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Lévy statistics in coding and non-coding nucleotide sequences
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Abstract

The diffusion entropy analysis measures the scaling of the probability density function (pdf) of the diffusion process generated
by time series imagined as a physical source of fluctuations. The pdf scaling exponent,δ, departs in the non-Gaussian case from
the scaling exponentHV evaluated by variance based methods. Whenδ = 1/(3 − 2HV ) Lévy statistics characterizes the time
series. With the help of artificial sequences that are proved to be statistically equivalent to the real DNA sequences we find that
long-range correlations generating Lévy statistics are present in both coding and non-coding DNA sequences. 2002 Elsevier
Science B.V. All rights reserved.

PACS:05.40.+j

Keywords:Time series analysis; Lévy statistics; DNA

The recent progress in experimental techniques of
molecular genetics has made available a wealth of
genome data (see, for example, the NCBI’s Gen-Bank
data base of Ref. [1]), and raised the interest for the
statistical analysis of DNA sequences [2–5]. These
pioneer papers mainly focused on the controversial
issue of whether long-range correlations are a prop-
erty shared by both coding and non-coding sequences
or are only present in non-coding sequences. The re-
sults of more recent papers [6,7] yield the convinc-
ing conclusion that the former condition applies. How-
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ever, some statistical aspects of the DNA sequences
are still obscure, and it is not yet known to what ex-
tent the dynamic approach to DNA sequences pro-
posed by the authors of Ref. [8] is a reliable picture for
both coding and non-coding sequences. The later work
of Refs. [9] and [10] established a close connection
between long-range correlations and the emergence
of non-Gaussian statistics, confirmed by Mohanti and
Narayana Rao [6]. According to the dynamic approach
of Refs. [8,11] this non-Gaussian statistics should be
Lévy, but this property has not yet been assessed with
compelling evidence. The reason for this failure is that
the scaling detection has been based upon the evalua-
tion of the variance. In this Letter we aim at filling this
gap and we show that the diffusion entropy analysis

0375-9601/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0375-9601(02)00730-2

http://www.elsevier.com/locate/pla


566 N. Scafetta et al. / Physics Letters A 299 (2002) 565–570

(DEA) [12–14] realizes the goal of evaluating the gen-
uine scaling value of the probability distribution. Fi-
nally, we prove that the joint use of the DEA and of the
detrended fluctuation analysis (DFA), a widely used
variance based method, applied to DNA sequences by
the authors of Ref. [15], allows us to:

(1) establish the presence of long-range correlations
in coding as well as in non-coding sequence;

(2) assess the Lévy nature of the resulting non-
Gaussian statistics.

More specifically, we analyze the two DNA se-
quences studied in Ref. [15]. These two sequences are
the human T-cell receptor alpha/delta locus, Gen-Bank
name HUMTCRADCV, a non-coding chromosomal
fragment ofM = 97630 bases (composed of less than
10% of coding regions), and the Escherichia Coli K12,
Gen-Bank name ECO110K, a genomic fragment with
M = 111401 bases consisting of mostly coding re-
gions (it contains more that 80% of coding regions).
We build up a random walk trajectory in thex-space
with the following prescription [5]. The site positiont
is interpreted as “time”. The walkerx(t)= x(t − 1)+
ξ(t) takes a step up (ξ(t)= +1) or down (ξ(t)= −1)
for each pyrimidine and purine, respectively, at timet .
Thus a DNA sequence becomes equivalent to a single
trajectory from which we have to derive many distinct
trajectories as we shall show below. Fig. 1(a) and (b)
show the two DNA walks.

The basic tenet of many techniques, currently used
to analyze time series, is the detection of scaling [16,
17]. Scaling is the property of diffusion processes re-
lating the space variablex to the time variablet via the
key relationx ∝ tH . The symbolH stands for Hurst,
as a recognition by Mandelbrot of the earlier work of
Hurst [17], and is interpreted as a scaling parameter.
It has to be pointed out that Mandelbrot’s arguments
are based on the so-called fractional Brownian mo-
tion (FBM), an extension of ordinary Brownian mo-
tion to anomalous diffusion. According to the authors
of Ref. [18], it is convenient to adopt two distinct sym-
bols,HH andHV , to denote the values afforded by the
Hurst method and variance, respectively. If the FBM
condition applies, it is shown [18] thatHV =HH =H
and the scaling detected by the variance,HV , is equal
to the scaling of the distribution. In this case, the de-
parture from ordinary diffusion is given byH �= 1/2,

Fig. 1. In (a) we report the DNA walk relative to ECO110K, a coding
genomic fragment. In (b) we report the DNA walk relative to
HUMTCRADVC, a non-coding chromosomal fragment.

