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Lévy scaling: The diffusion entropy analysis applied to DNA sequences
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We address the problem of the statistical analysis of a time series generated by complex dynamics with the
diffusion entropy analysi$DEA) [N. Scafetta, P. Hamilton, and P. Grigolini, Fractls193 (2001]. This
method is based on the evaluation of the Shannon entropy of the diffusion process generated by the time series
imagined as a physical source of fluctuations, rather than on the measurement of the variance of this diffusion
process, as done with the traditional methods. We compare the DEA to the traditional methods of scaling
detection and prove that the DEA is the only method that always yields the correct scaling value, if the scaling
condition applies. Furthermore, DEA detects the real scaling of a time series without requiring any form of
detrending. We show that the joint use of DEA and variance method allows to assess whether a time series is
characterized by vy or Gauss statistics. We apply the DEA to the study of DNA sequences and prove that
their large-time scales are characterized byyLstatistics, regardless of whether they are coding or noncoding
sequences. We show that the DEA is a reliable technique and, at the same time, we use it to confirm the validity
of the dynamic approach to the DNA sequences, proposed in earlier work.
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[. INTRODUCTION transient, throughout which the conventional techniques of
The recent progress in experimental techniques of moanalysis can yield misleading information.

lecular genetics has made available a wealth of genome data (2) To show that the diffusion entropy analySiBEA),
(see, for example, Refl]), and raised the interest for the recently proposed in Refl14], is able to yield the correct
statistical analysis of DNA sequences. The pioneer papergcaling, even when the observed diffusion process is not
mainly focused on the controversial issue of whether longGaussian. We shall show that the departure of the correct
range correlations are a property shared by both coding ar¢faling, detected by means of the DEA, from the results of
noncoding sequences or are only present in noncoding sdhe traditional methods, all of them being variance-based

quenceg2—5]. The results of more recent papé6s7] yield methods, is a clear indication of the non-Gaussian character
of the process under study.

the convincing conclusion that the former condition applies. 3) To show the DEA i tion b f licati
However, some statistical aspects of the DNA sequences a{e (3) To show the In action by means of an application

still obscure, and it is not yet known to what extent the 0 the study of DNA séquences. Asa remarkable result, we
dynamic approach to DNA sequences proposed by the a%_hall sr]low ﬂgﬂ bOt.h codmg and n?jncod(ljng DNd?ﬁsequences
thors of Ref.[8] is a reliable picture for both coding and epart from Gaussian statistics and produceyLeiffusion.

nonco_ding sequences. The I_ater work of R¢®.and[10] -srgtsismgl ?ﬁﬁgelrlgg 8?;,82(9 still obscure aspects of the
established a close connection between long-range correla-

t@ons and the emergence of non-Gaussian s_tatistics, con- Il. THE MEANING OF SCALING

firmed by Mohanty and Narayana Rp®)]. According to the

dynamic approach of Reff8,11] this non-Gaussian statistics ~ The reason for the confusion still present in the issue of
should be Ley, but this property has not yet been assessedhe extraction of the long-range statistical properties of DNA
with compelling evidence. The reason for the confusion af-sequencesand more in general of any time series: heart-
fecting this issue is deeper than one can imagine, since R€ats, earthquakes, oscillations of markets stocks, istes-
essentially depends on the fact the there exists no reliabentially due to the fact the there are no reliable methods of

method of scaling detection. In fact, all the traditional meth-Sc@ling detection. To clarify this crucial aspect we need to

ods of scaling detection on the market, the detrended flucdiSCuss. first, what scaling is all about. Scaling is a property

tuation analysigDFA) [12], the standard deviation analysis of a probability distributionp(x,t), which formally reads as
(SDA) [8], and the wavelets spectral analy8i$SA) [7,13],
are based on the evaluation of the variance of the process, p(x,1)= thF<t_a)' @
and therefore yield a scaling that is the correct one only if the
process under study is Gaussian. When we deal with a time series or a generic sequence we
The main aims of this paper are the following. need first to construct the probability distributipifix,t). In
(1) To clarify the meaning of scaling as a form of thermo- order to do so we convert with some method, for instance the
dynamic equilibrium that can be reached after a long-timeone used in this paper, the single sequence into many distinct
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trajectories. These trajectories start at tirse0 fromx=0,  might do better than in cag@), since the stretched Gauss-
and then spread over theaxis, as a result of their, partial or ians are characterized by finite moments. Therefore, we shall
total, random nature. Thus, rather than observing a singlécus our attention on both caéb, where the standard tech-
trajectory, we are naturally led to evaluate the probability ofniques are expected to yield exact results, and on se
observing it. In other words, we rest, with theoretical or com-where the standard techniques are expected to fail.
putational arguments, on the probability of finding the vari- As we shall show in this paper, all techniques currently
ablex in the interval[x,x+dx] at timet, denoted by us as adopted to detect scaling are explicitly or implicitly based on
P(x,dx,t). The probability densityp(x,t), is defined by the measurement of the second moment of the distribution
P(x,dx,t)/dx. The meaning of Eq(1) is that the process is P(X,t). Thus, the scaling revealed by the ordinary techniques
stationary in spite of the fact that the probability density of analysis might depart from the genuine scaling of the
p(x,t) broadens with time. To stress this aspect, let us focugrocess under observation, if this is an imperfect realization
our attention on the probability densitieg(x,t;) and Of a diffusion process with infinite moments. To stress this
p(x,t,), at two distinct timed; andt,, with t;<t,. Let us  crucial aspect we adopt for the scaling paramétére sym-
squeeze the abscissa scale of the later distribufiém,t,), ~ bol H, according to a notation proposed by Mandelbrot to
by the factorR=(t,/t,)°<1, and then enhance the intensity honor Hurst[20] (see also Ref{21]). Notice that a widely

of the resulting distribution density by multiplying it by the adopted method to express the condition of &g.is given
factor 1R>1. If the property of Eq(1) holds true, then the by

resulting distribution density is identical to the former, Xoct?, 2)
p(x,ty). This is equivalent to interpreting the distribution

density as a form of equilibrium distribution. This property is This way of expressing the scaling condition is the source of
deeply related to the foundation itself of statistical mechanicsnisleading procedures. In fact, it is usually assumed that it is
[15]. In fact, in the case where the diffusion trajectory is theequivalent to

superposition of many uncorrelated fluctuations, the resulting toe

diffusion process is predicted by the central limit theorem (xz(t)>1/25f X% p(x,t)dxect?, ©)
(CLT) to be a Gaussian probability distribution, a special e

form of canonical equilibrium, and we can refer ourselves to _ - .

the transient process necessary for the CLT to work as a kind/€ think that it is much more appropriate to use the follow-
of transition from dynamics to thermodynamics. In this sensd"d notation:

the scaling property of Eq1) must be interpreted as a form
of thermodynamic equilibrium. Note that in the case of ordi-
nary statistical mechanics, when the CLT applies, we hav
 hccording 1o the. new field of scionce of compiexiy M 1S Paper we show that the DEA4) s the only tech-
[16.17, a cgmplex process is expected to yield the Srope)r/t nique yielding the correct scaling when the observed dif-

. . ) Yusion process departs from the FBM conditidn fact all
of Eq. (1) with o 1/2 and(on) F(Y) being a form dn‘ferent. the other techniques, including the DIFA2], the SDA[8],
from the Gaussian on@ve shall discuss an example of this

non-Gaussian form in later sectiondhus, this raises the and the WSA[7,13), yield a scaling that would be correct

. . S ...only in the FBM case. This is so because, as we shall see,
question of whether a noncanonical e_qU|I|br|um Condltlonthese techniques rest on variance to evaluate scaling. All
can be generated by sequences reflecting complex dynam'(fﬁ'ese techniques, whose limitations are bypassed by the

