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Lévy scaling: The diffusion entropy analysis applied to DNA sequences
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We address the problem of the statistical analysis of a time series generated by complex dynamics with the
diffusion entropy analysis~DEA! @N. Scafetta, P. Hamilton, and P. Grigolini, Fractals9, 193 ~2001!#. This
method is based on the evaluation of the Shannon entropy of the diffusion process generated by the time series
imagined as a physical source of fluctuations, rather than on the measurement of the variance of this diffusion
process, as done with the traditional methods. We compare the DEA to the traditional methods of scaling
detection and prove that the DEA is the only method that always yields the correct scaling value, if the scaling
condition applies. Furthermore, DEA detects the real scaling of a time series without requiring any form of
detrending. We show that the joint use of DEA and variance method allows to assess whether a time series is
characterized by Le´vy or Gauss statistics. We apply the DEA to the study of DNA sequences and prove that
their large-time scales are characterized by Le´vy statistics, regardless of whether they are coding or noncoding
sequences. We show that the DEA is a reliable technique and, at the same time, we use it to confirm the validity
of the dynamic approach to the DNA sequences, proposed in earlier work.
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I. INTRODUCTION

The recent progress in experimental techniques of m
lecular genetics has made available a wealth of genome
~see, for example, Ref.@1#!, and raised the interest for th
statistical analysis of DNA sequences. The pioneer pap
mainly focused on the controversial issue of whether lo
range correlations are a property shared by both coding
noncoding sequences or are only present in noncoding
quences@2–5#. The results of more recent papers@6,7# yield
the convincing conclusion that the former condition appli
However, some statistical aspects of the DNA sequences
still obscure, and it is not yet known to what extent t
dynamic approach to DNA sequences proposed by the
thors of Ref.@8# is a reliable picture for both coding an
noncoding sequences. The later work of Refs.@9# and @10#
established a close connection between long-range cor
tions and the emergence of non-Gaussian statistics,
firmed by Mohanty and Narayana Rao@6#. According to the
dynamic approach of Refs.@8,11# this non-Gaussian statistic
should be Le´vy, but this property has not yet been asses
with compelling evidence. The reason for the confusion
fecting this issue is deeper than one can imagine, sinc
essentially depends on the fact the there exists no reli
method of scaling detection. In fact, all the traditional me
ods of scaling detection on the market, the detrended fl
tuation analysis~DFA! @12#, the standard deviation analys
~SDA! @8#, and the wavelets spectral analysis~WSA! @7,13#,
are based on the evaluation of the variance of the proc
and therefore yield a scaling that is the correct one only if
process under study is Gaussian.

The main aims of this paper are the following.
~1! To clarify the meaning of scaling as a form of therm

dynamic equilibrium that can be reached after a long-ti
1063-651X/2002/66~3!/031906~15!/$20.00 66 0319
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transient, throughout which the conventional techniques
analysis can yield misleading information.

~2! To show that the diffusion entropy analysis~DEA!,
recently proposed in Ref.@14#, is able to yield the correc
scaling, even when the observed diffusion process is
Gaussian. We shall show that the departure of the cor
scaling, detected by means of the DEA, from the results
the traditional methods, all of them being variance-bas
methods, is a clear indication of the non-Gaussian chara
of the process under study.

~3! To show the DEA in action by means of an applicati
to the study of DNA sequences. As a remarkable result,
shall show that both coding and noncoding DNA sequen
depart from Gaussian statistics and produce Le´vy diffusion.
This will shed light on some still obscure aspects of t
statistical properties of DNA.

II. THE MEANING OF SCALING

The reason for the confusion still present in the issue
the extraction of the long-range statistical properties of DN
sequences~and more in general of any time series: hea
beats, earthquakes, oscillations of markets stocks, etc.! is es-
sentially due to the fact the there are no reliable method
scaling detection. To clarify this crucial aspect we need
discuss, first, what scaling is all about. Scaling is a prope
of a probability distributionp(x,t), which formally reads as

p~x,t !5
1

td
FS x

tdD . ~1!

When we deal with a time series or a generic sequence
need first to construct the probability distributionp(x,t). In
order to do so we convert with some method, for instance
one used in this paper, the single sequence into many dis
©2002 The American Physical Society06-1
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NICOLA SCAFETTA, VITO LATORA, AND PAOLO GRIGOLINI PHYSICAL REVIEW E66, 031906 ~2002!
trajectories. These trajectories start at timet50 from x50,
and then spread over thex axis, as a result of their, partial o
total, random nature. Thus, rather than observing a sin
trajectory, we are naturally led to evaluate the probability
observing it. In other words, we rest, with theoretical or co
putational arguments, on the probability of finding the va
ablex in the interval@x,x1dx# at time t, denoted by us as
P(x,dx,t). The probability density,p(x,t), is defined by
P(x,dx,t)/dx. The meaning of Eq.~1! is that the process is
stationary, in spite of the fact that the probability densi
p(x,t) broadens with time. To stress this aspect, let us fo
our attention on the probability densitiesp(x,t1) and
p(x,t2), at two distinct timest1 and t2, with t1,t2. Let us
squeeze the abscissa scale of the later distribution,p(x,t2),
by the factorR[(t1 /t2)d,1, and then enhance the intensi
of the resulting distribution density by multiplying it by th
factor 1/R.1. If the property of Eq.~1! holds true, then the
resulting distribution density is identical to the forme
p(x,t1). This is equivalent to interpreting the distributio
density as a form of equilibrium distribution. This property
deeply related to the foundation itself of statistical mechan
@15#. In fact, in the case where the diffusion trajectory is t
superposition of many uncorrelated fluctuations, the resul
diffusion process is predicted by the central limit theore
~CLT! to be a Gaussian probability distribution, a spec
form of canonical equilibrium, and we can refer ourselves
the transient process necessary for the CLT to work as a
of transition from dynamics to thermodynamics. In this sen
the scaling property of Eq.~1! must be interpreted as a form
of thermodynamic equilibrium. Note that in the case of or
nary statistical mechanics, when the CLT applies, we h
that d51/2 andF(y) is a Gaussian function ofy.

According to the new field of science of complexi
@16,17#, a complex process is expected to yield the prope
of Eq. ~1! with dÞ1/2 and~or! F(y) being a form different
from the Gaussian one~we shall discuss an example of th
non-Gaussian form in later sections!. Thus, this raises the
question of whether a noncanonical equilibrium conditi
can be generated by sequences reflecting complex dynam
We should consider three different possibilities.

~1! Mandelbrot@17# proposesfractional Brownian motion
~FBM! as a condition exceeding the limits of ordinary stat
tical mechanics. This corresponds to the scaling condition
Eq. ~1! with dÞ1/2 while F(y) keeps its Gaussian form.

~2! Another possible form of violation, naturally stem
ming from the generalized central limit theorem~GCLT!
@18#, rests on Eq.~1! with d.1/2 andF(y) being a Lévy
function, with the asymptotic property limy→`F(y)
5const/y111/d. This means the occurrence of a disconcert
condition, where the second moment of the distribution
infinite. It is obvious that in practice real time series cann
produce this condition, and that the distribution moments
the observed diffusion process are always finite, being
imperfect realization of the diffusion process with infini
moments.

~3! Finally, we should consider also the stretched Gau
ians emanating from subdiffusion@19#. Actually, this kind of
process is not explicitly examined in this paper. We exp
that in this case the standard techniques of scaling detec
03190
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might do better than in case~2!, since the stretched Gaus
ians are characterized by finite moments. Therefore, we s
focus our attention on both case~1!, where the standard tech
niques are expected to yield exact results, and on case~2!,
where the standard techniques are expected to fail.

