Emergence of Cooperative Long-lasting Loyalty in Double Auction Markets

Aleksandra Aloric King's College London

Motivation

- Always buy from the same merchants?
 - Loyalty by design

Motivation

- Always buy from the same merchants?
 - \circ Loyalty by design
- CAT tournaments indicate loyalty can arise as consequence of coadaptation

Motivation

- Always buy from the same merchants?
 - $\circ \quad \text{Loyalty by design} \\$
- CAT tournaments indicate loyalty can arise as consequence of coadaptation

AIM

• Design stylized model of agents choosing among multiple markets to investigate whether loyalty can emerge spontaneously

Model

Aloric et al. (2015) Advances in Artificial Economics

Aloric et al. (2016) PloS ONE

2 Double Auction markets

- Discrete time
- Globally set trading price

Agents

- Choosing Strategy
- Trading Strategy

Markets

- Executes trades based on which traders evaluate returns
- Sets a global trading price based on submitted bids and asks
- $\pi = \pi^{eq} + \theta(\langle b \rangle \langle a \rangle)$
- Matches buyers to sellers
- No limit order book

Markets - price setting

Markets - returns

Agents - Choosing strategy

- Where to trade? (which market)
- How to trade? (to buy or to sell)

Agents - Choosing strategy

- Where to trade? (which market)
- How to trade? (to buy or to sell)
- Decision is based on attractions:

 $A_{\gamma}(n+1) = \begin{cases} (1-r)A_{\gamma}(n) + rS_{\gamma}(n), & \text{if agent has chosen action } \gamma \\ (1-r)A_{\gamma}(n), & \text{otherwise} \end{cases}$

 $\gamma \in \{B1, S1, B2, S2\}$ r - forgetting rate $S_{\gamma}(n)$ - score received during trading period n, when action γ is taken

 $p_\gamma \propto \exp(eta A_\gamma)$, eta intensity of choice

Agents - Trading strategy

Zero Intelligence Traders

- Bids/Asks are iid Gaussian random variables
- No dependence on previous success
- No information about other traders
- No wealth constraint
- Want to trade 1 unit of stock per trading period

Numerical Results

Numerical Results

Analytical Model

Agents with fixed Buy-Sell preferences

- Agents' preference for Buying (Selling) non adaptive determined on input
- Only choice is where to trade
- Still develop loyalty in simulations, but easier to analyse

Phase Diagram

Phase Diagram

Robustness

- Assumptions on Bid/Ask distributions
- Reinforcement learning
- Wealth constraints
- More sophisticated trading strategies
- Continuous Double Auction Market

Summary

- Simple numerical model of double auction markets
- Observed long lasting loyalty for certain range of parameters
- Above critical intensity of choice β: the system is stabilized by traders who persistently chose to trade at suboptimal market - cooperative trade-enabling action
- Even the volume driven agents benefit from segregated state
- Adaptation/Learning is the key driver of segregation

Thank you for the attention!

aleksandra.aloric@gmail.com