We( f)hhcjllz;lg d(;?grsc;;j[i;]tgrri%gslzgzgigr?zlsg)rlgevisi‘én motion DE_A, are in a sense different versio_ns of the same method, to

(FBM) as a condition exceeding the limits of ordinary statis-WhICh we shall refer to as the variance metho). The

tical mechanics. This corresponds to the scaling condition o eparture of the correc_t scaling, revealed by the DEA, from
: he results of the VM is consequently a proof of the non-

Eq. (1) with 5+1/2 V\./h"e F(Y) keeps Its Gaussian form. Gaussian character of the process under study.
(2) Another possible form of violation, naturally stem-

ming from the generalized central limit theoref@CLT)
[18], rests on Eq(1) with 5>1/2 andF(y) being a Ley ll. THE DIFFUSION ENTROPY ANALYSIS

function Hvxﬂgh the asymptotic property li;..F(y) ~ The DEA is based upon the direct evaluation of the
= constl - This means the occurrence of a disconcertindshannon entropy of the diffusion process. In the continuous
condition, where the second moment of the distribution iSspace and continuous-time representation for the probability

infinite. It is obvious that in practice real time series cannotyensity p(x,t), the Shannon entropj22] of the diffusion
produce this condition, and that the distribution moments Obrocess reads

the observed diffusion process are always finite, being an

imperfect realization of the diffusion process with infinite __ J ”

moments. S(t) ﬂcdx p(x,H)In[ p(x,t)]. 5)
(3) Finally, we should consider also the stretched Gauss-

ians emanating from subdiffusidd9]. Actually, this kind of ~ To show how the DEA works, let us assume théx,t) fits

process is not explicitly examined in this paper. We expecthe scaling condition of Eql). Let us plug Eq(1) into Eq.

that in this case the standard techniques of scaling detectigis). After simple algebra, we get

(X)) Y2ecth, (4)

?eaving open the possibility thad # 5.
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S(r)=A+ 6T, 6) 0w>2, (12)
where which ensures the mean waiting timg, to get the finite
* value
E—f_ dy F(y)In[F(y)] (7
-
and ™M (2) (13
=In(t). (8)

. ) o It is evident from this formula that the parameteras well
Equation(6) shows that if Fhe d]ffus_lon process scales with 55 the power indexx, determine the time duration of the
the parametep, the resulting diffusion entropy becomes a sgjourn of the trajectory at the border between chaotic and
linear function of the logarithm df, with a slope equal td.  orgered regions. This inverse power law form, and the result-
This makes the slope measurement equivalent to the scalifgq stickiness, are naturally generated by the self-similar na-

detection, independently of the form ofyf. ture of the border§25]. We call these crucial subsets of the
In the case of ordinary Brownian diffusiod=1/2 and phase spacfactal borders
F(y) has the following Gaussian form: Now, let us assume that one of the variables of the phase
y2 space, called, is the generator of the fluctuations that are
exp( - —2) collected by the diffusing variabbe Since the fractal borders
F(y)= 20 . 9) have a finite size, when the trajectory sticks to one fractal
270 border, the variabl€ gets a value that depends on the tra-
jectory position. Let us make also the assumption that there
Thus Eq.(5) becomes are only two fractal borders, and that their size compared to
S(t)= L[1+In(27e2) ]+ 2 Int). (10) that of the whole phase space is so small that the variable

gets only two distinct values, denoted by usVdsand —W.

In this case, we have assumed the system to be already in th$ @1 example of Hamiltonian model generating velocity
scaling regime state. More in general, we shall have to adfluctuations we have in mind the kicked rotor in the so called

dress the problem of the transition from the dynamic to thefCCelerating stati26—28. The booster trajectory moves er-
thermodynamidscaling regime. ratically in th_e chgotlc sea between the two fractal regions,
and after a given time sticks to one of the two fractal regions.
After an extended time spent in this fractal region it goes
back to the chaotic sea, and after a short diffusion process, it
The artificial sequences that we shall use in this paper teither goes back to the earlier fractal region or it goes to the
show the merits of DEA and the limits of VM rest on a other one. Due to the power law nature of the waiting time
dynamic approach adopted years ago to deriveylstatis-  distribution of Eq.(11), the sojourn in the chaotic sea can
tics[11,23. The importance of this approach towestatis-  be ignored. As a result of this dynamic process we shall
tics is due the fact that it makes possible, in principle, to usget a sequence such a&,W,W,W, ...—-W,-W,-W,
the same perspective as that adopted in R2f]. Bianucci —W, ...W,W,W, ... . In this paper we salV=1. This is
et al.[24] discussed the case of a system of interest interac&n example of the time series under discussion in this paper.
ing with another system calledoosterrather thanthermal ~ For simplicity, rather than deriving it running a dynamic sys-
bath to emphasize that no assumption on its thermodynamitem, as the kicked rotor in the accelerating sfa@&-2§, we
nature was made. The basic aspect of the research project@in directly generate the random sequeficgé;} in the
Ref.[24] was that statistical mechanics, in that case ordinaryollowing way: first the numbers; are randomly drawn from
statistical mechanics, had to be derived from merely dynamithe distribution of Eq(11); then the value oE; is established
rather than thermodynamic arguments. The same approadly tossing a coin, and it is assumed that the varigbigets
can be applied to the derivation of e statistics, with only  the specific valug; for the whole time intervat; .
one significant difference: the phase space of the booster To understand the connection between this kind of se-
rather than being fully chaotic, as in the case of ordinaryquence and ey statistics, we have to use the fluctuatién
statistical mechanics, is weakly chaofi25]. The phase to generate diffusion by means of the following equation of
space consists of chaotic and regular regions, and the boosteotion:
trajectory tends to sojourn for a long time at the border be-

IV. LE VY WALK

tween chaotic and ordered regions. The waiting time distri- X(t)=&(t). (14
bution is an inverse power law, and, for simplicity, we as-
sume it to be given by As remarked earlier¢ is a dichotomous variable, i.e§
==1, where 1 is a unit of length. The solution of Ed4) is
) Tr1 a given by
t)=(u— 11
p()=(u )(T+t)“ t
, xt=x0+fdt’ t'), 15
We make the assumption (H=x(0) 0 ) 19

031906-3



NICOLA SCAFETTA, VITO LATORA, AND PAOLO GRIGOLINI PHYSICAL REVIEW E66, 031906 (2002

and our final goal is to evaluate?®(t)). pL(k,t)=exp(b|k|“~1t), (22)
As pointed out by Zaslavskj25], the conditionu>2,

assumed throughout this papeee Eq.(12)], ensures the ith

stationary condition, which allows us to properly define

® (1), the normalized correlation function of the fluctuation b=W(TW)*~2sin{ 7(u—2)/2]T(3— ). (23
&. This important dynamic property, according to the renewal
theory[29], is related toy(t) by The subscripL stands for Lgy. The numerical simulations

support this theoretical expectatip80]. Note that this dy-
namic approach to lwy statistics coincides with the kg
walk [29]. The difference between kg walk and Ley
flight is well known. In the case of lwy flight the random
wherer), denotes the mean waiting time. Using i6ft) the = walker makes instantaneously jumps of arbitrary intensity. In
expression of Eq(11) we obtain the case of Ley walk, instead, it takes the random walker a

time proportional td %;| to make a jump with this intensity.
17 In the case of Ley flight, the random walker makes jumps

of intensity| ;| at regular time intervals.

