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Abstract. Recent studies have revealed the importance of centrality measures to analyze various spatial
factors affecting human life in cities. Here we show how it is possible to extract the backbone of a city by
deriving spanning trees based on edge betweenness and edge information. By using as sample cases the
cities of Bologna and San Francisco, we show how the obtained trees are radically different from those
based on edge lengths, and allow an extended comprehension of the “skeleton” of most important routes
that so much affects pedestrian/vehicular flows, retail commerce vitality, land-use separation, urban crime
and collective dynamical behaviours.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.-k Complex systems

Centrality is a fundamental concept in network analysis.
The issue of structural centrality was introduced in the
40’s in the context of social systems, where it was as-
sumed a relation between the location of an individual in
the network and its influence in group processes [1]. Since
then, various measures have been proposed over the years
to quantify the importance of nodes and edges of a graph,
and the concept of centrality has found many applications
also in biology and technology [2–5].

In economic geography and in regional planning cen-
trality has been dominating the scene especially since the
Sixties and Seventies. This means that some places (cities,
settlements) are more important than others because they
are more “accessible”. Accessibility was intended as a cen-
trality measure of the same kind of those developed in the
field of structural sociology, with the difference that the
geographic nature of elements in space was saved around a
notion of metric distance [6]. In the field of urban design,
a long-term effort has been spent in order to understand
what urban streets and routes would constitute the ”skele-
ton” of a city. By using this term, we mean the chains of
urban spaces that are most important for the connect-
edness, liveability and safety at the local scale [7,8], and
its legibility in terms of human wayfinding [9]. More re-
cently, these latter two approaches are seemingly merging
together in the first clues of a cognitive/configurational
theory [10]. After an in-depth investigation of both the
topological (dual) [11] and spatial (primal) [12,13] graph
representation of street networks, in this paper we provide
a tool for the analysis of the backbone of a complex urban
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system represented as a spatial (planar) graph. Such a tool
is based on the mathematical concept of spanning trees,
and on the efficiency of centrality measures in capturing
the essential edges of a graph. Differently from previous
applications of this same concept [14], we consider spatial
networks instead of topological ones, so that our trees can
be shown graphically on the city maps and can serve as a
support in urban design and planning; moreover, we con-
sider two different kinds of edge centrality measures, and
we compare the obtained trees with the standard spanning
trees based on minimizing the total lengths.

In our approach, cities are represented as spatial net-
works (networks embedded in the real space), i.e. net-
works whose nodes occupy a precise position in a two-
dimensional Euclidean space, and whose edges are real
physical connections [5,15]. In such approach, 1-square
mile samples of urban street patterns selected from ref-
erence [16] are transformed into spatial undirected graphs
by mapping the intersections into the graph nodes and
the roads into links between nodes [12,13]. Here we will
focus, in particular, on the cities of Bologna and San Fran-
cisco as examples of two different classes of urban street
patterns. The network of the former evolved over a long
period of time through a self-organized organic uncoordi-
nated contribution of countless historical agents while the
latter is a mostly planned fabric built in a relatively short
period of time following the ideas of one coordinating his-
torical agent. Each of the two obtained graphs is denoted
as G ≡ G(N, K), where N and K are, respectively, the
number of nodes and links in the graph. In the case of
Bologna we have N = 541 and K = 773, while in the
case of San Francisco the same amount of 1-square mile
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Fig. 1. Top panels: the length distributions for the two cities of Bologna and San Francisco (full lines) are compared with the
length distributions of the respective betweenness-based MCSTs (dashed lines). The quantity n(l) is defined as the number of
edges whose length is in the range [l− 5 meters, l +5 meters]. Bottom panels: cumulative distributions of edge betweenness CB

(left) and information CI (right) for Bologna (circles) and San Francisco (squares). The dashed lines in the left panel are
exponential fits to the betweenness distributions.

of land contains only N = 169 and K = 271 edges. The
average degree 〈k〉 = 2K/N is respectively equal to 2.71
and 3.21. This difference is due to the overbundance of
three-roads intersections with respect to four-roads inter-
sections in the city of Bologna. The converse is true for
the city of San Francisco, due to its square-grid structure.
See reference [17] for a plot of the entire degree distribu-
tions in the two cases. The graph nodes are characterized
by their positions in the unit square {xi, yi}i=1,...,N , while
the links follow the footprints of real streets and are associ-
ated a set of real positive numbers representing the street
lengths, {lα}α=1,...,K. Another relevant difference between
the two cities is captured by the edges length distribution.
In Figure 1 we plot n(l), the number of edges of length l,
as a function of l. The edges length distribution has a sin-
gle peak in Bologna, while it has more than one peak in
a mostly planned cities as San Francisco, due to its grid
pattern. In the following, the graph representing a city is
described by the adjacency N × N matrix A, whose en-
try aij is equal to 1 when there is an edge between i and j
and 0 otherwise, and by a N×N matrix L, whose entry lij
is the value associated to the edge α ≡ (i, j), in our case
the metric length of the street connecting i and j.