As we shall show in this paper, all techniques curren
adopted to detect scaling are explicitly or implicitly based
the measurement of the second moment of the distribu
p(x,t). Thus, the scaling revealed by the ordinary techniq
of analysis might depart from the genuine scaling of t
process under observation, if this is an imperfect realizat
of a diffusion process with infinite moments. To stress t
crucial aspect we adopt for the scaling parameterd the sym-
bol H, according to a notation proposed by Mandelbrot
honor Hurst@20# ~see also Ref.@21#!. Notice that a widely
adopted method to express the condition of Eq.~1! is given
by

x}td. ~2!

This way of expressing the scaling condition is the source
misleading procedures. In fact, it is usually assumed that
equivalent to

^x2~ t !&1/2[E
2`

1`

x2 p~x,t !dx}td. ~3!

We think that it is much more appropriate to use the follo
ing notation:

^x2~ t !&1/2}tH, ~4!

leaving open the possibility thatHÞd.
In this paper we show that the DEA@14# is the only tech-

nique yielding the correct scalingd when the observed dif
fusion process departs from the FBM condition. In fact all
the other techniques, including the DFA@12#, the SDA@8#,
and the WSA@7,13#, yield a scaling that would be correc
only in the FBM case. This is so because, as we shall
these techniques rest on variance to evaluate scaling.
these techniques, whose limitations are bypassed by
DEA, are in a sense different versions of the same method
which we shall refer to as the variance method~VM !. The
departure of the correct scaling, revealed by the DEA, fr
the results of the VM is consequently a proof of the no
Gaussian character of the process under study.

III. THE DIFFUSION ENTROPY ANALYSIS

The DEA is based upon the direct evaluation of t
Shannon entropy of the diffusion process. In the continu
space and continuous-time representation for the probab
density p(x,t), the Shannon entropy@22# of the diffusion
process reads

S~ t !52E
2`

`

dx p~x,t !ln@p~x,t !#. ~5!

To show how the DEA works, let us assume thatp(x,t) fits
the scaling condition of Eq.~1!. Let us plug Eq.~1! into Eq.
~5!. After simple algebra, we get
6-2
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LÉVY SCALING: THE DIFFUSION ENTROPY . . . PHYSICAL REVIEW E66, 031906 ~2002!
S~t!5A1dt, ~6!

where

A[2E
2`

`

dy F~y!ln@F~y!# ~7!

and

t[ ln~ t !. ~8!

Equation~6! shows that if the diffusion process scales w
the parameterd, the resulting diffusion entropy becomes
linear function of the logarithm oft, with a slope equal tod.
This makes the slope measurement equivalent to the sc
detection, independently of the form of F(y).

In the case of ordinary Brownian diffusion,d51/2 and
F(y) has the following Gaussian form:

F~y!5

expS 2
y2

2s2D
A2ps2

. ~9!

Thus Eq.~5! becomes

S~ t !5 1
2 @11 ln~2ps2!#1 1

2 ln~ t !. ~10!

In this case, we have assumed the system to be already i
scaling regime state. More in general, we shall have to
dress the problem of the transition from the dynamic to
thermodynamic~scaling! regime.

IV. LÉ VY WALK

The artificial sequences that we shall use in this pape
show the merits of DEA and the limits of VM rest on
dynamic approach adopted years ago to derive Le´vy statis-
tics @11,23#. The importance of this approach to Le´vy statis-
tics is due the fact that it makes possible, in principle, to
the same perspective as that adopted in Ref.@24#. Bianucci
et al. @24# discussed the case of a system of interest inter
ing with another system calledboosterrather thanthermal
bath, to emphasize that no assumption on its thermodyna
nature was made. The basic aspect of the research proje
Ref. @24# was that statistical mechanics, in that case ordin
statistical mechanics, had to be derived from merely dyna
rather than thermodynamic arguments. The same appr
can be applied to the derivation of Le´vy statistics, with only
one significant difference: the phase space of the boo
rather than being fully chaotic, as in the case of ordin
statistical mechanics, is weakly chaotic@25#. The phase
space consists of chaotic and regular regions, and the bo
trajectory tends to sojourn for a long time at the border
tween chaotic and ordered regions. The waiting time dis
bution is an inverse power law, and, for simplicity, we a
sume it to be given by

c~ t !5~m21!
Tm21

~T1t !m
. ~11!

We make the assumption
03190
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m.2, ~12!

which ensures the mean waiting timetM to get the finite
value

tM5
T

~m22!
. ~13!

It is evident from this formula that the parameterT, as well
as the power indexm, determine the time duration of th
sojourn of the trajectory at the border between chaotic
ordered regions. This inverse power law form, and the res
ing stickiness, are naturally generated by the self-similar
ture of the borders@25#. We call these crucial subsets of th
phase spacefractal borders.

Now, let us assume that one of the variables of the ph
space, calledj, is the generator of the fluctuations that a
collected by the diffusing variablex. Since the fractal borders
have a finite size, when the trajectory sticks to one frac
border, the variablej gets a value that depends on the tr
jectory position. Let us make also the assumption that th
are only two fractal borders, and that their size compared
that of the whole phase space is so small that the variabj
gets only two distinct values, denoted by us asW and2W.
As an example of Hamiltonian model generating veloc
fluctuations we have in mind the kicked rotor in the so cal
accelerating state@26–28#. The booster trajectory moves e
ratically in the chaotic sea between the two fractal regio
and after a given time sticks to one of the two fractal regio
After an extended time spent in this fractal region it go
back to the chaotic sea, and after a short diffusion proces
either goes back to the earlier fractal region or it goes to
other one. Due to the power law nature of the waiting tim
distribution of Eq.~11!, the sojourn in the chaotic sea ca
be ignored. As a result of this dynamic process we sh
get a sequence such asW,W,W,W, . . . 2W,2W,2W,
2W, . . .W,W,W, . . . . In this paper we setW51. This is
an example of the time series under discussion in this pa
For simplicity, rather than deriving it running a dynamic sy
tem, as the kicked rotor in the accelerating state@26–28#, we
can directly generate the random sequence$t i ,j i% in the
following way: first the numberst i are randomly drawn from
the distribution of Eq.~11!; then the value ofj i is established
by tossing a coin, and it is assumed that the variablej gets
the specific valuej i for the whole time intervalt i .

To understand the connection between this kind of
quence and Le´vy statistics, we have to use the fluctuationj
to generate diffusion by means of the following equation
motion:

ẋ~ t !5j~ t !. ~14!

As remarked earlier,j is a dichotomous variable, i.e.,j
561, where 1 is a unit of length. The solution of Eq.~14! is
given by

x~ t !5x~0!1E
0

t

dt8j~ t8!, ~15!
6-3
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NICOLA SCAFETTA, VITO LATORA, AND PAOLO GRIGOLINI PHYSICAL REVIEW E66, 031906 ~2002!
and our final goal is to evaluatêx2(t)&.
As pointed out by Zaslavsky@25#, the conditionm.2,

assumed throughout this paper@see Eq.~12!#, ensures the
stationary condition, which allows us to properly defi
Fj(t), the normalized correlation function of the fluctuatio
j. This important dynamic property, according to the renew
theory @29#, is related toc(t) by

Fj~ t !5
1

tM
E

t

`

~ t82t !c~ t8!dt8, ~16!

wheretM denotes the mean waiting time. Using forc(t) the
expression of Eq.~11! we obtain

Fj~ t !5S T

t1TD m22

. ~17!

In this casetM is given by Eq.~13!. Squaring the expressio
for x(t) given by Eq.~15! and by using the stationary an
dichotomous nature of the fluctuationj(t)561 ~the latter
yielding ^j2&51), it is easy to prove that the mean squa
displacement̂x2(t)& is given by

d

dt
^x2~ t !&52E

0

t

dt8Fj~ t2t8!. ~18!