We note that the scaling of Eq1) derives naturally

In this casery, is given by Eq.(13). Squaring the expression from the joint use of the assumptiorxt® and norm conser-
for x(t) given by Eq.(15) and by using the stationary and vation. It is straightforward to show that within the Fourier

djchqtomogs nature of the fluctuatigift)= 1 (the latter  representation the norm conservation yielgs(0t)=1.
yielding (¢°)=1), it is easy to prove that the mean Squares the other hand, moving froi| to |«|=|K/tY®~D we

displacementx?(t)) is given b .
P (V) is g y obtain the time independent Fourier transform;(x)

1 * ! ! !
®§(t)=aft (t' —t)y(t")dt’, (16)

n—2

t+T

-
Dy(t)= ( T

d t =exp(—b|x[*~1), which fits the normalization condition, and
a(xz(t))=2fodt’®§(t—t’)- (18)  vyields the scaling
Finally, by using Eq(17) we get 5= L (24)
pu—1’
lim (x2(t))oct?", (19

t—o

which has to be compared to E@QO). It is evident thatH
# 4, in this case.

with In this paper, we shall focus our attention on the dynamic
condition fitting both the condition of Eq12) w>2, and the
ST diti
H= — if  w<3, (200 ~ condiion
< 3. (25)
and

This is in line with the arguments of the dynamic approach to
H=3 if u>3. (2)  DNA of the earlier work of Refs[8—11], which proved the
DNA sequences to be equivalent to a dynamic process fitting
It is therefore evident that =3 is the border between ordi- both conditions, ensuringtationarity, the former, ancuper-
nary and anomalous diffusion. As pointed out in Sec. Il, thisdiffusion the latter, at the same time.
result can be trusted only in the Gaussian case. There are two important issues to clarify before proceed-
Let us see why this way of evaluating scaling needs soméng with the next sections. The reader can find a detailed
caution. Thanks to the condition of E(L2), we can define account somewhere el§&1,31,33. However, to make this
the numbeN=[t/7y], where[y] denote the integer part of paper as much self-contained as possible, we shall shortly
y. In the casdé> 1 the numbeN becomes virtually identi- outline both of them. The first issue has to do with the time
cal to the number of random drawings of the numbegrand  required for the GCLT to apply. The work of R¢81] shows
& . This is equivalent to drawing thid numbersy; = &7; . that the predictions of the GCLT are realized by the follow-
(1) In the case where the conditign>3 applies, this ing expression fop(x,t):
distribution has a finite second moment. Thus, we can use the
CLT, which yields a Gaussian diffusion, and consequently, p(x t)=K(t)ps(x,t) 0(Wt—|x|)+ % 5(|x| = W)l ,(t),
H=1/2, which correctly reflects the scaling in this case. P (26)
(2) In the case Z u<3, the second moment of this dis-
tribution is divergent, thereby preventing us from using thQNherepT(x,t) is a distribution that fot— o becomes iden-
CLT. However, in this case we use the GCIB]. As shown tical to the Lary probability distribution of the variable,
in Ref. [30], this random extraction of numbers yields a dif- namely, a function whose Fourier transform coincides with
fusion process, described by 'Ehe probability distributionEq.(gz), 6 denotes the Heaviside step function a0d) is a
pL(x,t), whose Fourier transfornp (k,t), reads time-dependent factor ensuring the normalization of the dis-
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tribution p(x,t). This contribution to Eq(26) is a truncated statistics as well, the authors of R¢85] had to use as a
Lévy distribution, the rationale for it being that no trajectory bridge the master equation method of R&f]. This master

can travel with velocity of intensity larger thaN. The tra-  equation gets the form of a fractional derivative, and, the
jectories that at timé>0 are still traveling in the same di- resulting diffusion process coincides with the predictions of
rection as at time=0 produce two peaks located at the the GCLT, with a diffusion strength that coincides with that
propagation frontsx=Wt andx= —Wt, and their contribu- of Eq. (23). It comes to be a surprise, therefore, that the
tion to p(x,t) is given by the second term on the right handrecent work of Ref[32] proves that the exact solution of the
side of Eq.(26). The number of trajectories that contribute to time convoluted diffusion equation yields the same scaling as
the peaks is given by the functidp that has been evaluated the VM, namely, the scaling of Eq20). This suggests that

in detail by the authors of Ref31]. Here it is enough to say densities and trajectories might not speak the same language

that these authors find in the case of nonordinary statistical mechanics, and it makes
much stronger than ever the need for detecting the correct
lim[1,(t)—D(t)]=0. (27)  scaling of a time series.
t—oo

. . . T . V. THE ALGORITHM
This means that in the time asymptotic limit the peak inten-

sity becomes identical to the correlation functidn(t) of Let us consider a sequence Mfnumbers
Eqg. (17). On the basis of these arguments they reach the
conclusion that in the asymptotic time limit EqR6) be- &, i=1,... M. (29

comes identical to
The purpose of the DEA is to establish the possible existence
P(X,t) = PLOG) BOWE— [x]) + £ 8(]x| — WH D (1), of a scaling, either normal or anomalous, in the most effi-
(28) cient way as possible without altering the data with any form
of detrending. Here we describe the algorithm adopted in this

which coincides with the earlier prediction of Rgf1]. This ~ Paper. _ . -
conclusion seems to be compatible with the results obtained L€t us select first of all an integer numbkrfiting the
by using the theory of continuous time random walk condition 1§IsM. This mte_ger nL_lmber will be .referred to
(CTRW) [33], although these authors do no refer explicitly Py US as “time.” For any given timeé we can findM —|
to the correlation functiom .(t). For an earlier work based *1 subsequences of lengtluefined by

on the CTRW see Ref34].

To provide an answer to the first question it is enough to =&, i=1,...1, (30)
rest on the earlier result of E(R8). It takes an infinite time _
for the GCLT to apply: in fact the intensity of the peaks of With s=0,... M—I. For any of these subsequences we

the propagation front is proportional to the correlation func-build up a diffusion trajectorys, defined by the position
tion of Eq. (27), which is not integrable. During this long
transient, as we shall see, the DEA gets closer and closer to © ©
the true scaling of Eq(24), while the distribution second X (|):i21 & :iZl Eivs- (31
moment, which is finite due to the truncation of thévie - -

distribution, yields the fake scaling of EO).

The second issue is less relevant to the main purpose (at]
this paper. It has to do with another approach to the tru
scaling, already discussed in Rgf1]. This has to do with
the Hamiltonian derivation of lwy statistics mentioned in

Sec. Il. We study the time evolution of the probability distri- | jumps. The jump made at tiiéh step has the intensit)fi(s)|

bution of the diffusion variable, of the fluctuating variable and is forward or backward according to whether the number
& and of all other variables that might be responsible for the . - . 9
i>) Is positive or negative.

fluctuations ofé. Then, we make a trace over all the “irrel- § e
evant” variables, namely, all the variables butThe result- We are now ready to evaluate the entropy of th'$ d.|ffu5|on
’ ’ process. In order to do so we have to partitionxttais into

ing equation of motion is not Markovian, and no ordinary : ) .
method to make the Markovian approximation can be appells of_5|zee(l) and.count how many partlcles are found in
plied. This is so because the projection method yields a tim ecelliata given timd. We denote'thls number Wi(l)'
convoluted diffusion equation with a memory term given by he_n we use this numbgr to.determlne t_he probability that a
the correlation functiomb .(t) of Eq. (17), which is not inte- particle can be found in théth cell at timel, pi(l), by
grable. Consequently a new way to make the Markovian apr_neans of
proximation also in this case was inventgd]. It was no-
ticed that this approximation changes the time convoluted pi(h)= N;(1) _ (32)
diffusion equation into a master equatip85]. To derive ' (M—=1+1)

from it a result consistent with that of the CTRW used in an

earlier work of Zumofen and Klaftef36], and with Lasy ~ The entropy of the diffusion process at tihes

Let us imagine this position as that of a Brownian particle
at at regular intervals of time has been jumping forward or
Backward according to the prescription of the corresponding
subsequence of E¢30). This means that the particle before
reaching the position that it holds at tilméas been making
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35 T
0.5(1+In(3.1415/2))+0.5In(l)

