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We introduce a method to convert an ensemble of sequences of symbols into a weighted directed

network whose nodes are motifs, while the directed links and their weights are defined from statistically

significant co-occurences of two motifs in the same sequence. The analysis of communities of networks of

motifs is shown to be able to correlate sequences with functions in the human proteome database, to detect

hot topics from online social dialogs, to characterize trajectories of dynamical systems, and it might find

other useful applications to process large amounts of data in various fields.
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There are many examples in biology, in linguistics, and
in the theory of dynamical systems where information
resides and has to be extracted from corpora of raw data
consisting in sequences of symbols. For instance, a written
text in English or in another language is a collection of
sentences, each sentence being a sequence of the letters
from a given alphabet. Not all sequences of letters are
possible, since the sentences are organized on a lexicon
of a certain number of words. In addition to this, different
words are used together in a structured and conventional
way [1,2]. Similarly, in biology, DNA nucleotides or ami-
noacid sequence data can be seen as corpora of strings
[3–6]. For example, it is well known that proteomes are far
from being a random assembly of peptides, since clustering
of aminoacids [7] and strong correlations among proteomic
segments [8] have been clearly demonstrated. These results
give meaning to the metaphor of protein sequences re-
garded as texts written in a still unknown language [3,9].
Sequences of symbols can also be found in time series
generated by dynamical systems. In fact, a trajectory in the
phase space can be transformed into a sequence of sym-
bols, by the so-called ‘‘symbolic dynamic’’ approach [10].
The basic idea is to partition phase space into a finite
number of regions, each of which is labeled with a different
symbol. In this way, each initial condition gives rise to a
sequence of symbols representing the initial cell, the cell
occupied at the first iterate, the cell occupied at the second
iterate, and so forth.

In all the examples mentioned above, the main challenge
is to decipher the message contained in the corpora of data
sequences and to infer the underlying rules that govern
their production. In order to do this, one needs (i) to detect
the fundamental units carrying information, like words do
in language, and (ii) to study their combination syntax in
the ensemble of sequences. In fact, information in its
general meaning is located not only at the level of strings,
but also in their correlation patterns [11,12]. In this Letter,

we introduce a method to transform a generic corpus of
strings, such as written texts, protein sequence data, sheet
music, or a collection of dance movement sequences [13],
into a network representing the significant and fundamen-
tal units of the original message together with their rela-
tionships. The method relies on a statistical procedure to
detect patterns carrying relevant information, and works as
follows. We first construct a dictionary of the recurrent
strings of k letters, called k-motifs. Recurrent strings play,
in this more general context, the same role as words in
written or spoken languages. We then construct a k-motif
network, a graph in which each node is one entry of the
dictionary, and a directed arc between two nodes is drawn
when the ordered co-occurence of the two motifs is statis-
tically significant in the data set analyzed. We will show
how the analysis of topological properties of networks of
k-motifs, such as the detection of community structures
[14,15], allows us to extract important information en-
coded in the original data. In particular, we will consider
the application of the method to data sets in three different
domains: namely, biological sequences of proteins, mes-
sages from online social networks, and sequences of sym-
bols generated by the trajectories of a dynamical system.
Let us consider an ensemble S of S sequences of sym-

bols. Each sequence s (s ¼ 1; 2; . . . ; S) is a string of letters
from an alphabetA of A letters,A � f�1; �2; . . . ; �Ag. In
general, the strings can have different lengths. We indicate
by ls the length of sequence s, and by L ¼ PS

s¼1 ls the total
length of the ensemble. An example is provided by pro-
teomes. A proteome is a collection of S � 104 proteins of a
species. Each protein is a sequence of length ls, ranging
from 102 to 103, made of symbols from an alphabet A
with A ¼ 20 letters,A � f�1; �2; . . . ; �20g, where each �
labels one of the aminoacids a protein can be made of. We
define as k-string a segment of k contiguous letters
x1x2 � � � xk, where xi 2 A 8 i. The number of all possible
k-strings is Ak, while from the ensemble of sequences S we
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can select only L� ðk� 1ÞS overlapping k-strings, so that
some of the possible k-strings do not occur, some of them
occur once, others more than once, either in the same or in
different sequences of symbols. We define as