Finally, by using Eq.~17! we get

lim
t→`

^x2~ t !&}t2H, ~19!

with

H5
42m

2
if m,3, ~20!

and

H5 1
2 if m.3. ~21!

It is therefore evident thatm53 is the border between ord
nary and anomalous diffusion. As pointed out in Sec. II, t
result can be trusted only in the Gaussian case.

Let us see why this way of evaluating scaling needs so
caution. Thanks to the condition of Eq.~12!, we can define
the numberN5@ t/tM#, where@y# denote the integer part o
y. In the caset@tM the numberN becomes virtually identi-
cal to the number of random drawings of the numberst i and
j i . This is equivalent to drawing theN numbersh i5j it i .

~1! In the case where the conditionm.3 applies, this
distribution has a finite second moment. Thus, we can use
CLT, which yields a Gaussian diffusion, and consequen
H51/2, which correctly reflects the scaling in this case.

~2! In the case 2,m,3, the second moment of this dis
tribution is divergent, thereby preventing us from using t
CLT. However, in this case we use the GCLT@18#. As shown
in Ref. @30#, this random extraction of numbers yields a d
fusion process, described by the probability distributi
pL(x,t), whose Fourier transform,p̂L(k,t), reads
03190
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p̂L~k,t !5exp~bukum21t !, ~22!

with

b5W~TW!m22sin@p~m22!/2#G~32m!. ~23!

The subscriptL stands for Le´vy. The numerical simulations
support this theoretical expectation@30#. Note that this dy-
namic approach to Le´vy statistics coincides with the Le´vy
walk @29#. The difference between Le´vy walk and Lévy
flight is well known. In the case of Le´vy flight the random
walker makes instantaneously jumps of arbitrary intensity
the case of Le´vy walk, instead, it takes the random walker
time proportional touh i u to make a jump with this intensity
In the case of Le´vy flight, the random walker makes jump
of intensity uh i u at regular time intervals.

We note that the scaling of Eq.~1! derives naturally
from the joint use of the assumptionx}td and norm conser-
vation. It is straightforward to show that within the Fouri
representation the norm conservation yieldsp̂L(0,t)51.

On the other hand, moving fromuku to uku5ukut1/(m21) we
obtain the time independent Fourier transformp̂ti(k)
5exp(2bukum21), which fits the normalization condition, an
yields the scaling

d5
1

m21
, ~24!

which has to be compared to Eq.~20!. It is evident thatH
Þd, in this case.

In this paper, we shall focus our attention on the dynam
condition fitting both the condition of Eq.~12! m.2, and the
condition

m,3. ~25!

This is in line with the arguments of the dynamic approach
DNA of the earlier work of Refs.@8–11#, which proved the
DNA sequences to be equivalent to a dynamic process fit
both conditions, ensuringstationarity, the former, andsuper-
diffusion, the latter, at the same time.

There are two important issues to clarify before proce
ing with the next sections. The reader can find a deta
account somewhere else@11,31,32#. However, to make this
paper as much self-contained as possible, we shall sho
outline both of them. The first issue has to do with the tim
required for the GCLT to apply. The work of Ref.@31# shows
that the predictions of the GCLT are realized by the follo
ing expression forp(x,t):

p~x,t !5K~ t !pT~x,t !u~Wt2uxu!1 1
2 d~ uxu2Wt!I p~ t !,

~26!

wherepT(x,t) is a distribution that fort→` becomes iden-
tical to the Lévy probability distribution of the variablex,
namely, a function whose Fourier transform coincides w
Eq. ~22!, u denotes the Heaviside step function andK(t) is a
time-dependent factor ensuring the normalization of the d
6-4
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LÉVY SCALING: THE DIFFUSION ENTROPY . . . PHYSICAL REVIEW E66, 031906 ~2002!
tribution p(x,t). This contribution to Eq.~26! is a truncated
Lévy distribution, the rationale for it being that no trajecto
can travel with velocity of intensity larger thanW. The tra-
jectories that at timet.0 are still traveling in the same di
rection as at timet50 produce two peaks located at th
propagation fronts,x5Wt andx52Wt, and their contribu-
tion to p(x,t) is given by the second term on the right ha
side of Eq.~26!. The number of trajectories that contribute
the peaks is given by the functionI p that has been evaluate
in detail by the authors of Ref.@31#. Here it is enough to say
that these authors find

lim
t→`

@ I p~ t !2Fj~ t !#50. ~27!

This means that in the time asymptotic limit the peak inte
sity becomes identical to the correlation functionFj(t) of
Eq. ~17!. On the basis of these arguments they reach
conclusion that in the asymptotic time limit Eq.~26! be-
comes identical to

p~x,t !5pL~x,t !u~Wt2uxu!1 1
2 d~ uxu2Wt!Fj~ t !,

~28!

which coincides with the earlier prediction of Ref.@11#. This
conclusion seems to be compatible with the results obta
by using the theory of continuous time random wa
~CTRW! @33#, although these authors do no refer explici
to the correlation functionFj(t). For an earlier work based
on the CTRW see Ref.@34#.

To provide an answer to the first question it is enough
rest on the earlier result of Eq.~28!. It takes an infinite time
for the GCLT to apply: in fact the intensity of the peaks
the propagation front is proportional to the correlation fun
tion of Eq. ~27!, which is not integrable. During this lon
transient, as we shall see, the DEA gets closer and clos
the true scaling of Eq.~24!, while the distribution second
moment, which is finite due to the truncation of the Le´vy
distribution, yields the fake scaling of Eq.~20!.

The second issue is less relevant to the main purpos
this paper. It has to do with another approach to the t
scaling, already discussed in Ref.@11#. This has to do with
the Hamiltonian derivation of Le´vy statistics mentioned in
Sec. II. We study the time evolution of the probability dist
bution of the diffusion variablex, of the fluctuating variable
j and of all other variables that might be responsible for
fluctuations ofj. Then, we make a trace over all the ‘‘irre
evant’’ variables, namely, all the variables butx. The result-
ing equation of motion is not Markovian, and no ordina
method to make the Markovian approximation can be
plied. This is so because the projection method yields a t
convoluted diffusion equation with a memory term given
the correlation functionFj(t) of Eq. ~17!, which is not inte-
grable. Consequently a new way to make the Markovian
proximation also in this case was invented@11#. It was no-
ticed that this approximation changes the time convolu
diffusion equation into a master equation@35#. To derive
from it a result consistent with that of the CTRW used in
earlier work of Zumofen and Klafter@36#, and with Lévy
03190
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statistics as well, the authors of Ref.@35# had to use as a
bridge the master equation method of Ref.@37#. This master
equation gets the form of a fractional derivative, and,
resulting diffusion process coincides with the predictions
the GCLT, with a diffusion strengthb that coincides with that
of Eq. ~23!. It comes to be a surprise, therefore, that t
recent work of Ref.@32# proves that the exact solution of th
time convoluted diffusion equation yields the same scaling
the VM, namely, the scaling of Eq.~20!. This suggests tha
densities and trajectories might not speak the same lang
in the case of nonordinary statistical mechanics, and it ma
much stronger than ever the need for detecting the cor
scaling of a time series.

V. THE ALGORITHM

Let us consider a sequence ofM numbers

j i , i 51, . . . ,M . ~29!

The purpose of the DEA is to establish the possible existe
of a scaling, either normal or anomalous, in the most e
cient way as possible without altering the data with any fo
of detrending. Here we describe the algorithm adopted in
paper.