Sy(l)=— El pi(HIn[pi(1)]. (33) Discrete Random Walker dffusion -------

Note that the subscripl stands fordiscreteand serves the

purpose of reminding the reader that the numerical evalua-
tion of the diffusion entropy departs by necessity from the
continuous time and continuous-space picture of(BgThe % 2r
easiest way to proceed with the choice of the cell sé£g),
is to assume it independent lodnd determined by a suitable 151
fraction of the square root of the variance of the fluctuation
&i- 1f

In this paper we study sequences of numhkiges+1 or
—1. Because at any step, the jump has the intensity equal t

25

0.5 L

1, the most reasonable choice of the cell size is given by ! T 100
e(l)=1. In this way any cell corresponds to a unique posi- o _
tion x(1) of the diffusion trajectory defined in Eq&30) and FIG. 1. Diffusion entropy of a random walker as a function of

(31). Moreover,e(1)=1 is the square root of the variance of the number of jump& The dashed line and the solid line denote the

the random dichotomous fluctuatiafy of intensity equal discrete diffusion entropyy(l), of Eq. (35 and the continuous
to 1. prescription of Eq.(5), respectively. After a short transient the

Few remarks about the meaning of the integer nuniber dashed line converges to the solid line.

are necessary for the reader to understand the content of the ) .

next sections. As said beforkjis the length of a window With no correlation, the probabilitpy(1), for the random
moving all over the available sequence to define distinct traWalker to be at positiorm after | jumps of intensity 1 in
jectories. These trajectories are used to produce diffusiorfither positive or negative direction, is determined by the
and consequently we shall often refer ltaas time. This Pinomial expressiof38]

should not confuse the reader. The adoption of the term time

is suggested by the formal equivalence with the processes of 1 I 1+(—1)!*m
either normal or anomalous diffusion, where walker’s jumps pPm(l) = ol I+m — (34)
occur in time. Here, these jumps occur as we move from a 2 2

sequence site to the next, and consequently time here has to
do with the site positions. Furthermore, we shall be oftengnd the diffusion entropy reads
using for this kind of time the symbalrather tharl. This has
to do with the fact that for windows of very large size the [
integer numbefl becomes virtua[ly ind.istinguishable from a Sy()=— 2 Pm(DIN[Pm(D]. (35)
continuous number. To emphasize this aspect we shall adopt m=-I
the symbolt rather than.
In the continuous time limit we expect E¢LO) to apply.
Figure 1 shows that, after a short initial regime, the discrete
diffusion entropy converges to the continuous time prescrip-
tion (solid line in Fig. 1. In the case of Brownian walk we

In Sec. Il we have shown that scaling is equivalent tocan interpret the transition from microscopic dynamics to
thermodynamic equilibrium with the equilibrium distribution thermodynamics as the transition from the binomial formula
F(y). We refer to the transient process necessary to realizef Eq. (34) to the Gaussian expression of H§), with o
this form of thermodynamic equilibrium from the initial con- =0.5.
dition with all the trajectories located at=0, as transition
from microscopic dynamics to thermodynamics. Here we il-
lustrate this transition in two different cases, ordinary ) )
Brownian motion and [ey walk. In the former case the  Here we show how to build a sequence corresponding to
transition from microscopic dynamics to thermodynamicsthe prescription of Sec. IV. In an earlier worR9] the reader
can be interpreted as a transition from the discrete to théan find the illustration of an algorithm that, using a genera-
continuous time representation. In the second case the trafr of random numbers of the intervid, 1], creates the wait-

sition is more extended and can be still perceived after reacid time distribution of Eq(11). Here we illustrate a slightly
ing the continuous time regime. different method, generating a distribution of integer times

that is exactly, rather than approximately, equivalent to a
shifted inverse power law. This serves the purpose of making
as fast as possible the transition from microscopic dynamics

The discrete perspective can be illustrated by using théo thermodynamics, without further delay caused by the time
random walk theory that is expected to apply when our didt takes the distribution to become the shifted inverse power
chotomous signal is completely random. In this specific casdaw of Eq. (11).

VI. TRANSITION REGIME: RANDOM WALK
AND LEVY WALK

B. The transition regime in the case of the Ley walk

A. The transition regime in the case of the Brownian walk

031906-6
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To realize this purpose, first of all we need to generate a 2 - - v
series ofi integer numberd (i) according to a probability
distribution p(L): these numbers can be interpreted as the
lengths of strings of the sequence to build up. Then, for any
string, we toss a coin and fill it entirely with 1's or —1’s,
according to whether we get head or tail. We assign to the
integer number& (i) the following inverse power law: %

Levy Diffusion -—---—-

p(L) (36)

whereT andC=(2_,1/(T+L)*) ! are two constants re-
lated to each other in such a way as to realize the normaliza o
tion condition without the continuous time assumption be-
hind Eq. (11). It is evident that in the asymptotic limit of
very large times the distribution of E¢36) becomes equiva-
lent to that of Eq(11).

L 1 L
1 10 1?0 1000 10000

FIG. 2. Diffusion entropy of the xy process generated by an
artificial sequencet;, corresponding to the power coefficient
AT =2.5 andT=0. The dashed line is the diffusion entrofy(l) in
To create the distribution of Eq36) we proceed as fol- the discrete-space perspective given by the(Bg). The solid line

lows. We divide the interval of real numbei@,1] in infinite s the diffusion entropys(l) in the continuous-space perspective
sectors. The-th sector,R,, covers the space given by Eq.(39). After an initial transient, the dashed line con-
verges to the solid line.

R =| X(L),X(L)+ ——], 3
S XOXO T 37 Sy()=1+ gln(t). (39
where From Fig. 2 we see indeed that E9) fits remarkably well

) the time asymptotic limit of the numerical curve. We see that

0 it L=1, this limiting condition is reached after a transient that is sig-

X(L)= L-1 _ (39) nificantly larger than that of Fig. 1. A satisfactory discussion

czl UT+n)# if L>1. of this transient will be presented in R¢81].
n:

. . C. DEA and SDA at work
The length of the sectd®, is equal to the probabilityp(L)

given by Eq.(36). Then, by using a computer, we generate a In this subsection we show the_ b_enefit of the_ joiqt use of
sequence of rational random numbaf¢i) uniformly dis- DEA and SDA. The standard deV|at|qn gt the diffusion time
tributed between 0 and 1: if the rational numbé¢i) be- > D(l), rests on the following prescription:

longs to the sectoR, , the valuelL will be assigned to the

elementL (i) of the sequence of integer numbers. The de-

scribed algorithm and the uniformity of the sequence of ra-

tional random number¥'(i) assure that the sequence of in- D(l)=
teger numberd (i) is distributed exactly according to the M—-1-1

power law given by Eq(36). It is worth to point out that this ) . .

special method of creating the artificial sequence to analyz@here, according to the notation of SecWis the sequence
by means of the DEA is equivalent to that used by Zumofer€ngth,| denotes the width oanovmg windows necessary to
and Klafter [36]. Of course, due to the time asymptotic create distinct trajectories, anddenotes the mean value of
equivalence with the condition discussed in Sec. Il, even irx(l).

this case the thermodynamic regime is characterized oy Le ~ According to the theoretical remarks of Sec. V, the adop-
statistics and the proper scaling is that of E2¢). The dif-  tion of this method applied to an artificial sequence gener-
fusion entropy,Sy(l) of Eq. (33), is expected to converge ated by the inverse power law distribution of E§6), with
asymptotically to the curve of E@6). For example, if we set 2=<u =<3 should yield the true scaling of E24). The SDA
n=2/3 in Eqg.(36), on the basis of Eq(24) we expect a should generate the Hurst scaling of E0). We make the
value §=2/3. In principle, using the theoretical approach of analysis of five artificial sequences with the power indices:
Zumofen and Klaftef36] we might also evaluate the value ©=2.8,2.6,2.5,2.4,2.2. We note that at bqih+3 and u

of A using Eqg.(7). Since this is not very relevant to the =2 the two predictions yield the same valugdsH=0.5
present paper, we skip this issue, and we rest on the numernd §=H =1, respectively. Therefore we focus our attention
cal simulation to conclude thaf=1, thereby reaching on the intermediate values @f. For these intermediate val-
the conclusion that the asymptotic time limit is well repro- ues the correct scaling, namely, théviiescaling, yieldss
duced by =0.556,0.625,0.667,0.714,0.833, respectively, while the

M-I
2 (xa(h=x)?
, (40
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TABLE I. In the first line from the top we report the power 1o
indices of the inverse power law distributions used to create the
artificial sequences studied in Fig. 3. In the second line from thetop  °[
we report the corresponding Hurst coefficients, prediction of Eq. oozom
(20). In the third line from the top we report the true scaling, :
namely, the Ley scaling of Eq.(24).

