed to fit the equivalent � value. A

steep decline in the fraction of surviving banks happens when � equals to 0.3 in
the area of the predicted jump. For � equal to 0.0 and 0.1 the simulation result for
both distributions are close to the fixed point solution of the Iteration Function 12.
The parameter values used to initialize the system are stated in Table 2.

mean of the total assets of banks is constant and a change in � does not e�ect
the size of the balance sheet. Hence, capital stays constant for fixed values
of µL, �L and �g.

The fractions of surviving banks computed in Figure 7 used Normal dis-
tributions (A) and Student’s t distributions (B) to initialize total assets and
total liabilities. Similarly, to compute the fixed point solutions, we used a
standard normal CDF in A and a standard Student’s t CDF in B.

We note that, for � = 0.3 more banks default for the same values of
µA, µL, �A and �L than when � = 0. The reason is that there exists no
counterparty risk when � = 0.0. For both distributions a sudden decrease
in the fraction of surviving banks is observed for � = 0.3. The jump starts
earlier for the banking system with banks initialized with the Student’s t
distribution than for banks initialized with the Normal distribution. Also, the
simulation results for a banking system initialized with Normal distributions
are a closer fit to the fixed point solutions of the Iteration Function 12,
nonetheless the simulated results initialized with the Student’s t distribution
are also reasonable close to the fixed points. In the proximity of the jump, the
standard deviation of the simulated fractions of surviving banks increases.
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Fig. 9 The figure shows the average fraction of surviving banks p computed using
100 simulations plotted against (µL � µA)/(�2

A + �2
L)1/2. The balance sheet values

are normally distributed. The underlying structure of the exposure networks are
Small-World with neighbouring nodes c = 12 and a re-wiring probability � set
to 0.1 (A) and core-periphery networks with a strongly connected cores created
using Erdős-Rény networks with connection probability � = 0.75 and 50 banks,
and 450 periphery banks that are added one by one and joint to 50 already existing
banks using the preferential attachment algorithm. As in Figure 7, for a fraction
of interbank assets to total assets, p is plotted using green symbols, for � = 0.1 we
used red symbols and for 0.0 blue symbols were used. The error bar is the standard
deviation of the results of 100 trials. The black line represents the fixed points
of the Iteration Function 12 plotted against a � b for changing � as used in the
simulation. The values of p for the simulation and the Iteration Function 12 are for
both network structures reasonable close and the steep decrease in the proximity
of the jump are for both network structures observable.

The steep decline of p when the Small-World network is used starts a
bit earlier than the predicted jump in the mean-field. Before the rewiring
process, the Small-World network is an ordered lattice. The Ising model on
an ordered lattice can be approximated using the mean-field solution as long
as the number of close neighbours is larger than 4. The re-wiring creates
long-distance links between banks distributing the shock quicker through
the network.

Thus, it can be said that the network influence is marginal given that the
number of lending banks is large enough. This can be explained using the
results in Section 4.2. There, we showed that when pr = x1 (and assuming
a small change from pr to pr�1), the average number of banks failing as a
result of one distressed bank is one again. Therefore, this implies that when
capital is low the distress of one bank causes a chain of distress in connected
banks resulting in distress throughout the entire system implying that the
network structure is secondary. However, is has been reported that in the real
world networks, periphery banks are of smaller size than core banks, which
we did not account for and might lead to a di�erent result. A study of real
interbank network system, combined to the investigation of inferred networks
form assets correlations studies [5, 20, 31, 47] is under current investigation.

16

3. Eq. 2 is then used to evaluate the total assets of bank i for the next
iteration r + 1.

4. The above steps are repeated until no further default occur.

When the iteration process stops we obtain the fraction of surviving banks
p by counting the banks that are still operating.

5.2 Comparing with Fixed Point Solution

To compare the fraction of surviving banks with the fixed points of the It-
eration Function 12, we identify (µL � µA)/(�2

A + �2
L)1/2 with a � b and

Jz � �Ai(0), where a and b from Eqns. 10 and 11.
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Fig. 6 The figure shows the average error between the solution of the simulation
and Iteration Function 12 of the fraction of surviving banks. The figure reports
the second norms of the di�erence between the fractions of surviving banks of the
fixed point solutions of Iteration Function 12 and the fraction of surviving banks
of an average of 100 simulations for fixed values (µL �µA)/(�2

A +�2
L)1/2 (changing

µL for di�erent simulations) and a � b (changing a for di�erent fixed points). The
simulation assumes Normal distributions for the balance sheet values and for the
structure of the exposure network Erdős-Rény networks with connection probability
� and fraction of interbank loans to total assets � are used. To test the influence
of the number of links from one bank to others, � is varied in (0, 0.1].