Let us select first of all an integer numberl, fitting the
condition 1< l<M . This integer number will be referred t
by us as ‘‘time.’’ For any given timel we can findM2 l
11 subsequences of lengthl defined by

j i
(s)[j i 1s , i 51, . . . ,l , ~30!

with s50, . . . ,M2 l . For any of these subsequences w
build up a diffusion trajectory,s, defined by the position

x(s)~ l !5(
i 51

l

j i
(s)5(

i 51

l

j i 1s . ~31!

Let us imagine this position as that of a Brownian partic
that at regular intervals of time has been jumping forward
backward according to the prescription of the correspond
subsequence of Eq.~30!. This means that the particle befor
reaching the position that it holds at timel has been making
l jumps. The jump made at thei th step has the intensityuj i

(s)u
and is forward or backward according to whether the num
j i

(s) is positive or negative.
We are now ready to evaluate the entropy of this diffus

process. In order to do so we have to partition thex axis into
cells of sizee( l ) and count how many particles are found
the cell i at a given timel. We denote this number byNi( l ).
Then we use this number to determine the probability tha
particle can be found in thei th cell at time l , pi( l ), by
means of

pi~ l ![
Ni~ l !

~M2 l 11!
. ~32!

The entropy of the diffusion process at timel is
6-5
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Sd~ l !52(
i

pi~ l !ln@pi~ l !#. ~33!

Note that the subscriptd stands fordiscreteand serves the
purpose of reminding the reader that the numerical eva
tion of the diffusion entropy departs by necessity from t
continuous time and continuous-space picture of Eq.~5! The
easiest way to proceed with the choice of the cell size,e( l ),
is to assume it independent ofl and determined by a suitabl
fraction of the square root of the variance of the fluctuat
j i .

In this paper we study sequences of numbersj i511 or
21. Because at any step, the jump has the intensity equ
1, the most reasonable choice of the cell size is given
e( l )51. In this way any cell corresponds to a unique po
tion x( l ) of the diffusion trajectory defined in Eqs.~30! and
~31!. Moreover,e( l )51 is the square root of the variance
the random dichotomous fluctuationj i of intensity equal
to 1.

Few remarks about the meaning of the integer numbl
are necessary for the reader to understand the content o
next sections. As said before,l is the length of a window
moving all over the available sequence to define distinct
jectories. These trajectories are used to produce diffus
and consequently we shall often refer tol as time. This
should not confuse the reader. The adoption of the term t
is suggested by the formal equivalence with the processe
either normal or anomalous diffusion, where walker’s jum
occur in time. Here, these jumps occur as we move from
sequence site to the next, and consequently time here h
do with the site positions. Furthermore, we shall be of
using for this kind of time the symbolt rather thanl. This has
to do with the fact that for windows of very large size th
integer numberl becomes virtually indistinguishable from
continuous number. To emphasize this aspect we shall a
the symbolt rather thanl.

VI. TRANSITION REGIME: RANDOM WALK
AND LÉ VY WALK

In Sec. II we have shown that scaling is equivalent
thermodynamic equilibrium with the equilibrium distributio
F(y). We refer to the transient process necessary to rea
this form of thermodynamic equilibrium from the initial con
dition with all the trajectories located atx50, as transition
from microscopic dynamics to thermodynamics. Here we
lustrate this transition in two different cases, ordina
Brownian motion and Le´vy walk. In the former case the
transition from microscopic dynamics to thermodynam
can be interpreted as a transition from the discrete to
continuous time representation. In the second case the
sition is more extended and can be still perceived after rea
ing the continuous time regime.

A. The transition regime in the case of the Brownian walk

The discrete perspective can be illustrated by using
random walk theory that is expected to apply when our
chotomous signal is completely random. In this specific ca
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with no correlation, the probabilitypm( l ), for the random
walker to be at positionm after l jumps of intensity 1 in
either positive or negative direction, is determined by t
binomial expression@38#

pm~ l !5
1

2l S l

l 1m

2
D 11~21! l 1m

2
. ~34!

and the diffusion entropy reads

Sd~ l !52 (
m52 l

l

pm~ l !ln@pm~ l !#. ~35!

In the continuous time limit we expect Eq.~10! to apply.
Figure 1 shows that, after a short initial regime, the discr
diffusion entropy converges to the continuous time presc
tion ~solid line in Fig. 1!. In the case of Brownian walk we
can interpret the transition from microscopic dynamics
thermodynamics as the transition from the binomial form
of Eq. ~34! to the Gaussian expression of Eq.~9!, with s
50.5.

B. The transition regime in the case of the Le´vy walk

Here we show how to build a sequence corresponding
the prescription of Sec. IV. In an earlier work@39# the reader
can find the illustration of an algorithm that, using a gene
tor of random numbers of the interval@0,1#, creates the wait-
ing time distribution of Eq.~11!. Here we illustrate a slightly
different method, generating a distribution of integer tim
that is exactly, rather than approximately, equivalent to
shifted inverse power law. This serves the purpose of mak
as fast as possible the transition from microscopic dynam
to thermodynamics, without further delay caused by the ti
it takes the distribution to become the shifted inverse pow
law of Eq. ~11!.

FIG. 1. Diffusion entropy of a random walker as a function
the number of jumpsl. The dashed line and the solid line denote t
discrete diffusion entropySd( l ), of Eq. ~35! and the continuous
prescription of Eq.~5!, respectively. After a short transient th
dashed line converges to the solid line.
6-6



e

th
an

th

-
liz
e

f
-

e
ra
n-
e

lyz
fe
ic

i
e

e
t

o
e
e
e

o-

at
ig-
on

of
e

to
f

p-
er-

es:

on
-

the

n

e
-
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To realize this purpose, first of all we need to generat
series ofi integer numbersL( i ) according to a probability
distribution p(L): these numbers can be interpreted as
lengths of strings of the sequence to build up. Then, for
string, we toss a coin and fill it entirely with11’s or 21’s,
according to whether we get head or tail. We assign to
integer numbersL( i ) the following inverse power law:

p~L !5
C

~T1L !m
, ~36!

whereT andC5((L51
` 1/(T1L)m)21 are two constants re

lated to each other in such a way as to realize the norma
tion condition without the continuous time assumption b
hind Eq. ~11!. It is evident that in the asymptotic limit o
very large times the distribution of Eq.~36! becomes equiva
lent to that of Eq.~11!.

To create the distribution of Eq.~36! we proceed as fol-
lows. We divide the interval of real numbers@0,1# in infinite
sectors. TheLth sector,RL , covers the space

RL[FX~L !,X~L !1
C

~T1L !mD , ~37!

where

X~L !5H 0 if L51,

C(
n51

L21

1/~T1n!m if L.1.
~38!

The length of the sectorRL is equal to the probabilityp(L)
given by Eq.~36!. Then, by using a computer, we generate
sequence of rational random numbersY( i ) uniformly dis-
tributed between 0 and 1: if the rational numberY( i ) be-
longs to the sectorRL , the valueL will be assigned to the
elementL( i ) of the sequence of integer numbers. The d
scribed algorithm and the uniformity of the sequence of
tional random numbersY( i ) assure that the sequence of i
teger numbersL( i ) is distributed exactly according to th
power law given by Eq.~36!. It is worth to point out that this
special method of creating the artificial sequence to ana
by means of the DEA is equivalent to that used by Zumo
and Klafter @36#. Of course, due to the time asymptot
equivalence with the condition discussed in Sec. II, even
this case the thermodynamic regime is characterized by L´vy
statistics and the proper scaling is that of Eq.~24!. The dif-
fusion entropy,Sd( l ) of Eq. ~33!, is expected to converg
asymptotically to the curve of Eq.~6!. For example, if we se
m52/3 in Eq. ~36!, on the basis of Eq.~24! we expect a
valued52/3. In principle, using the theoretical approach
Zumofen and Klafter@36# we might also evaluate the valu
of A using Eq. ~7!. Since this is not very relevant to th
present paper, we skip this issue, and we rest on the num
cal simulation to conclude thatA51, thereby reaching
the conclusion that the asymptotic time limit is well repr
duced by
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Sd~ t !511
2

3
ln~ t !. ~39!