SRLEEE

88RaBvrvon
P EmE %X+
H

é&!.t.i‘.

(1)

o’ 2.200 2.400 2.500 2.600 2.800 ol
H 0.900 0.800 0.750 0.700 0.600
o 0.833 0.714 0.667 0.625 0.556 °r

Hurst scaling is expected to B¢=0.6,0.7,0.75,0.8,0.9, re- . .
spectively. For the sake of reader’s convenience this situatior 00 1000 | 10000 100000
is summarized in Table I. The numerical results illustrated in (@)
Fig. 3 provide a strong support to the theoretical arguments

of Sec. V, and to our claim about the accuracy of the DEA.In | 428
fact, we see that the DEA yields a remarkable agreemen b-2d
with the Levy scaling, while the scaling detected by the SDA 0533%372
virtually coincides with the Hurst scaling. Samnos ——

In general, when the secret recipe driving the sequence
under study is not known, the comparison between the DEA=
and SDA results plays an important role to assess the statiso
tical nature of the process. In fact, in the case 0¥y sta-

tistics, it is easy to show, using E(R0), that § is related to wk
H by
5= ! 41
- (83=2H)" (41) 1

1 10 1?0 1000 10000

In the FBM case, according to theoretical arguments of Sec )
I, we have
FIG. 3. Diffusion entropy and standard deviation of thevye
o0=H, (42 process generated by artificial sequengesorresponding, respec-
tively, to five different values of the power coefficient namely,

and this equality can be considered as a plausible indicatiop—2.8, 2.6, 2.5, 2.4, 2.2, anfi=0. The numerical results of the
that the Gaussian condition applies. The results of Fig. 3 fitiiffusion entropy analysi¢DEA) (a) and of the standard deviation
Eq. (41), thereby confirming the s nature of the diffusion  analysis(SDA) (b), reported as symbols, are in perfect agreement

process. with the theoretical predictions, reported as fitting lines and ob-
tained by using, respectively, the values of the probability distribu-
VII. APPLICATIONS TO DNA SEQUENCES tion function scaling exponer& and of the exponentd in Table I.

In the last few years, thanks to the recent progress in . ) .
experimental techniques in molecular genetics, a wealth o(fOI' K12 (GenBank name ECO110K12]; and theEscheri-

genome data has become availatdee, for example, Ref. chia coli (GenBank ECOTSF{10], two genomic fragments
[1]). This has triggered a large interest both in the study of°ntaining mostly coding regions (more than 80% for
mechanics of foldind40], and on the statistical properties of ECO110K.
DNA sequences. In particular, genomes can be considered as The three sequences have comparable lengis,
long messages written in a four-letter alphabet, in which=97634 basis for HUMTCRADCVM = 111401 basis for
we have to search for informatiofsigna). Recently, there ECO110K, andV =91430 basis for ECOTSF, respectively.
have been many papers pointing out that DNA sequences afide first two sequences have been analyzed in [Rél.by
characterized by long-range correlation, this being moreneans of the DFA. The fundamental difference between
clearly displayed by noncoding than by coding sequencethem is that the noncoding sequence, namely, HUMT-
[2,5,11,12. CRADCYV, shows the presence of long-range correlation at
In this section we will study a large sample of DNA se- all scales, while the sequence ECO110K, a coding sequence,
quencega dozen of both coding and noncoding sequencesshows the presence of long-range correlation only at the
In particular, we discuss in detail three DNA sequences: thahort-time scale. The third sequence, ECOTS, has been stud-
human T-cell receptor alpha/delta locug&GenBank name ied in Ref.[10] with the interesting conclusion that the large-
HUMTCRADCYV) [12], anoncodingchromosomal fragment time scale shows non-Gaussian statistics. The authors of Ref.
(it contains less than 10% coding regignthe Escherichia  [12], using the illuminating example of the lambda phage
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genome, pointed out that the DFA does not mistake the pres: 3000 —reror e coding’ ——
ence of patches of different strand bias for correlation. This

is an important property, shared by the DEA method, which 2500
is widely independent of the presence of biases, since the
entropy increases mainly as a consequence of the trajectorie 2000
departing from one another. In this section we show that

DEA method makes it possible to relate the non-Gaussians 1500
statistics and the anomalous scaling of the large-time scale

to the same cause: the onset of/izestatistics 1000

A. The numerical representation of DNA 500 -

The usual way to study the statistical properties of DNA is , , , , ,
to consider a sequence of four bases: adenine, cytosine, gus 0 20000 40000 60000 80000 100000 120000
nine, and thymingrespectively,A, C, G, andT), at the (@ |
simplified level of a dichotomous sequence of two symbols,
purine (for A and G) and pyrimidine(for C andT). A tra- 2000
jectory, the so-called DNA walk, can be extracted by consid- 1800
ering a one-dimensional walker associated with the nucle- g4
otide sequence in the following way. The walker takes one
step up when there is a pyrimidine in the nucleotide and a
step down when there is a purine. The DNA sequence is
therefore transformed in a sequenég i=1,... M, of =
numbers+1 or —1. x

As pointed out at the end of Sec. V, we associate the site 800

"ECO110K coding ——

1400
1200
1000

800

position along the sequence with time. Thug conceived 400

as a discrete time, and the walker makes a step ahead ¢ 200

backward, according to whether at timt&he random walker 0

sees+1 or — 1, namely, if theith site of the DNA sequence -200 : : . . .

hosts a pyrimidine or a purine. The displacement of the 0 20000 40000 60000 80000 100000 120000

walker afterl steps isx(l)zE!:lgi and is reported in Fig. 4 (b) |

for the three sequences under consideration.

2500 y T
"ECOTSF coding’ ——

B. The three variance methods(VM) at work: Noncoding

and coding DNA sequences 2000

This section is devoted to illustrating the three different 1500
realizations of the VM, namely, the DAA2], the SDA[8],
and the WSA7,13]. We have already discussed the first two = 1000
methods in the previous sections. We have also showed som >
results of the application of SDA to an artificial sequence in 500
Sec. VI C. As to the WSA, it was first adopted to study DNA
sequences by Arneodo and collaborators in RES], and it 0
consists in reporting the square root of the wavelet variance.
In this way, the scaling is comparable to those detected by g, . . . . .
DFA and SDA, and, as we shall see, it gives indeed the same 0 20000 40000 ?gf)JOOI 80000 100000 120000
results.