pobsðx1x2 � � � xkÞ ¼ cðx1x2 � � � xkÞP

ðx1x2���xkÞ2Ak

cðx1x2 � � � xkÞ (1)

the observed probability of a string x1x2 � � � xk. This proba-
bility is obtained by counting the total number of times,
cðx1x2 � � � xkÞ, the string actually occurs in the sequences
of the ensemble. To assess for the statistical significance of
the string, the probability in Eq. (1) has to be compared
with the expected probability pexpðx1x2 � � � xkÞ of the string
occurrence. The latter can be evaluated under different
assumptions. In fact, the joint probability pðx1x2 � � � xkÞ
can be written as

pðx1x2 � � � xkÞ ¼ pðx1x2 � � � xk�1Þpðxkjx1x2 � � � xk�1Þ;
and different approximations for the conditional proba-
bilities pðxkjx1x2 � � � xk�1Þ lead to different values of the
expected probability pexpðx1x2 � � � xkÞ. Namely, if we as-
sume that the occurrence of a letter does not depend on any
of the previous letters, i.e., pðxkjx1x2 � � � xk�1Þ ¼ pðxkÞ,
the expected probability is simply given by the product
of the relative frequencies of the string’s component letters:
pexpðx1x2 � � � xkÞ ¼ pobsðx1Þ � � �pobsðxkÞ [16,17]. By using
instead a first order Markov approximation, i.e.,
pðxkjx1x2 � � � xk�1Þ ¼ pðxkjxk�1Þ, the expected probability
can be expressed in the form pexpðx1x2 � � � xkÞ ¼
pobsðx1Þpobsðx2jx1Þ � � �pobsðxkjxk�1Þ, where pobsðxjjxiÞ is

extracted from the countings as pobsðxjjxiÞ ¼ cðxixjÞ=P
xj
cðxixjÞ ¼ pobsðxixjÞ=pobsðxiÞ. This latter assumption

is based on the fact that there is a minimal amount of
memory in the sequence: a symbol of the sequence is
correlated to the previous one only. Here, we go beyond
the approximation of Markov chains of order 1, by retain-
ing as much memory as possible [4]. We assume

pexpðx1x2 � � �xkÞ ¼ pobsðx1x2 � � �xk�1Þpobsðxkjx2 � � �xk�1Þ;
(2)

where the conditional probabilities can be evaluated from
countings as

pobsðxkjx2 � � � xk�1Þ ¼ cðx2x3 � � � xkÞP
xk

cðx2x3 � � � xkÞ ; (3)

or can be expressed in terms of the observed probability for
shorter sequences as

pobsðxkjx2 � � � xk�1Þ ¼ pobsðx2 � � � xkÞ
pobsðx2 � � � xk�1Þ

: (4)

By using the latter expression, we can finally write the
expected probabilities in a more compact form:

pexpðx1Þ ¼ pobsðx1Þ
pexpðx1x2Þ ¼ pobsðx1x2Þ

pexpðx1x2x3Þ ¼ pobsðx1x2Þp
obsðx2x3Þ
pobsðx2Þ

� � � ¼ � � �

pexpðx1x2 � � � xkÞ ¼ pobsðx1 � � � xk�1Þ pobsðx2 � � � xkÞ
pobsðx2 � � � xk�1Þ

:

(5)

This way, the expected probability of a given k-string is
evaluated based on observations for strings of up to (k� 1)
symbols. Therefore, by predicting the probability of ap-
pearance with a high order Markov model, our method
allows us to highlight the true k-body correlations subtract-
ing from them the effects due to (k� 1) and lower order
correlations. Based on observed and expected probabilities,
a test of statistical significance, for instance a Z-score, is
then performed for each k-string. We define k-motifs or
recurrent k-strings, the statistically relevant strings whose
observed and expected number of occurrences are such as
to validate the statistical test adopted, and we indicate asZk

the dictionary composed by all the selected k-motifs [18].
Once we have constructed a lexicon of fundamental