From Fig. 2 we see indeed that Eq.~39! fits remarkably well
the time asymptotic limit of the numerical curve. We see th
this limiting condition is reached after a transient that is s
nificantly larger than that of Fig. 1. A satisfactory discussi
of this transient will be presented in Ref.@31#.

C. DEA and SDA at work

In this subsection we show the benefit of the joint use
DEA and SDA. The standard deviation at the diffusion tim
l , D( l ), rests on the following prescription:

D~ l !5
A(

n51

M2 l

~xn~ l !2 x̄!2

M2 l 21
, ~40!

where, according to the notation of Sec. V,M is the sequence
length,l denotes the width of moving windows necessary
create distinct trajectories, andx̄ denotes the mean value o
x( l ).

According to the theoretical remarks of Sec. V, the ado
tion of this method applied to an artificial sequence gen
ated by the inverse power law distribution of Eq.~36!, with
2<m<3 should yield the true scaling of Eq.~24!. The SDA
should generate the Hurst scaling of Eq.~20!. We make the
analysis of five artificial sequences with the power indic
m52.8,2.6,2.5,2.4,2.2. We note that at bothm53 and m
52 the two predictions yield the same valuesd5H50.5
andd5H51, respectively. Therefore we focus our attenti
on the intermediate values ofm. For these intermediate val
ues the correct scaling, namely, the Le´vy scaling, yieldsd
50.556,0.625,0.667,0.714,0.833, respectively, while

FIG. 2. Diffusion entropy of the Le´vy process generated by a
artificial sequencej i , corresponding to the power coefficientm
52.5 andT50. The dashed line is the diffusion entropySd( l ) in
the discrete-space perspective given by the Eq.~33!. The solid line
is the diffusion entropyS( l ) in the continuous-space perspectiv
given by Eq.~39!. After an initial transient, the dashed line con
verges to the solid line.
6-7
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Hurst scaling is expected to beH50.6,0.7,0.75,0.8,0.9, re
spectively. For the sake of reader’s convenience this situa
is summarized in Table I. The numerical results illustrated
Fig. 3 provide a strong support to the theoretical argume
of Sec. V, and to our claim about the accuracy of the DEA
fact, we see that the DEA yields a remarkable agreem
with the Lévy scaling, while the scaling detected by the SD
virtually coincides with the Hurst scaling.

In general, when the secret recipe driving the seque
under study is not known, the comparison between the D
and SDA results plays an important role to assess the st
tical nature of the process. In fact, in the case of Le´vy sta-
tistics, it is easy to show, using Eq.~20!, thatd is related to
H by

d5
1

~322H !
. ~41!

In the FBM case, according to theoretical arguments of S
II, we have

d5H, ~42!

and this equality can be considered as a plausible indica
that the Gaussian condition applies. The results of Fig. 3
Eq. ~41!, thereby confirming the Le´vy nature of the diffusion
process.

VII. APPLICATIONS TO DNA SEQUENCES

In the last few years, thanks to the recent progress
experimental techniques in molecular genetics, a wealth
genome data has become available~see, for example, Ref
@1#!. This has triggered a large interest both in the study
mechanics of folding@40#, and on the statistical properties o
DNA sequences. In particular, genomes can be considere
long messages written in a four-letter alphabet, in wh
we have to search for information~signal!. Recently, there
have been many papers pointing out that DNA sequences
characterized by long-range correlation, this being m
clearly displayed by noncoding than by coding sequen
@2,5,11,12#.

In this section we will study a large sample of DNA s
quences~a dozen of both coding and noncoding sequenc!.
In particular, we discuss in detail three DNA sequences:
human T-cell receptor alpha/delta locus~GenBank name
HUMTCRADCV! @12#, a noncodingchromosomal fragmen
~it contains less than 10% coding regions!; the Escherichia

TABLE I. In the first line from the top we report the powe
indices of the inverse power law distributions used to create
artificial sequences studied in Fig. 3. In the second line from the
we report the corresponding Hurst coefficients, prediction of
~20!. In the third line from the top we report the true scalin
namely, the Le´vy scaling of Eq.~24!.

m 2.200 2.400 2.500 2.600 2.800

H 0.900 0.800 0.750 0.700 0.600
d 0.833 0.714 0.667 0.625 0.556
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coli K12 ~GenBank name ECO110K! @12#; and theEscheri-
chia coli ~GenBank ECOTSF! @10#, two genomic fragments
containing mostly coding regions ~more than 80% for
ECO110K!.

The three sequences have comparable lengths,M
597634 basis for HUMTCRADCV,M5111401 basis for
ECO110K, andM591430 basis for ECOTSF, respectivel
The first two sequences have been analyzed in Ref.@12# by
means of the DFA. The fundamental difference betwe
them is that the noncoding sequence, namely, HUM
CRADCV, shows the presence of long-range correlation
all scales, while the sequence ECO110K, a coding seque
shows the presence of long-range correlation only at
short-time scale. The third sequence, ECOTS, has been s
ied in Ref.@10# with the interesting conclusion that the larg
time scale shows non-Gaussian statistics. The authors of
@12#, using the illuminating example of the lambda pha

FIG. 3. Diffusion entropy and standard deviation of the Le´vy
process generated by artificial sequencesj i corresponding, respec
tively, to five different values of the power coefficientm, namely,
m52.8, 2.6, 2.5, 2.4, 2.2, andT50. The numerical results of the
diffusion entropy analysis~DEA! ~a! and of the standard deviatio
analysis~SDA! ~b!, reported as symbols, are in perfect agreem
with the theoretical predictions, reported as fitting lines and
tained by using, respectively, the values of the probability distri
tion function scaling exponentd and of the exponentsH in Table I.
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LÉVY SCALING: THE DIFFUSION ENTROPY . . . PHYSICAL REVIEW E66, 031906 ~2002!
genome, pointed out that the DFA does not mistake the p
ence of patches of different strand bias for correlation. T
is an important property, shared by the DEA method, wh
is widely independent of the presence of biases, since
entropy increases mainly as a consequence of the traject
departing from one another. In this section we show thatthe
DEA method makes it possible to relate the non-Gauss
statistics and the anomalous scaling of the large-time sc
to the same cause: the onset of Le´vy statistics.

A. The numerical representation of DNA

The usual way to study the statistical properties of DNA
to consider a sequence of four bases: adenine, cytosine,
nine, and thymine~respectively,A, C, G, and T), at the
simplified level of a dichotomous sequence of two symbo
purine ~for A and G) and pyrimidine~for C and T). A tra-
jectory, the so-called DNA walk, can be extracted by cons
ering a one-dimensional walker associated with the nu
otide sequence in the following way. The walker takes o
step up when there is a pyrimidine in the nucleotide an
step down when there is a purine. The DNA sequence
therefore transformed in a sequencej i , i 51, . . . ,M , of
numbers11 or 21.

As pointed out at the end of Sec. V, we associate the
position along the sequence with time. Thus,i is conceived
as a discrete time, and the walker makes a step ahea
backward, according to whether at timei the random walker
sees11 or 21, namely, if thei th site of the DNA sequence
hosts a pyrimidine or a purine. The displacement of
walker afterl steps isx( l )5( i 51

l j i and is reported in Fig. 4
for the three sequences under consideration.