The first property we notice is that all the three series 5 4 | (a) we report the DNA walk relative to HUMT-

present “patches,” i.e., excess of one type of nucleotide. IrbRADVC’ a noncoding chromosomal fragment.(b) and (c), we
the DFA of Ref.[12], Stanley and collaborators adopt a de- rgnort the DNA walk relative to ECO110K and ECOTSF, two cod-
trending procedure to detect the true scaling, since the steaglyy genomic fragments.

bias hidden in the data can produce effects that might be

mistaken for a striking departure from Brownian diffusion, imply the presence of extended correlation, which, in turn, is
while the interesting form of scalings must be of totally sta-interpreted as a signature of the complex nature of the ob-
tistical nature. They define a detrended walk by subtractingerved process.

the local trend from the original DNA walk and then they  To illustrate the results of these authors, let us limit to the
study the variances(l) of the detrended walk. If the walk is long-time region the adoption of the symhbd| which, ac-
totally random, as in the ordinary Brownian motion, no cor-cording to Sec. Il, is used by us to denote the scaling emerg-
relations exist andr (1)~ 1%2 On the contrary, the detection ing from the VM. When the VM method is applied to the
of F(I)~I" with either H>1/2 or H<1/2 is expected to short-time region let us denote the scaling parameter deter-
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1000 T T T 1000

SDAHUMTCRAD  + SDA ECO110K

DFA HUMTCRAD ~ x DFA ECO110K

* WSA ECO110K

54010, - 0.46110.53 - w--on

0.171%0.60 -~ 0181073 —mmer
0.AM061 - - 100 °

* x +]

=}

S
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=3
T

SDA, DFA, WSA
SDA, DFA, WSA

01 F

- .
01 1000 10000

. . .
1 10 1To 1000 10000 'fo

A

FIG. 5. Application of the three variance methods SDA, DFA, 1000 ORECoE
and WSA to the sequence HUMTCRADVC, the noncoding chro- EAESOTSE
mosomal fragment. The three methods give the same expbhent
In fact, we getH=0.59+0.01 (SDA), H=0.60+0.01 (DFA), and r
H=0.61*+0.01 (WSA), where the differences are within the error
bars. MoreoverH is the same both at short time and long-time
regions(i.e.,H'=H).

Poxx

=3

mined by the VM with the symboH’. Stanleyet al. [12]

found a scaling exponemt’ =0.61 for the noncoding intron
sequence HUMTCRADCYV, anHl’ =0.51 for the intronless
sequence ECO110K. They claim that their detrending
method is able to avoid the spurious detection of apparent
long-range correlations which are the artifacts of the patchi- oo
ness. ®)
We are now ready to show the three methods at work on

the DNA data sets we want to study in this paper. FIG. 6. Application of the three variance methods SDA, DFA,
Noncoding DNAFigure 5 refers to the sequence HUMT- and WSA to ECO110Ka) and ECOTSKb), the two coding ge-
CRADAVC and shows that, within the statistical error, the nomic fragments. The scaling exponéit in the short-time region
three VM techniques yield the same long-time scaling, morés 0.53+0.01 (SDSA), 0.52+0.01 (DFA), 0.52+0.01 (WSA). The
precisely the three scaling exponerdsobtained are 0.59 scaling exponent in the long-time region is 0.780.01 (SDSA),
+0.01(SDA), 0.60+0.01 (DFA), 0.61+0.01 (WSA). 0.75+0.01 (DFA), 0.74+ 0.01 (WSA).
Coding DNA In Fig. 6a), (b) we study the two sequences
ECO110K and ECOSTS, and we show that the same equivas,ses WSA detects only the variance scaling, and this,
lence applies to both short time and long-time scaling.
fact, for both sequences we find that’ is 0.53t0.01
(SDA), 0.52+0.01 (DFA), 0.52+0.01 (WSA), and thatH is
0.73+0.01 (SDA), 0.75+0.01 (DFA), 0.74+0.01 (WSA).
Before moving to illustrate the results obtained by the
DEA, some comments are in order. DFA detects the scaling According to the dynamical model of RéB] a noncod-
in the long-time region later because of the detrending thaing DNA sequence corresponds to an artificial sequence with
cuts off long local trend. In Ref.12], Stanley and collabo- inverse power law long-range correlation as they evalk
rators were interested in studying the scaling in the shortof Sec. IV, examined by means of the DEA in Sec. VI. On
time region in order to distinguish the noncoding from thethe other side, @oding sequencean be obtained by adopt-
coding DNA sequences. The DFA aims at making this redng a kind of generalization of the kg walk. This generali-
gime more visible. However, we think that it is more conve-zation becomes a model called copying mistake K@M )
nient to study the signal as it is, since detrending might erask8]. This model rests on two sequences -6fs and —’s,
important information as well as the deceiving indication ofrunning independently of each other. The former sequence is
a correlation that does not exist. the correlated sequence studied in Sec. VI C by means of the
Figures 5 and 6 show that there is no difference betweejpint use of DEA and SDA. The latter sequence is obtained
SDA and WSA. This is because the wavelet transform beby tossing a coin. According to the CMM, the genetic site
haves like the Fourier transform that studies the variance o#f the DNA sequence is assigned the symbol pertaining to
the signal. Therefore, WSA, as Fourier spectral analysis, caifie ith site of either the former or the latter sequence. The
detect the true scaling only in the Gaussian case. In all othdprmer sequence is selected with probabiptyand the latter

SDA, DFA, WSA

L L L
10 1?0 1000 10000

INys pointed out in Sec. IV, may not coincide with the true
scaling.

C. The copying mistake map: A model for DNA sequences
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sequence with probabilitpg=1—p_ . In the case of coding ® [ RURTGRADGY on soing
0.945+0.565In{ly -------

sequences usually the condition 0.67+:0.618in() -~

PrR>PL (43

applies. The authors of Rdf10] pointed out that the CMM
model is equivalent to an earlier modél,41] called gener- _
alized Lery walk (GLW). The CMM (and the GLW, as well, &
of course yields, for short times, a diffusion process indis-
tinguishable from ordinary Brownian motion. At large times, 2t
however, the long-range correlation predominates. In Ref.
[10] the CMM was adopted to account for the properties of |-
prokaryotes, for which a significant departure from Gaussian
statistics occurs. One of the coding sequences studied here | , , ,
namely, ECOTSF, is the same as the one discussed in Ret ' 10 [ 1000
[10]. It produces strong deviations from Gaussian statistics.(a)

On the basis of that, and of the results of Sec. VI B, we

4

expect also for coding sequences at large times a scaling ° GYHTORAECY non cofing ]
. ”y . . =0, =43 =27/ ---o-- 54
parameters corresponding to the lwy statistics, and so, to i error bars -

the prediction of both Eq.24) and Eq.(41).

The CMM is a model flexible enough as to move from the
Gaussian to the lwy condition. This is done simply setting
pr=0. On the other hand, if the condition of E@3) ap-
plies, in the long-time limit we expect the condition ofye =
statistics to emerge again. This is so because the most evi®®
dent sign of Ley statistics is given by the power law char-
acter of the distribution tails. The correlated component of
the CMM model results in a process of diffusion faster than
ordinary diffusion, and so faster than the diffusion generated
by the random component. As a consequence, the distribu

tion tails are forced to get the character of an inverse power °, o pros 1900
law. |
(b)
D. DEA at work: Noncoding and coding DNA sequences FIG. 7. Diffusion entropy for the HUMTCRADC\the noncod-