with no departure, though, from Gaussian statistics.
When the FBM condition does not apply,HV mea-
suresonly the scaling of the variance, when it exists,
and it may depart fromHH [18] and from the scaling
of the distribution as well. In this case Mandelbrot’s
argument does not apply and only the DEA can estab-
lish the scaling of the distribution [12–14]. It is worth
stressing at this stage thatour definition of scaling is
given by the asymptotic time evolution of the probabil-
ity distribution ofx, obeying the property

(1)p(x, t)= 1

tδ
F

(
x

tδ

)
,

where the symbolδ denotes the scaling exponent of
the distribution, which exists also when the second
moment ofF(y) is divergent.

The diffusing DNA walk trajectories are generated
in the following way. For each timet we can construct
M − t + 1 trajectories of lengtht ,

(2)xj (t)=
j+t−1∑
i=j

ξi , j = 1,2, . . . ,M − t + 1,

wherexj (t) represents the position of the trajectoryj
at timet . In the variance methods, scaling is studied by
direct evaluation of the time behavior of the variance
of the diffusion process. If the variance scales, we have

(3)σ 2
x (t)∝ t2HV ,

whereHV is the scaling exponent of the variance.
When the asymptotic limit of diffusion process be-
comes Lévy, the functionp(x, t) at large but finite
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times becomes as close as possible to an ideal distri-
bution with an infinite second moment. In this case,
the method of analysis based upon the evaluation of
the variance, rather than providing the genuine scal-
ing, affords information on the truncation of the tails
generated by the observation at finite times [11].

We note that this choice of trajectories is based on
a window of sizet , the left side of which moves from
the positionj = 1 to the positionM − t + 1. The DFA
rests on a much smaller number of non-overlapping
windows, whose left side is located at the positions
1, t + 1,2t + 1, . . . , and so on. For any of these non-
overlapping windows the DFA considers only the dif-
ference between the actual sequence value and a local
trend [15]. The DEA [12–14] uses, on the contrary,
the overlapping windows of Eq. (2). The choice of the
overlapping windows of Eq. (2), in addition to increas-
ing the statistical accuracy of the analysis, fits the rules
for the calculation of the Kolmogorov–Sinai (KS) en-
tropy [19,20]. As a matter of fact, the DEA shares with
the KS, not only the use of the Shannon entropy in-
dicator, but also the same prescription to convert one
single trajectory into a large set of distinct trajectories.
The DEA monitors the spreading of the trajectories of
Eq. (2), interpreted as the source of entropy increase,
to detect scaling, whereas the KS focuses on the en-
tropy increase associated to the random dynamics re-
sponsible for the fluctuations of the variablesξ [21].
If the spreading ofx-trajectories is independent of bi-
ases, if any exist, the DEA determines the scaling asso-
ciated to this spreading without requiring de-trending,
since the scaling is determined by the entropy increase
and this is virtually independent of biases.

To evaluate the Shannon entropy of the diffusion
process at timet , we partition thex-axis into cells of
sizeε = 1, and we defineS(t) as

(4)S(t)= −
∑
i

pi(t) ln
[
pi(t)

]
,

wherepi(t) is the probability thatx can be found in
theith cell at timet ,

(5)pi(t)≡ Ni(t)

(N − t + 1)
,

andNi(t) is the number of trajectories found in the
cell i at a given timet . The connection betweenS(t)
and scaling becomes evident in the continuous approx-
imation, where the trajectories of the DNA walk of

Eq. (2) are described by the continuous equation of
motion

(6)
dx

dt
= ξ(t).

Here ξ(t) is the dichotomous variable assuming the
values+1 and−1, andt is thought of as a continuous
time. In this case, the Shannon entropy reads

(7)S(t)= −
∞∫

−∞
dx p(x, t) ln

[
p(x, t)

]

and, after a simple algebra, the earlier illustrated scal-
ing property, Eq. (1), yields

(8)S(t)=A+ δ ln(t),

where

(9)A≡ −
∞∫

−∞
dy F(y) ln

[
F(y)

]
.

It becomes thus evident why the DE would detect the
true scaling even if the process under study were a per-
fect realization of statistics with divergent second mo-
ment. Eq. (8) states that the scaling exponentδ is the
slope of the entropy against the logarithmic time.

Let us now consider the two following possibilities:
(1) If ξ(t) is an uncorrelated dichotomous variable,

F(y) has a Gaussian form:

(10)FGauss(y)= exp(−y2/2σ 2)√
2πσ 2

.