Figure 6 shows the di�erence between the fraction of surviving banks
computed by using the fixed points of the Iteration Function 12 and the
mean value of the fraction of surviving banks from 100 simulations. In the
simulation, we use Erdős-Rény networks as underlying structures for the
exposure networks and Normal distributions for liabilities and assets with
varying mean of the Liabilities µL and connection probability �. The ratio
between interbank assets and total asset � is set to 0.3. For this value of �,
b is well above its critical value and a jump is predicted. For the fixed point
equation a is varied to balance the changes in µL in the simulation. The
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Heterogeneous system simulations calibration

The system consists of N = 175 banks.
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recovery rate is q = 0
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Heterogeneous System Calibrated with UK data

Results

Fraction of surviving banks as
function of mean liabilities. Com-
parison with homogeneous system
model (mean field, MF) and sys-
tem with no contagion (null, N)
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Figure 4: The figure contains three subplots each initialized with data from
the years 2011 H2 (a), 2012 H2 (b) and 2013 H1 (c). Here we set fA = 0.001.
The subplots are further divided into two rows. The first row shows the
fraction of surviving banks plotted against the fraction of the mean liabilities,
fL. The solid black line shows the average fraction of surviving banks, pS,
from 1000 simulations. The dotted black line shows the average fraction
pN of surviving banks from 1000 simulations when gij is set to zero for all
banks i, j. This solution, pN , is the null model as it shows the stability of
the banking system when direct contagion is excluded. The blue vertical line
shows the solution of Eq. 9, pMF , when p0 = 1. The second row of each
subplot shows the standard deviation of pS. In the upper row, we indicated
the position of fL at which pMF jumps from almost all banks operating to
almost all banks insolvent. In the second row, we indicated the value of fL at
which the standard deviation of pS is maximisted. It becomes clear that the
influence of the exposure network causes significant more losses for smaller
values of fL than for the same value of fL�, for a given fL, the exposure
network causes significant more losses with respect to the case when the
exposure network is disregarded. Close to the value of fL at which the jump
occurs in the mean-field model, the standard deviation is maximised for all
years, suggesting that in that region pS also experiences a jump.
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banks i, j. This solution, pN , is the null model as it shows the stability of
the banking system when direct contagion is excluded. The blue vertical line
shows the solution of Eq. 9, pMF , when p0 = 1. The second row of each
subplot shows the standard deviation of pS. In the upper row, we indicated
the position of fL at which pMF jumps from almost all banks operating to
almost all banks insolvent. In the second row, we indicated the value of fL at
which the standard deviation of pS is maximisted. It becomes clear that the
influence of the exposure network causes significant more losses for smaller
values of fL than for the same value of fL�, for a given fL, the exposure
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exposure network is disregarded. Close to the value of fL at which the jump
occurs in the mean-field model, the standard deviation is maximised for all
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Figure 4: The figure contains three subplots each initialized with data from
the years 2011 H2 (a), 2012 H2 (b) and 2013 H1 (c). Here we set fA = 0.001.
The subplots are further divided into two rows. The first row shows the
fraction of surviving banks plotted against the fraction of the mean liabilities,
fL. The solid black line shows the average fraction of surviving banks, pS,
from 1000 simulations. The dotted black line shows the average fraction
pN of surviving banks from 1000 simulations when gij is set to zero for all
banks i, j. This solution, pN , is the null model as it shows the stability of
the banking system when direct contagion is excluded. The blue vertical line
shows the solution of Eq. 9, pMF , when p0 = 1. The second row of each
subplot shows the standard deviation of pS. In the upper row, we indicated
the position of fL at which pMF jumps from almost all banks operating to
almost all banks insolvent. In the second row, we indicated the value of fL at
which the standard deviation of pS is maximisted. It becomes clear that the
influence of the exposure network causes significant more losses for smaller
values of fL than for the same value of fL�, for a given fL, the exposure
network causes significant more losses with respect to the case when the
exposure network is disregarded. Close to the value of fL at which the jump
occurs in the mean-field model, the standard deviation is maximised for all
years, suggesting that in that region pS also experiences a jump.
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Heterogeneous System Calibrated with UK data