By using the DEA algorithm we can detect the existence"d chromosomal fragmenand its CMM simulation(a) shows that
of scaling, either normal or anomalous, Gaussian 'myL'm the DE analys_ls re_sults_ln a scaling chapglng with tlr_’ne. The_ slope
a very efficient way, and without altering the data with anyOf the two straight Iln_es |§’:0.61_5t 0.01 in the short-time region,
form of detrending. We analyze the data of both the coding"d 9=0-565-0.01 in the long-time regimelb) shows the com-
and noncoding sequences. Starting from the sequénceé anson between the DEA of the real noncoding Sequejce and an
- . . . - artificial sequence corresponding to the CMM modek=0.56
=1,... N we create the diffusion trajectories and we com-__ y» 1 _( 43 =2.77+0.02
pute the diffusion entrop,(l) according to Eq(33). The — o T
results are reported in Figs. 7—9. We determine the scaling amalysis[12], H’ =0.61+0.01. The authors of Ref12] as-
the slope of the tangent of the cur8g(7). As for the second sign this scaling value to both the short time and the long-
moment scaling, calledd or H’, according to whether it time regime, while the DEA detects a different scaling at
refers to long or short times, we adopt for the DEA scalinglong times. Figure {(b) shows the result of the DEA applied
the corresponding symbol8 and &’. It is evident thats is  to an artificial sequence built up according to the CMM pre-
the true scaling. As to the meaning &f, it will be discussed scription so as to mimic the sequence HUMTCRADCV. We
at the end of this section. use bothu and pr as fitting parameters. In this case, the

Noncoding DNAFirst, let us consider theoncoding se- intensity of the random component is not predominant, as in
quenceHUMTCRADCV. Figure 7a) shows that the DEA the case of the coding sequences, which are knjdWh to
results in what seems to be a time dependent scaling. This require the condition of Eq43). In fact, in this case the best
pointed out by means of the two straight lines of differentfit between the real and the CMM sequence is obtained by
slopes, 6'=0.615-0.01 and 6=0.565-0.01 Anomalous setting pr=0.56+0.02. As tou, its value emerging from
diffusion shows up at both the short-time and the long-timethis fitting procedure, is considered by us to be the best es-
scale, and this seems to be a common characteristic of notimate of this inverse power law index. This value s
coding sequences, supported also by the application of our2.77+0.02. If we plug it into Eq.(20), we getH=0.615
technique to other noncoding DNA sequences. Moreover, we- 0.01, which is in fact the scaling detected in R&R]. This
notice that the scaling in the short-time regifie=0.615 means that the short-time region obeys the FBM statistics. If
+0.01 coincides with the value found by means of the DFAwe plug it into Eq.(24) we obtainé=0.565+0.01, which is
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6

6
"ECOTSF coding —
0.85+055In()

e
.67+0.52In(l) ------- =
0.01+.8B5In{l) - 0.07+0.685In(l) -+

L L L
0 L
1 10 I 100 1000 3 10 100 1000

X T
ECO110K codin |
CMM p=0.943 T=45 u=2.5 ------- " E—
) e AT OMM pr=0.557 1260 1188 -——
i error barg --------
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FIG. 8. Diffusion entropy for the ECO110Kone of the two FIG. 9. Diffusion entropy for the ECOTSRhe second of the

coding genomic fragments studjednd its CMM simulation.(a) . . L .
shows that the DEA results in a scaling changing with time. ThetWO coding genomic fragments studied in this pagrd its CMM

slope of the two straight lines i§' =0.52+0.01 at short-time re- simulation. (a) shows that the DEA results in a scaling changing

gime, andé=0.665+0.01 at long-time regim&b) shows the com- with time. _The slope of the two straight _Iinesﬁs:o.5_3t 0‘01. in
parison between the DE analysis of the real coding sequence and I.rf short-time region, and=0.665+0.01 i the long-time regime.

artificial sequence corresponding to the CMM modak=0.943 shows the comparison between the DEA of the real coding
+0.01, T=45, u=2.5+0.02 sequence and an artificial sequence corresponding to the CMM

model: pg=0.937+0.01, T=60, u=2.5+0.02.

the slope of the DEA curve in the long-time regime, thereby
proving that the relation betwee# the true scaling, antl  tuation¢, which has an inverse power dependence on time
obeys the condition of Eq4l), which is, as pointed out with the power index3=u—2. The authors of Ref8], by
earlier, a clear indication of vy statistics. We consider this using essentially the first method and the Onsager regression
to be a compelling evidence that at this long-time scalylLe analysis, reached the conclusion that the most plausible value
rather that FBM diffusion is generated. of the scaling parameter in the long-time regiorHis- 0.75

Coding DNA In Figs. 8 and 9 we turn to the more delicate +0.01 that is equivalent to the exponeHt=0.74*+0.01
problem ofcoding sequence3he first sequencéECO110K  found in Fig. Ga), (b). It is interesting to remark that the
has already been studied by means the DFA analysis in Refoincidence among the different predictions about scaling,
[12]. The DFA findsH’=0.52+0.01 at the short-time scale and especially that between the second moment technique
and H=0.75£0.01 in the large-time scale. The second se-and the Hurst analysis, implies the adoption of the Gaussian
quence(ECOTSH has been analyzed in Rd#8] by using assumption[42]. On the other hand, when that condition
four different methods. The first was the SDA discussed irdoes not apply and the two scaling predictions are different,
Sec. IVC. This is a method of analysis less sophisticatedo the best of our knowledge, it does not seem to be known
than the DFA, since it does not imply any local detrending.what is the meaning of any of them. Furthermore, the authors
The second and third methods were the DFA and the Hursif Ref. [10] pointed out that the statistics of the long-time
analysis[21], respectively. The fourth method used was theregime is too poor to support any claim on the departure
Onsager regression analysis, a method that, in that contexXtom the Gaussian condition. In conclusion, in Rdf0] the
provides information on the correlation function of the fluc- claim that the DNA statistics is of vy kind was essentially

031906-12



LEVY SCALING: THE DIFFUSION ENTROPY . .. PHYSICAL REVIEW E66, 031906 (2002

based on the assumption that the dynamical theory of Refs. TABLE Il. Values of the scaling exponents and 6 for a set of
[8,11] is a reliable approach to the statistics of DNA se-different coding and noncoding sequences. In the first column we
quences. No direct evidence was provided. report the GenBank name of the sequefitk and in the second
The DEA method allows us to prove that the conjecture 01co|umn the lengthN of the sequence. For all measurements the
the authors of Ref[10] is correct: the results illustrated in error is+0.01. &y in the fourth column is the theoretical value for
Figs. 8 and 9 afford a convincing proof that the DNA statis- ' the Levy condition applies, Eq(41). If the length of the ge-
tics i.s of Levy kind. Figures 8) and 9a) clearly show the nome is larger than 20 000 the fitted region is 4€06:2000. If the
dif %lyt ) thg | t short tifm y tively.s' length of the genome is shorter than 20 000, the statistics are not
—Ioeég?:conlei\r/]\leFeig 82) Saﬁgeé,a_g E??Et(l) Ois?necl::i“ée S)If,a)] very good for largd. In this case, the fitted region is 20<200.
which, in this case, is very close to that of ordinary random NonCoding N H S 5
walk, and the slope at long time that correspondséto
=0.665t0.01. Since we know that in both cases the long- HUMTCRADCV 97630 0.61 0.56 0.56

time slope provided by the DFA id=0.75+0.01, we con- CELMYUNC 9000 0.71 0.63 0.635
clude that in both cases the condition of E4l), indicating CHKMYHE 31109 0.78 0.69 0.70
Levy statistics, applies. Figurei8 and 9b) aim at fitting DROMHC 22663 0.72 0.64 0.65
the curves produced by the DEA method, applied to the real HUMBMYHZ 28437 0.58 0.54 0.54
sequences by means of the CMM model. The purpose is not -
only that of proving that the CMM can become so close to Coding
the real results as to be virtually indistinguishable from them.  gco110k 111401 0.74 0.66 0.66
It is also a way, already applied in Fig(bj, to derive very ECOTSE 91430 0.74 0.66 0.66
accurate values for the power index A very good agree- LAMCG 48502 0.85 0.77 0.76
mgnt is obtained by settingg=0.943+0.01 for ECOllOK CHKMYHN 7003 0.74 0.66 0.66
[I_Fhlg. 5b)] ang fF?tF;': 0.937+0.01 for EtCOt;_SF[hFIg: 7€b)]. DDIMYHC 6680 068 061 061
T e PP e Pymed o250 browvouwa &0 069 062 oo
for coding sequences. In fact, with the large weighg, HUMBMYH7CD 6008 0.63 0.57 0.58
' HUMDYS 13957 0.69 0.62 0.62