The variance scaling exponent isHV = 0.5 and the
diffusion entropy of Eq. (8) reads

(11)S(t)= 1

2

[
1+ ln

(
2πσ 2)] + 1

2
ln(t).

(2) If, instead,ξ(t) has the power-law correlation
functionΦξ (t) ∼ 1/tβ , with 0< β < 1, the distribu-
tion density of sojourn times in one of the two states
+1 or −1, Ψξ (t), is known [11,13] to get the form
Ψξ (t) ∼ 1/tµ, with µ = β + 2, and theF(y) gets
the form of a stable Lévy distribution [22]. The scal-
ing exponent of the probability density function is
δ = 1/(µ − 1) [11,13] whereas the scaling exponent
of the variance isHV = (4 − µ)/2 [11,13]. The en-
tropy of the diffusion process is

(12)S(t)=ALevy + 1

µ− 1
ln(t).
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For both cases we expectS(t) to be a linear function
of ln(t), with slopeδ = 0.5 that coincides withHV ,
andδ = 1/(µ− 1) that does not coincide withHV .

We are now ready to consider the applications to
the two DNA sequences. In Fig. 2(a) we show that
the DEA of the non-coding sequence HUMTCRA-
DCV results in what apparently seems to be a time-
dependent scaling, in conflict with the result provided
by the DFA analysis [15], which yieldsHV = 0.615
throughout the whole time regime. The apparent time
dependence ofδ is pointed out by means of two
straight lines of different slopes: the slope in the
short-time regimeδ = 0.615, coinciding with the DFA
value, while the real asymptotic scaling isδ = 0.565
corresponding toµ = 2.77 (see Eq. (12)). As made
evident in the remainder of this Letter, the apparent
time dependence ofδ is actually the manifestation of
an extended regime of transition from “dynamics to
thermodynamics”, different from that of the coding
sequence, but yielding in the asymptotic limit, in both
cases, Lévy statistics.

In Fig. 2(b) we consider the more delicate prob-
lem of a coding sequence. Here the misleading inter-
pretation in terms of a time-dependent scaling would
lead us to conclude that at short timesδ = 0.52 and
at long timesδ = 0.67, thereby implying a kind of
transition from normal to anomalous diffusion corre-
sponding toµ= 2.5. We note that our short-time result
agrees with the DFA value [15], namelyHD = 0.51,
but conflicts with the corresponding long-time DFA
value,HD = 0.75. Actually, we prove that this con-
flict is a consequence of the fact that the scaling of the
probability density function, Eq. (1), may not be de-
tected by the variance methods like the DFA, whereas
the DEA makes it emerge as the asymptotic limit of
a long lasting transition from dynamics to thermody-
namics, characterized by Lévy statistics, in both cod-
ing and non-coding sequences.

To prove this important fact, we model the DNA
sequences by adopting the copying mistaken map
(CMM) of Ref. [8]. As pointed out more recently [10],
this model is equivalent to the generalized Lévy walk
(GLW) [5]. The GLW, in turn, fits very well the
observation made by the authors of Ref. [15], that the
transition to super-diffusion in the long-time region is
a manifestation of random walk patches with bias. The
CMM corresponds to a picture where nature builds up
the real DNA sequence, either coding or non-coding,

Fig. 2. The diffusion entropy analysis for the two DNA sequences
results in a scaling changing with time. For the HUMTCRADCV,
the non-coding chromosomal fragment, the slope of the straight line
is δ = 0.615 at short-time regime andδ = 0.565 at long-time regime.
For ECO110K, the coding genomic fragment, slopes areδ = 0.52 at
short-time regime andδ = 0.67 at long-time regime.

by using two different sequences. The former is a
random sequence (RS) equivalent to assigning to any
site the value+1 or −1, with equal probability. The
latter sequence, on the contrary, is highly correlated
and is obtained as follows. First of all, a sequence of
integer numbersl > 0 is drawn, with the inverse power
law distribution:

(13)p(l)= C

(T + l)µ , 2<µ< 3.