B. The three variance methods„VM … at work: Noncoding
and coding DNA sequences

This section is devoted to illustrating the three differe
realizations of the VM, namely, the DFA@12#, the SDA@8#,
and the WSA@7,13#. We have already discussed the first tw
methods in the previous sections. We have also showed s
results of the application of SDA to an artificial sequence
Sec. VI C. As to the WSA, it was first adopted to study DN
sequences by Arneodo and collaborators in Ref.@13#, and it
consists in reporting the square root of the wavelet varian
In this way, the scaling is comparable to those detected
DFA and SDA, and, as we shall see, it gives indeed the s
results.

The first property we notice is that all the three ser
present ‘‘patches,’’ i.e., excess of one type of nucleotide
the DFA of Ref.@12#, Stanley and collaborators adopt a d
trending procedure to detect the true scaling, since the ste
bias hidden in the data can produce effects that might
mistaken for a striking departure from Brownian diffusio
while the interesting form of scalings must be of totally s
tistical nature. They define a detrended walk by subtrac
the local trend from the original DNA walk and then the
study the variancesF( l ) of the detrended walk. If the walk is
totally random, as in the ordinary Brownian motion, no co
relations exist andF( l ); l 1/2. On the contrary, the detectio
of F( l ); l H with either H.1/2 or H,1/2 is expected to
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imply the presence of extended correlation, which, in turn
interpreted as a signature of the complex nature of the
served process.

To illustrate the results of these authors, let us limit to t
long-time region the adoption of the symbolH, which, ac-
cording to Sec. II, is used by us to denote the scaling em
ing from the VM. When the VM method is applied to th
short-time region let us denote the scaling parameter de

FIG. 4. In ~a! we report the DNA walk relative to HUMT-
CRADVC, a noncoding chromosomal fragment. In~b! and ~c!, we
report the DNA walk relative to ECO110K and ECOTSF, two co
ing genomic fragments.
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mined by the VM with the symbolH8. Stanleyet al. @12#
found a scaling exponentH850.61 for the noncoding intron
sequence HUMTCRADCV, andH850.51 for the intronless
sequence ECO110K. They claim that their detrend
method is able to avoid the spurious detection of appa
long-range correlations which are the artifacts of the patc
ness.

We are now ready to show the three methods at work
the DNA data sets we want to study in this paper.

Noncoding DNA. Figure 5 refers to the sequence HUM
CRADAVC and shows that, within the statistical error, t
three VM techniques yield the same long-time scaling, m
precisely the three scaling exponentsH obtained are 0.59
60.01 ~SDA!, 0.6060.01 ~DFA!, 0.6160.01 ~WSA!.

Coding DNA. In Fig. 6~a!, ~b! we study the two sequence
ECO110K and ECOSTS, and we show that the same equ
lence applies to both short time and long-time scaling.
fact, for both sequences we find thatH8 is 0.5360.01
~SDA!, 0.5260.01 ~DFA!, 0.5260.01 ~WSA!, and thatH is
0.7360.01 ~SDA!, 0.7560.01 ~DFA!, 0.7460.01 ~WSA!.

Before moving to illustrate the results obtained by t
DEA, some comments are in order. DFA detects the sca
in the long-time region later because of the detrending
cuts off long local trend. In Ref.@12#, Stanley and collabo-
rators were interested in studying the scaling in the sh
time region in order to distinguish the noncoding from t
coding DNA sequences. The DFA aims at making this
gime more visible. However, we think that it is more conv
nient to study the signal as it is, since detrending might er
important information as well as the deceiving indication
a correlation that does not exist.

Figures 5 and 6 show that there is no difference betw
SDA and WSA. This is because the wavelet transform
haves like the Fourier transform that studies the varianc
the signal. Therefore, WSA, as Fourier spectral analysis,
detect the true scaling only in the Gaussian case. In all o

FIG. 5. Application of the three variance methods SDA, DF
and WSA to the sequence HUMTCRADVC, the noncoding ch
mosomal fragment. The three methods give the same exponeH.
In fact, we getH50.5960.01 ~SDA!, H50.6060.01 ~DFA!, and
H50.6160.01 ~WSA!, where the differences are within the err
bars. Moreover,H is the same both at short time and long-tim
regions~i.e., H85H).
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cases, WSA detects only the variance scaling, and t
as pointed out in Sec. IV, may not coincide with the tr
scaling.

C. The copying mistake map: A model for DNA sequences

According to the dynamical model of Ref.@8# a noncod-
ing DNA sequence corresponds to an artificial sequence w
inverse power law long-range correlation as the Le´vy walk
of Sec. IV, examined by means of the DEA in Sec. VI. O
the other side, acoding sequencecan be obtained by adopt
ing a kind of generalization of the Le´vy walk. This generali-
zation becomes a model called copying mistake map~CMM!
@8#. This model rests on two sequences of1 ’s and 2 ’s,
running independently of each other. The former sequenc
the correlated sequence studied in Sec. VI C by means o
joint use of DEA and SDA. The latter sequence is obtain
by tossing a coin. According to the CMM, the generici th site
of the DNA sequence is assigned the symbol pertaining
the i th site of either the former or the latter sequence. T
former sequence is selected with probabilitypL and the latter

,
-

FIG. 6. Application of the three variance methods SDA, DF
and WSA to ECO110K~a! and ECOTSF~b!, the two coding ge-
nomic fragments. The scaling exponentH8 in the short-time region
is 0.5360.01 ~SDSA!, 0.5260.01 ~DFA!, 0.5260.01 ~WSA!. The
scaling exponentH in the long-time region is 0.7360.01 ~SDSA!,
0.7560.01 ~DFA!, 0.7460.01 ~WSA!.
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LÉVY SCALING: THE DIFFUSION ENTROPY . . . PHYSICAL REVIEW E66, 031906 ~2002!
sequence with probabilitypR512pL . In the case of coding
sequences usually the condition

pR@pL ~43!

applies. The authors of Ref.@10# pointed out that the CMM
model is equivalent to an earlier model@5,41# called gener-
alized Lévy walk ~GLW!. The CMM ~and the GLW, as well,
of course! yields, for short times, a diffusion process indi
tinguishable from ordinary Brownian motion. At large time
however, the long-range correlation predominates. In R
@10# the CMM was adopted to account for the properties
prokaryotes, for which a significant departure from Gauss
statistics occurs. One of the coding sequences studied
namely, ECOTSF, is the same as the one discussed in
@10#. It produces strong deviations from Gaussian statist
On the basis of that, and of the results of Sec. VI B,
expect also for coding sequences at large times a sca
parameterd corresponding to the Le´vy statistics, and so, to
the prediction of both Eq.~24! and Eq.~41!.

The CMM is a model flexible enough as to move from t
Gaussian to the Le´vy condition. This is done simply settin
pR50. On the other hand, if the condition of Eq.~43! ap-
plies, in the long-time limit we expect the condition of Le´vy
statistics to emerge again. This is so because the most
dent sign of Le´vy statistics is given by the power law cha
acter of the distribution tails. The correlated component
the CMM model results in a process of diffusion faster th
ordinary diffusion, and so faster than the diffusion genera
by the random component. As a consequence, the distr
tion tails are forced to get the character of an inverse po
law.

D. DEA at work: Noncoding and coding DNA sequences

By using the DEA algorithm we can detect the existen
of scaling, either normal or anomalous, Gaussian or Le´vy, in
a very efficient way, and without altering the data with a
form of detrending. We analyze the data of both the cod
and noncoding sequences. Starting from the sequencej i , i
51, . . . ,N we create the diffusion trajectories and we co
pute the diffusion entropySd( l ) according to Eq.~33!. The
results are reported in Figs. 7–9. We determine the scalin
the slope of the tangent of the curveSd(t). As for the second
moment scaling, calledH or H8, according to whether it
refers to long or short times, we adopt for the DEA scali
the corresponding symbolsd and d8. It is evident thatd is
the true scaling. As to the meaning ofd8, it will be discussed
at the end of this section.