=0.937+0.01, assigned to the random component, the scal-
ing values becomes’=0.52+0.01 and §'=0.53+0.01,
namely, very close to the conventional scalifigg H=0.5.
This normal condition lasts for an extended period of time,
and eventually, at larger times the transition to a larger sca
ing takes place.
We note that the authors of R¢fL3] find anomalous dif-

fusion in a statistical condition that they claim to be Gauss

1an. Ac_co_rdlng to the res_ult of Re[_ll], the _Gau_ssmn con- We can now address the delicate problem of the transition
dition is incompatible with a stationary diffusion Process . s 10 5. On the basis of the results of Figs. 8 and 9, we

generated by a dichotomous fluctuation yielding a nonintey, o4 be tempted to conclude that the CMM is a reliable

grable cqrrelgtion function with an inyerse power law Char'dynamical model for DNA sequences. If this is correct, the
acter. This dichotomous fluctuation is expected to generatg. - ion froms’ to S is really a ime-dependent scaling. In

Levy rather than Gaussian statistics. The authors of FRgf. fact, according to the CMM the short-time scale is domi-
studied under which physical condition FBM is allowed to natéd by the random component, due to the fact that the
show up, in apparent conflict with the conclusions Of. F«af'condition of Eq.(43) applies. In the, case of Fig. 7 the tran-
[11]. With the help of a fractal model for the DNA folding, sition from &' to & is probably dominated by a completely
the authors of Refl9] proved that FBM, advocated by the different effect. This is the slow transition from dynamics to

paper of Ref.[1_3], is p_055|ble as a form of nonstationary thermodynamics discussed in Sec. IV
process. Thus, in principle, the arguments of the work of Ref.

[11] would not rule out the possibility that the changing
slope is a manifestation of a FBM with a time-dependent
scaling. This would be another form of transition from dy-  To properly appreciate the significance of the results of
namics to thermodynamics, of extremely large time durationthis section, it is necessary to say a few words about the two
However, this way of establishing a compromise between théifferent scaling prescriptions of Egq$24) and (20). The
compelling prediction of the GCLT, according to which a scaling prescription of Eq.20) is determined by the adop-
dichotomous process with long-range correlatior<(2<2  tion of the variance method, as clearly illustrated by the dy-
must produce [ey statistics, and the conclusion of some namical approach to the DNA sequences of R8f. This
authors that this statistics is Gaussfa#] is ruled out by the  prescription is not ambiguous if the condition of Gaussian
statistical analysis of the present paper, which is made mucstatistics applies. In fact, a Gaussian distribution drops
more accurate than the earlier approaches by the DEA. Thiguickly to zero, and the existence of a finite propagation
is made compelling not only by the results illustrated in Figs.front does not produce any significant effect. It has to be
8 and 9, but also by a plenty of statistical measurements opointed out, in fact, that the adoption of the Brownian land-

different DNA sequences, reported in Table Il. All these re-
sults prove that the equality of E¢41), implying Levy sta-
fistics, applies to both kind of sequences. This means that in
both cases the long-time limit is characterized byy sta-
tistics and that this is the form of non-Gaussian statistics
revealed by the analysis of R¢fL0].

E. Significance of the results obtained
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scape proposed in the pioneer papers of R&$%,19 im- In conclusion, this paper lends support, with the help of
plies the existence of a propagation front moving with bal-the DEA, an efficient technique of scaling detection, to the
listic scaling (¢=1). In other words, if we find a window of claims of Allegriniet al.[11] about the controversy between
lengthl filled with only 1's or with only —1's, this means a Voss[4] and the authors of Ref2]. The differences in the
trajectory traveling with uniform velocity, and thespace at  findings of the groups, long-range correlations being ubiqui-
distances from the origin larger thias empty. The existence tous in DNA sequences by Vogd] and such correlations
of a propagation front does not have big consequences in thesing absent in Ref2], motivated the authors of RfL1] to
case of Gaussian statistics, since the population at the propgeyelop a phenomenological model, the CMM, that might
gation front is essentially zero in that case. It is not so in thgyaye mitigated the differences between the two apparently
case of Ley statistics, though, due to the existence of veryconfiicting perspectives. The validity of the point of view of
long tails in that case. Therefore theweprocesses resulting hese authors is fully confirmed, sincé westatistics, and
from these sequences are essentially characterized by thgnsequently long-range correlations, seem to be ubiquitous,
presence of two distinct scaling prescriptions, they.pre-  peing a property of the long-time regime of both coding and
scription of Eq.(24), concerning the portion of distribution noncoding sequences, while the properties of ordinary
enclosed between the two propagation fronts, and the scalingrownian motion are confined to the short-time regime of
6=1, of the propagation front itself. The scaling of the vari- coding sequences.
ance of Eq(20) does not reflect correctly either of these two
different scaling prescriptiqns, being a k!nd .of compromise VIIl. CONCLUSIONS
between the two. The scaling of the distribution enclosed by
the two propagation fronts is, on the contrary, a genuine This paper shows that long-range correlations result in a
property that corresponds to the prediction of the GC18].  very slow transition to scaling, regarded as a form of ther-
It is very satisfactory indeed that the DEA method makes thisnodynamic equilibrium. The standard methods of statistical
genuine form of scaling emerge. Furthermore, the DEA is analysis(variance methodsare a source of misleading infor-
very accurate method of scaling detection, as proved by thmation in this case: the first being mistaking the regime of
fact that it reveals the existence of\yestatistics in the case transition to scaling as either ordinary or anomalous scaling.
of the coding sequence. In this case, as pointed out by th&he second is that the scaling value, as determined by the
authors of Ref[8], the ordinary methods become inaccurateevaluation of the second moment, might significantly depart
due to the poor statistics available in the long-time limit.  from the correct one. All the VM techniques are shown to be
Another important result of this section is that it confirms affected by this limitation, while the DEA is the only tech-
the validity of the CMM model. This model is expected to nique always yielding the correct scaling value, if the scaling
generate [ey statistics not only in the case of noncoding condition applies. The application to the study of DNA se-
sequences, where it is easier to reveal this property. It preguences reported in this paper yield$) a striking example
dicts Levy statistics also in the case of coding sequences asf how the standard techniques can produce misleading con-
the one analyzed here. In R¢B] the emergence of vy clusions;(2) a suggestive example of the power of the DEA,
statistics was conjectured but not proved, due to the fact thathich, in this case, is able to indicate clearly that both cod-
in that paper the observation was made monitoring the probing and noncoding sequences generateylstatistics in the
ability distributionp(x,t). As already pointed out, the lack of long-time limit.
sufficient statistics makes it difficult to assess if the distribu- The DEA is not only a method of scaling detection. Its
tion p(x,t) has, or not, tails with an inverse power law char- entropic nature gives also useful insights into the regime of
acter. In Ref[10] a clear deviation from the Gaussian con- transition from dynamics to thermodynamics. It is possible to
dition was detected in the long-time limit, but, again, noprove that in the special case where the time series is gener-
direct evidence was found that this deviation from Gaussiamted by fluctuations around a locally varying bias the regime
statistics takes the form of \g statistics. The results of this of transition to the scaling regime is significantly delayed.
section prove, with the help of the artificial sequences of SecThe ordinary techniques of analysis had mistaken this tran-
VI B, that the DEA is a method of analysis so accurate as teition regime as a form of anomalous memory, while the
assess with good accuracy the property of @), and with  DEA makes it possible to establish the genuine nature of the
it, the emergence of Iwy statistics for both coding and non- process under study. This is left as a subject for further ap-
coding sequences. plications.
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