units, the next goal is to represent in a graph the way
they are combined together. Recurrent k-strings can be
distributed differently along the sequences: they can ap-
pear in single sequence or in more than one sequence,
alone or in clusters. To extract the nontrivial patterns of
correlated appearance of k-motifs, we need to evaluate the
probability for the random co-occurrence of two motifs,
when these are uncorrelated. We estimate first the expected
probability that motif X is followed by motif Y within a
generic sequence of the ensemble S, then we sum over all
the sequences of S. We denote as pðXÞ and pðYÞ the
probabilities of finding the two motifs in S. In sequence
s, motif X can occupy positions ranging from the first to
the (ls � 2k)th site, where ls is the length of s and k is the
length of the motif. We have assumed that the two motifs
cannot overlap. For each fixed position i of X on s, with
i ¼ 1; . . . ; ðls � 2kÞ, there are (ls � 2kþ 1� i) possibil-
ities for Y to appear in the sequence. Hence, the number of
expected co-occurences of X and Y within s is given by:Pls�2k

i¼1 ðls � 2kþ 1� iÞpðXÞpðYÞ. In order to obtain the

expected number of co-occurrences, we have to sum over
all the sequence in the ensemble S. We finally get

NexpðYjXÞ ¼ pðXÞpðYÞX
S

s¼1

Xls�2k

i¼1

ðls � 2kþ 1� iÞ

¼ 1

2
pðXÞpðYÞX

S

s¼1

ðls � 2kþ 1Þðls � 2kþ 2Þ:

(6)

For each value of k, we are now able to construct the
k-motif network of the ensemble S, i.e., a directed network
whose nodes are motifs in the dictionary Zk, and an arc
points from node X to node Y if the number of times Y
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follows X in the ensemble of sequences is statistically
significant. Furthermore, a weight can be associated to
the arc from X to Y, based on the extent to which the co-
occurrence of the two motifs deviates from expectation.

This approach is able to represent the correlation pat-
terns encrypted in the ensemble of sequences into a single
object, the k-motif network. Then, graph theory allows us
to extract information from the structural properties of the
network and to retrieve the main message encoded in the
original sequences. In particular, it is interesting to study
the components of the k-motif network or, if the graph is
connected, its community structures, i.e., those groups of
nodes tightly connected among themselves and weakly
linked to the rest of the graph [15].

In the following, we will consider the application of the
method to three different data sets, belonging to three con-
texts as diverse as biology, social dialogs, and dynamical
systems. We will show how the community analysis of the
related k-motif networks enables one to extract functional
domains in proteomes, social cascades and hot topics in
Twitter, and the increase of chaoticity in deterministicmaps.

In the biological context, many methods based on strings
deviating from expectancy in genome [4,19] or in a pro-
teome [20] have already been used to make functional
deductions. Although they provide insight into many bio-
logical mechanisms [17], this approach turns out to be not
sufficient for a complete and exhaustive interpretation of
the genomic and proteomic message. A fundamental key to
its comprehension is in fact hidden in the correlations
among recurrent patterns of strings, which are perfectly
represented at a global scale in terms of k-motif networks.
Various features of these correlations translate into struc-
tural properties of k-motif networks. In Fig. 1 we illustrate,
as an example, the 3-motif graph derived from the en-
semble of human proteins (see [21] for details about the
data set). We have detected 15 different communities in
the graph, labeled in the figure with different colors and
numbers. By means of a research in biological databases,

we can show that linked couples of motifs belonging to the
same community all co-occur in the same kind of protein
domains and that one can associate 9 of these 15 commun-
ities just to one domain (see Table I in [21]). These results
are outstanding compared to the current methods to extract
functional protein domains, all based on multialignment of
sequences, and cannot be obtained if one uses a lower order
Markov model, meaning that it is fundamental to take into
account both short- and long-range correlations (for more
details on the k-motif networks in proteomes, see [21]).
Important information from k-motif networks can also be