Noncoding DNA. First, let us consider thenoncoding se-
quenceHUMTCRADCV. Figure 7~a! shows that the DEA
results in what seems to be a time dependent scaling. Th
pointed out by means of the two straight lines of differe
slopes, d850.61560.01 and d50.56560.01 Anomalous
diffusion shows up at both the short-time and the long-ti
scale, and this seems to be a common characteristic of
coding sequences, supported also by the application of
technique to other noncoding DNA sequences. Moreover,
notice that the scaling in the short-time regimed850.615
60.01 coincides with the value found by means of the D
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analysis@12#, H850.6160.01. The authors of Ref.@12# as-
sign this scaling value to both the short time and the lo
time regime, while the DEA detects a different scaling
long times. Figure 7~b! shows the result of the DEA applie
to an artificial sequence built up according to the CMM p
scription so as to mimic the sequence HUMTCRADCV. W
use bothm and pR as fitting parameters. In this case, th
intensity of the random component is not predominant, a
the case of the coding sequences, which are known@10# to
require the condition of Eq.~43!. In fact, in this case the bes
fit between the real and the CMM sequence is obtained
setting pR50.5660.02. As tom, its value emerging from
this fitting procedure, is considered by us to be the best
timate of this inverse power law index. This value ism
52.7760.02. If we plug it into Eq.~20!, we getH50.615
60.01, which is in fact the scaling detected in Ref.@12#. This
means that the short-time region obeys the FBM statistics
we plug it into Eq.~24! we obtaind50.56560.01, which is

FIG. 7. Diffusion entropy for the HUMTCRADCV~the noncod-
ing chromosomal fragment! and its CMM simulation.~a! shows that
the DE analysis results in a scaling changing with time. The sl
of the two straight lines isd850.61560.01 in the short-time region
and d50.56560.01 in the long-time regime.~b! shows the com-
parison between the DEA of the real noncoding sequence an
artificial sequence corresponding to the CMM model:pR50.56
60.02, T50.43, m52.7760.02.
6-11
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the slope of the DEA curve in the long-time regime, there
proving that the relation betweend, the true scaling, andH
obeys the condition of Eq.~41!, which is, as pointed ou
earlier, a clear indication of Le´vy statistics. We consider thi
to be a compelling evidence that at this long-time scale L´vy
rather that FBM diffusion is generated.

Coding DNA. In Figs. 8 and 9 we turn to the more delica
problem ofcoding sequences. The first sequence~ECO110K!
has already been studied by means the DFA analysis in
@12#. The DFA findsH850.5260.01 at the short-time scal
and H50.7560.01 in the large-time scale. The second
quence~ECOTSF! has been analyzed in Ref.@8# by using
four different methods. The first was the SDA discussed
Sec. IV C. This is a method of analysis less sophistica
than the DFA, since it does not imply any local detrendin
The second and third methods were the DFA and the H
analysis@21#, respectively. The fourth method used was t
Onsager regression analysis, a method that, in that con
provides information on the correlation function of the flu

FIG. 8. Diffusion entropy for the ECO110K~one of the two
coding genomic fragments studied! and its CMM simulation.~a!
shows that the DEA results in a scaling changing with time. T
slope of the two straight lines isd850.5260.01 at short-time re-
gime, andd50.66560.01 at long-time regime.~b! shows the com-
parison between the DE analysis of the real coding sequence an
artificial sequence corresponding to the CMM model:pR50.943
60.01, T545, m52.560.02.
03190
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xt,

tuationj, which has an inverse power dependence on timl
with the power indexb5m22. The authors of Ref.@8#, by
using essentially the first method and the Onsager regres
analysis, reached the conclusion that the most plausible v
of the scaling parameter in the long-time region isH50.75
60.01 that is equivalent to the exponentH50.7460.01
found in Fig. 6~a!, ~b!. It is interesting to remark that the
coincidence among the different predictions about scali
and especially that between the second moment techn
and the Hurst analysis, implies the adoption of the Gauss
assumption@42#. On the other hand, when that conditio
does not apply and the two scaling predictions are differe
to the best of our knowledge, it does not seem to be kno
what is the meaning of any of them. Furthermore, the auth
of Ref. @10# pointed out that the statistics of the long-tim
regime is too poor to support any claim on the depart
from the Gaussian condition. In conclusion, in Ref.@10# the
claim that the DNA statistics is of Le´vy kind was essentially

e

an

FIG. 9. Diffusion entropy for the ECOTSF~the second of the
two coding genomic fragments studied in this paper! and its CMM
simulation. ~a! shows that the DEA results in a scaling changi
with time. The slope of the two straight lines isd850.5360.01 in
the short-time region, andd50.66560.01 in the long-time regime
~b! shows the comparison between the DEA of the real cod
sequence and an artificial sequence corresponding to the C
model:pR50.93760.01, T560, m52.560.02.
6-12



e
e

o
n
is

om

g

re
n
to
m

o
l

ca

e
ca

ss
-
ss
te

ar
ra

to
ef
,
e
ry
e
g

en
y-
on
th
a

e

u
Th
gs

o

re-

t in

tics

tion
e
le
he
n
i-
the
-

ly
to

of
two

-
y-

ian
ps

ion
be
d-

we

the
r

not
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based on the assumption that the dynamical theory of R
@8,11# is a reliable approach to the statistics of DNA s
quences. No direct evidence was provided.

The DEA method allows us to prove that the conjecture
the authors of Ref.@10# is correct: the results illustrated i
Figs. 8 and 9 afford a convincing proof that the DNA stat
tics is of Lévy kind. Figures 8~a! and 9~a! clearly show the
difference between the slope at short time@respectively,d8
50.5260.01 in Fig. 8~a! and d850.5360.01 in Fig. 9~a!#
which, in this case, is very close to that of ordinary rand
walk, and the slope at long time that corresponds tod
50.66560.01. Since we know that in both cases the lon
time slope provided by the DFA isH50.7560.01, we con-
clude that in both cases the condition of Eq.~41!, indicating
Lévy statistics, applies. Figures 8~b! and 9~b! aim at fitting
the curves produced by the DEA method, applied to the
sequences by means of the CMM model. The purpose is
only that of proving that the CMM can become so close
the real results as to be virtually indistinguishable from the
It is also a way, already applied in Fig. 7~b!, to derive very
accurate values for the power indexm. A very good agree-
ment is obtained by settingpR50.94360.01 for ECO110K
@Fig. 5~b!# and pR50.93760.01 for ECOTSF@Fig. 7~b!#.
The very good fitting accuracy supports the physical reas
that led the authors of Ref.@8# to propose the CMM mode
for coding sequences. In fact, with the large weight,pR
50.93760.01, assigned to the random component, the s
ing values becomed850.5260.01 and d850.5360.01,
namely, very close to the conventional scalingd5H50.5.
This normal condition lasts for an extended period of tim
and eventually, at larger times the transition to a larger s
ing takes place.

We note that the authors of Ref.@13# find anomalous dif-
fusion in a statistical condition that they claim to be Gau
ian. According to the result of Ref.@11#, the Gaussian con
dition is incompatible with a stationary diffusion proce
generated by a dichotomous fluctuation yielding a nonin
grable correlation function with an inverse power law ch
acter. This dichotomous fluctuation is expected to gene
Lévy rather than Gaussian statistics. The authors of Ref.@9#
studied under which physical condition FBM is allowed
show up, in apparent conflict with the conclusions of R
@11#. With the help of a fractal model for the DNA folding
the authors of Ref.@9# proved that FBM, advocated by th
paper of Ref.@13#, is possible as a form of nonstationa
process. Thus, in principle, the arguments of the work of R
@11# would not rule out the possibility that the changin
slope is a manifestation of a FBM with a time-depend
scaling. This would be another form of transition from d
namics to thermodynamics, of extremely large time durati
However, this way of establishing a compromise between
compelling prediction of the GCLT, according to which
dichotomous process with long-range correlation (2,m,2
must produce Le´vy statistics, and the conclusion of som
authors that this statistics is Gaussian@13# is ruled out by the
statistical analysis of the present paper, which is made m
more accurate than the earlier approaches by the DEA.
is made compelling not only by the results illustrated in Fi
8 and 9, but also by a plenty of statistical measurements
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different DNA sequences, reported in Table II. All these
sults prove that the equality of Eq.~41!, implying Lévy sta-
tistics, applies to both kind of sequences. This means tha
both cases the long-time limit is characterized by Le´vy sta-
tistics and that this is the form of non-Gaussian statis
revealed by the analysis of Ref.@10#.