Any drawing corresponds to fixing the length of a se-
quence of patches. To any patch is then assigned a
sign, either+1 or−1, by tossing a coin. This prescrip-
tion is virtually the same as that adopted to build up
the symbolic sequence of Ref. [23], and corresponds
to the intermittent condition of the Manneville map
[24,25]. We call this correlated sequence intermittent
randomness sequence (IRS). As shown in Refs. [11,
22], the diffusion process generated by the IRS is a
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Lévy diffusion. According to the CMM, nature builds
up the real DNA sequence by adopting for any site of
the real sequence the nucleotide occupying the same
site in the RS, with probabilitypR , or the correspond-
ing one of the IRS, with probabilitypL = 1 − pR .
The same prescription is used for modeling both the
coding and non-coding DNA sequences, the only dif-
ference being the different value ofpR/pL, i.e., the
ratio of the uncorrelated to the correlated weight. We
note also that the coding DNA sequence is character-
ized bypR � pL. The Lévy diffusion is faster than
ordinary diffusion, and therefore is expected to be-
come predominant, and so ostensible at long times,
even whenpR � pL. Of course, upon increase ofpR,
Lévy statistics become ostensible at longer and longer
times. As shown in Figs. 3(a) and (b), the DEA of
HUMTCRADCV and ECO110K is perfectly repro-
duced by a CMM withµ= 2.77 andµ= 2.5, respec-
tively. For the coding sequencepR = 0.943, i.e., the
random component is predominant, while for the non-
coding sequencepR = 0.560. It is worth to notice that
with such values ofpR the CMM also accounts for the
correct slope ofS(t) vs. ln(t) in the short-time regime.

Finally, we want to prove the crucial DEA property:
The DEA detects the scaling exponentδ of the proba-
bility density function, rather than the second moment
scalingHV . In the Lévy walk case the variance may be
evaluated [11,13], and the scaling exponentδ and vari-
ance exponentHV are related the one to the other by

(14)δ = 1

3− 2HV
.

We see that in the case of the non-coding sequence
the DEA yields an asymptotic scaling which is slightly
smaller than the short-time scaling. This corresponds
to the transition from the short-time Gaussian condi-
tion to the long-time Lévy condition, namely to the
transition fromδ = HV = 0.61, at short times, to the
valueδ = 1/(µ − 1) = 0.565 of the Lévy regime, at
long times, with delta related now toHV = 0.61 by
Eq. (14). In the coding case we see that the scaling
detected by the DEA method isδ = 0.67 that again
is related toHV = 0.75 through Eq. (14). Finally,
in Table 1 we show the values of the scaling expo-
nentsHV andδ for a set of different coding and non-
coding sequences, and the valuesδH evaluated by us-
ing the Lévy relation (14). The measured scaling ex-

Fig. 3. CMM simulation of the two DNA sequences. (a) shows
the comparison between the DE analysis of HUMTCRADCV and
an artificial sequence corresponding to the CMM model with
pR = 0.56,T = 0.43,µ= 2.77. (b) shows the comparison between
the DE analysis of ECO110K and an artificial sequence corre-
sponding to the CMM model withpR = 0.943,T = 45,µ= 2.5.

ponentδ coincides with the evaluated exponentδH in
all cases.

In conclusion, this Letter affords two important re-
sults. The first is the discovery of a way to detect the
scaling of the probability density function that may
be different from the variance scaling detected by the
DFA. As a second result, we prove, with the help of
artificial sequences generated by the CMM and with
the joint use of the DEA, that measuresδ, and the
DFA that measuresHV , that in the long-time limit of
both coding and non-coding sequences, the emerging
anomalous diffusion belongs to the Lévy basin of at-
traction. In other words, in accordance with the ex-
pectation of [10], both non-coding and coding DNA
sequences, though after a different transient process,
reach the same stable “thermodynamic” regime, char-
acterized by Lévy statistics.
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Table 1
Values of the scaling exponentsH andδ for a set of different coding
and non-coding sequences

N HV δH δ

Non-coding
HUMTCRADCV 97630 0.61 0.56 0.56
CELMYUNC 9000 0.71 0.63 0.635
CHKMYHE 31109 0.78 0.69 0.70
DROMHC 22663 0.72 0.64 0.65
HUMBMYHZ 28437 0.58 0.54 0.54

Coding
ECO110K 111401 0.74 0.66 0.66
ECOTSF 91430 0.74 0.66 0.66
LAMCG 48502 0.85 0.77 0.76
CHKMYHN 7003 0.74 0.66 0.66
DDIMYHC 6680 0.68 0.61 0.61
DROMYONMA 6338 0.69 0.62 0.64
HUMBMYH7CD 6008 0.63 0.57 0.58
HUMDYS 13957 0.69 0.62 0.62

In the first column we report the Gen-Bank name of the se-
quence [1], and in the second column the lengthN of the sequence.
For all measures the error is±0.01. δH in the fourth column is the
theoretical value forδ if the Lévy condition applies, Eq. (14). If
the length of the genome is larger than 20,000, the fitted region is
100< l < 2000. If the length of the genome is shorter than 20,000,
the statistics are not very good for largel. In this case, the fitted
region is 20< l < 200.
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