retrieved from data sets of social dialogs and microblogging
web sites, such as Twitter. Although in these cases, in
principle, a dictionary is a priori known, not all terms
used in the Internet language are always listed in the dictio-
nary [22]: abbreviations, ‘‘leet language’’ words, and names
of web sites or of public personages are just some examples.
Moreover, some expressions or combinations of terms ap-
pear more frequently in some periods or contexts due to the
interest in some hot topics. We have found that communities
of k-motif networks derived from microblogging sequences
in Twitter during the United Kingdom election in April 2010
are able to detect exactly those hot topics which generate
information cascades [23], as shown in Fig. 1 and Table II of
[21]. In Table I we report the links with the highest signifi-
cance together with the tweet associated to their community.
Each tweet was the origin of a cascade and can be associated
with a specific topic or event discussed during the election
campaign (see [21] for details).
Finally, k-motif networks carry important information

on sequences of symbols generated from trajectories of
dynamical systems by the so-called ‘‘symbolic dynamic’’

FIG. 1 (color online). The 3-motifs network of the human
proteome. Nodes belonging to the same community are labeled
by the same number and share the same color. Most of the
communities can be associated to a functional domain as de-
scribed in Table I in [21].

TABLE I. The eight most significant links found in the Twitter
data set [21]. The links belong to five different communities,
each corresponding to a specific tweet or expression that gen-
erated a topic cascade. The topics are poll results from various
journals and TV channels (communities 1 and 2), a satiric web
site on the election (community 3), a proposal for a 4th debate
among leaders (community 4), and a hashtag (community 5).

Comm. Motif 1 Motif 2 pobs

pexp Expression or tweet

1
9cle gg27 955.3 GUARDIAN ICM

5bro wn29 894.8 POLL Cameron 35%

Brown 29% Clegg 27%

2
son4 4cle 924.3 Brown wins on 44%,

don4 2cam 881.7 Clegg is second on 42%,

Cameron 13%

None of them 1%

3 lapo mete 892.3 www.slapometer.com

4
swed nesd 864.7 hey Dave, Gordon and

nesd ayni 826.1 Nick : how about a 4th

debate on Channel 4

this wednesday night

without the rules?!

5 isob eymu 831.4 #disobeymurdoch
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approach [10]. One is able, for instance, to distinguish
ensembles of sequences generated by deterministic maps
from those generated by stochastic processes, by looking at
the number of components and communities in the k-motif
network. In fact, the method, when applied to sequences
generated by deterministic equations that are increasingly
nonlinear, still finds short motifs, while the same does not
occur for ensembles of random sequences. Furthermore,
we have found that the higher the nonlinearity in a con-
servative deterministic dynamical system, the more discon-
nected the corresponding k-motif network. In Fig. 2, we
show an example of this behavior for a well-known two-
dimensional area-preserving deterministic map, the stan-
dard map [24]. Each point in Fig. 2 represents the number
of components in the 3-motif network obtained from an
ensemble of trajectories produced for a specific value of the
nonlinearity parameter a. We observe that the number of
components increases with a, and this behavior is similar to
that of the positive Lyapunov exponent of the map, shown
in the inset (see also [21]).

Summing up, in this Letter we have introduced a general
method to construct networks out of any symbolic sequen-
tial data. The method is based on two different steps: first it
extracts in a ‘‘natural’’ way motifs, i.e., those recurrent
short strings which play the same role words do in lan-
guage, then it represents correlations of motifs within
sequences as a network. Important information from the
original data are embedded in such a network and can be
easily retrieved as shown with different applications (a
biological system, a social dialog, and a dynamical sys-
tem). With respect to previous linguistic methods, our
approach does not need the a priori knowledge of a given
dictionary, and also allows us to compare different ensem-
bles corresponding, for example, to different values of
control parameters in dynamical systems. All this makes
the method very general and opens up a wide range of
applications from the study of written text to the analysis of
sheet music or sequences of dance movements. Moreover,
the method does not use parameters on the position of
motifs in order to correlate them, since co-occurrences
are computed within sequences, which represent natural

interruptions of a corpora of data (proteins in a proteome,
posts in a blog, different initial conditions in a symbolic
dynamics, etc.).
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FIG. 2. Standard map. Number of components in the 3-motifs
networks (main figure) and the Lyapunov exponent (inset), as a
function of the nonlinearity parameter a.
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