We can now address the delicate problem of the transi
from d8 to d. On the basis of the results of Figs. 8 and 9, w
would be tempted to conclude that the CMM is a reliab
dynamical model for DNA sequences. If this is correct, t
transition fromd8 to d is really a time-dependent scaling. I
fact, according to the CMM the short-time scale is dom
nated by the random component, due to the fact that
condition of Eq.~43! applies. In the case of Fig. 7 the tran
sition from d8 to d is probably dominated by a complete
different effect. This is the slow transition from dynamics
thermodynamics discussed in Sec. IV

E. Significance of the results obtained

To properly appreciate the significance of the results
this section, it is necessary to say a few words about the
different scaling prescriptions of Eqs.~24! and ~20!. The
scaling prescription of Eq.~20! is determined by the adop
tion of the variance method, as clearly illustrated by the d
namical approach to the DNA sequences of Ref.@8#. This
prescription is not ambiguous if the condition of Gauss
statistics applies. In fact, a Gaussian distribution dro
quickly to zero, and the existence of a finite propagat
front does not produce any significant effect. It has to
pointed out, in fact, that the adoption of the Brownian lan

TABLE II. Values of the scaling exponentsH andd for a set of
different coding and noncoding sequences. In the first column
report the GenBank name of the sequence@1#, and in the second
column the lengthN of the sequence. For all measurements
error is60.01. dH in the fourth column is the theoretical value fo
d if the Lévy condition applies, Eq.~41!. If the length of the ge-
nome is larger than 20 000 the fitted region is 100, l ,2000. If the
length of the genome is shorter than 20 000, the statistics are
very good for largel. In this case, the fitted region is 20, l ,200.

NonCoding N H dH d

HUMTCRADCV 97630 0.61 0.56 0.56
CELMYUNC 9000 0.71 0.63 0.635
CHKMYHE 31109 0.78 0.69 0.70
DROMHC 22663 0.72 0.64 0.65

HUMBMYHZ 28437 0.58 0.54 0.54

Coding

ECO110K 111401 0.74 0.66 0.66
ECOTSF 91430 0.74 0.66 0.66
LAMCG 48502 0.85 0.77 0.76

CHKMYHN 7003 0.74 0.66 0.66
DDIMYHC 6680 0.68 0.61 0.61

DROMYONMA 6338 0.69 0.62 0.64
HUMBMYH7CD 6008 0.63 0.57 0.58

HUMDYS 13957 0.69 0.62 0.62
6-13
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scape proposed in the pioneer papers of Refs.@2,5,12# im-
plies the existence of a propagation front moving with b
listic scaling (d51). In other words, if we find a window o
length l filled with only 1’s or with only21’s, this means a
trajectory traveling with uniform velocity, and thex space at
distances from the origin larger thatl is empty. The existence
of a propagation front does not have big consequences in
case of Gaussian statistics, since the population at the pr
gation front is essentially zero in that case. It is not so in
case of Le´vy statistics, though, due to the existence of ve
long tails in that case. Therefore the Le´vy processes resulting
from these sequences are essentially characterized by
presence of two distinct scaling prescriptions, the Le´vy pre-
scription of Eq.~24!, concerning the portion of distribution
enclosed between the two propagation fronts, and the sca
d51, of the propagation front itself. The scaling of the va
ance of Eq.~20! does not reflect correctly either of these tw
different scaling prescriptions, being a kind of comprom
between the two. The scaling of the distribution enclosed
the two propagation fronts is, on the contrary, a genu
property that corresponds to the prediction of the GCLT@18#.
It is very satisfactory indeed that the DEA method makes
genuine form of scaling emerge. Furthermore, the DEA i
very accurate method of scaling detection, as proved by
fact that it reveals the existence of Le´vy statistics in the case
of the coding sequence. In this case, as pointed out by
authors of Ref.@8#, the ordinary methods become inaccura
due to the poor statistics available in the long-time limit.

Another important result of this section is that it confirm
the validity of the CMM model. This model is expected
generate Le´vy statistics not only in the case of noncodin
sequences, where it is easier to reveal this property. It
dicts Lévy statistics also in the case of coding sequence
the one analyzed here. In Ref.@8# the emergence of Le´vy
statistics was conjectured but not proved, due to the fact
in that paper the observation was made monitoring the p
ability distributionp(x,t). As already pointed out, the lack o
sufficient statistics makes it difficult to assess if the distrib
tion p(x,t) has, or not, tails with an inverse power law cha
acter. In Ref.@10# a clear deviation from the Gaussian co
dition was detected in the long-time limit, but, again,
direct evidence was found that this deviation from Gauss
statistics takes the form of Le´vy statistics. The results of thi
section prove, with the help of the artificial sequences of S
VI B, that the DEA is a method of analysis so accurate as
assess with good accuracy the property of Eq.~41!, and with
it, the emergence of Le´vy statistics for both coding and non
coding sequences.
//
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In conclusion, this paper lends support, with the help
the DEA, an efficient technique of scaling detection, to t
claims of Allegriniet al. @11# about the controversy betwee
Voss @4# and the authors of Ref.@2#. The differences in the
findings of the groups, long-range correlations being ubiq
tous in DNA sequences by Voss@4# and such correlations
being absent in Ref.@2#, motivated the authors of Ref.@11# to
develop a phenomenological model, the CMM, that mig
have mitigated the differences between the two appare
conflicting perspectives. The validity of the point of view o
these authors is fully confirmed, since Le´vy statistics, and
consequently long-range correlations, seem to be ubiquit
being a property of the long-time regime of both coding a
noncoding sequences, while the properties of ordin
Brownian motion are confined to the short-time regime
coding sequences.

VIII. CONCLUSIONS

This paper shows that long-range correlations result i
very slow transition to scaling, regarded as a form of th
modynamic equilibrium. The standard methods of statisti
analysis~variance methods! are a source of misleading infor
mation in this case: the first being mistaking the regime
transition to scaling as either ordinary or anomalous scal
The second is that the scaling value, as determined by
evaluation of the second moment, might significantly dep
from the correct one. All the VM techniques are shown to
affected by this limitation, while the DEA is the only tech
nique always yielding the correct scaling value, if the scal
condition applies. The application to the study of DNA s
quences reported in this paper yields:~1! a striking example
of how the standard techniques can produce misleading
clusions;~2! a suggestive example of the power of the DE
which, in this case, is able to indicate clearly that both co
ing and noncoding sequences generate Le´vy statistics in the
long-time limit.

The DEA is not only a method of scaling detection. I
entropic nature gives also useful insights into the regime
transition from dynamics to thermodynamics. It is possible
prove that in the special case where the time series is ge
ated by fluctuations around a locally varying bias the regi
of transition to the scaling regime is significantly delaye
The ordinary techniques of analysis had mistaken this tr
sition regime as a form of anomalous memory, while t
DEA makes it possible to establish the genuine nature of
process under study. This is left as a subject for further
plications.
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