Fraction of surviving banks as
function of mean liabilities Results
for di�erent bank types: “Large
Banks" (LB), “Building Soci-
eties" (BS), “Investment Banks"
(IB), “Oversea Banks" (OB) and
“Other Commercial Banks" (CB)
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Figure 5: The figure shows the mean fraction of surviving banks of particular
bank types plotted against the fraction of mean liabilities, fL, in the upper
subplots. The parameter fA was fixed at 0.001. The di�erent bank types are
indicated using the colours blue for LB, red for BS, green for IB, black for
OB and magenta for CB. In the lower plots, the standard deviation of the
mean fractions of surviving banks of particular banks is plotted against fL.
Again in plot (a) the simulation was initialized with data from 2011 H2, plot
(b) with data from 2012 H2 and plot (c) with data from 2013 H1.
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OB and magenta for CB. In the lower plots, the standard deviation of the
mean fractions of surviving banks of particular banks is plotted against fL.
Again in plot (a) the simulation was initialized with data from 2011 H2, plot
(b) with data from 2012 H2 and plot (c) with data from 2013 H1.
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Emergence of systemic failure
Fraction of surviving banks against the fraction of capital

1018 A. Birch, T. Aste

Fig. 11 The sub plots show the fraction of surviving banks for the years 2007 (blue crosses) and 2012 (black
circles) against the fraction of σ to mean value of capital, f, for various values of the fraction of interbank
assets to total assets, θ . To calibrate the model, the mean of total assets, µA , and the mean of Tier 1 capital, µE ,
was used from banks from the UK banking system. For θ = 0, banks are not interconnected. In that case, for
both years no systemic distress event happens. In order for a system failure to happen, θ needs to be non-zero.
The sudden system failure happens for the banking system calibrated with the 2007 UK data for θ = 0.07 at
which the banking system calibrated with 2012 UK data is still in a stable state. For θ ≥ 0.10, the banking
system calibrated with 2012 UK data also becomes unstable for a large enough f . However, f at which the
systemic distress happens for the 2007 UK data is smaller then the value for f at which the systemic failure
happens when the banking system is calibrated with the 2012 UK data implying that the 2007 system is more
prone to failure then the 2012 banking system (Color figure online)

between the interbank market and products obtained from other financial institutions. Still
using only the values for “Loans and advances to banks” or “Deposits by banks” to calibrate
θ would underestimate the average fraction of interbank lending. Henceforth, we again use
multiple values of θ to test the stability of the system.

Figures 11 and 13 show various plots the fraction of surviving banks, p, plotted against
the fraction of σ to the mean Tier 1 capital µE , f for the UK and US system, respectively.
The fraction of surviving banks is calculated using the fixed points of Eq. 12 using a standard
normal CDF as before. The value of the fraction of interbank lending to total assets, θ is fixed
and given above each sub plot. The blue crosses indicate the fraction of surviving banks for
a banking system calibrated with the 2007 data and the black circles symbolizes the fraction
of surviving banks for a banking system calibrated with the 2012 data.

For θ set to zero the fraction of surviving banks in the UK banking system is almost
identical (Fig. 11). The number of surviving banks declines for a larger f . However, even for
f tending to one more than 85 % of banks are operating in both 2007 and 2012. Note that
θ equal to zero corresponds to no interbank lending. The number of distressed banks is only
due to the uncertainty of the value of liabilities and non-interbank assets caused by a large
σ . For the range of σ from zero to the size of µE , no systemic event, i.e. the entire failure
of the banking system, becomes possible in both years given that there is only a shock to the
value of non-interbank assets or liabilities.

For the next graphs in Fig. 11 in the first row θ is increased to 0.03 and 0.07. It becomes
clear that the fraction of surviving banks deviates for 2007 and 2012 with p for 2007 being
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blue crosses - 2007; black circles - 2012
◊ fraction of interbank assets to total assets
‡ amplitude of fluctuations
p fraction of surviving banks

T Aste (UCL, SRC) Phase Transitions in Banking Systems CoSyDy, QMUL, 06/07/16 22 / 24



Conclusions

Conclusions

a simple model from physics for a banking system where systemic
fragility emerges
in the fragile state a failure can trigger an avalanche that brings down
the entire system
Once the system fails it cannot go back to operating state without a
recovery cost
Numerical simulations show that the prediction of the homogeneous
model are reproducing well the behavior of more realistic
heterogeneous systems calibrated on BoE UK data
tipping points
phase transitions
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Conclusions

Thank You
http://fincomp.cs.ucl.ac.uk/
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