In a previous work [12], different measures of node cen-
trality [18,19], properly extended for spatial graphs, have
been investigated in the same database of urban street
patterns. Here we show how to construct spanning trees
based on edge centrality. We first localize high central-
ity edges, namely the streets that are structurally made
to be traversed (betweenness centrality) or the streets
whose deactivation affects the global properties of the sys-
tem (information centrality). Of course other definitions of

edge centrality (as for instance range, closeness or straight-
ness [18]) can be used as well. The definitions of edge
betweenness and edge information we adopt are obvious
modifications of the centrality measures defined on nodes.

The edge betweenness centrality, CB , is based on the
idea that an edge is central if it is included in many of the
shortest paths connecting couples of nodes. The between-
ness centrality of edge α = 1, ..., K is defined as [20]:

CB
α =

1
(N − 1)(N − 2)

∑

j,k=1,..,N ;j �=k

njk(α)
njk

(1)

where njk is the number of shortest paths between nodes j
and k, and njk(α) is the number of shortest paths between
nodes j and k that contain edge α.

The edge information centrality, CI , is a measure re-
lating the edge importance to the ability of the network to
respond to the deactivation of the edge itself. The network
performance, before and after a certain edge is deacti-
vated, is measured by the efficiency of the graph G [21,22].
The information centrality of edge α is defined as the rel-
ative drop in the network efficiency caused by the removal
from G of the edge α [12,19]:

CI
α =

∆E

E
=

E[G] − E[G′]
E[G]

(2)

where the efficiency of a graph G is defined as:

E[G] =
1

N(N − 1)

∑

i,j=1,..,N ;i�=j

dEucl
ij

dij
(3)
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Fig. 2. Scatter plots showing the correlations between edge betweenness and edge information in Bologna (top panels) and
San Francisco (bottom panels). Each point represents one edge in the original graph (left), in the betweenness-based MCST
(center), and in the information-based MCST (right).

and where G′ is the graph with N nodes and K − 1 edges
obtained by removing edge α from the original graph G.
An advantage of using the efficiency instead of the charac-
teristic path length L [24] to measure the performance of
a graph is that E[G] is finite even for disconnected graphs.

In Figure 1 we report the cumulative distributions of
edge betweenness and information. The cumulative distri-
bution P (C) is defined as:

P (C) =
∫ +∞

C

n(C′)
K

dC′ (4)

where n(C) is the number of edges with centrality equal
to C. The edge distributions are quite similar in the two
cities of Bologna and San Francisco. In particular, the
betweenness distributions are well fitted by exponential
curves, P (CB) ∼ exp(−CB/s), with coefficients respec-
tively equal to sBo = 0.020 and sSF = 0.029. Thus, for
the edge betweenness, the distributions found are similar
(single-scale) to those observed for the node betweenness.
Conversely, the edge information distributions have not
a well defined shape: although their decay is slower than
exponential in both Bologna and San Francisco, the edge
information distributions do not allow to differentiate self-
organized cities from planned ones, as it was instead pos-
sible by means of the node information distributions [12].
This indicates that there are important correlations in the
information centrality of edges incident in the same node.
This also indicates that organic self-organized cities are
different from planned ones, more in terms of their nodes
(intersections) than of their edges (streets), and especially
about how they assign importance to such spaces.

We are finally ready to build the Maximum Centrality
Spanning Trees (MCSTs), i.e. maximum weight spanning
trees where the edge weight is defined as the centrality
of the edge. A graph G′(N ′, K ′) is a tree if and only if
it satisfies any of the following four conditions: 1) G′ has
N ′ − 1 edges and no cycles; 2) G′ has N ′ − 1 edges and
is connected; 3) exactly one simple path connects each
pair of nodes in G′; 4) G′ is connected, but removing
any edge disconnects it. Given a connected, undirected
graph G(N, K), a spanning tree T is a subgraph of G which
is a tree and connects all the N nodes together. Conse-
quently T ≡ T (N, N − 1). A single graph can have many
different spanning trees. We can also assign a weight wα

to each edge α, which is usually a number representing
how favorable (for instance how central) the edge is, and
assign a weight to a spanning tree by computing the sum
of the weights of the edges in that spanning tree. A max-
imum weight spanning tree is then a spanning tree with
weight larger than or equal to the weight of every other
spanning tree of the graph. It appears evident that it is
possible to define appropriate edge weights with the aim
of finding particular structures capable of connecting ev-
ery single node of the graph while minimizing the cor-
responding total weight. In particular, for each city we
have computed two different MCSTs, respectively based
on betweenness and information. The two cases are ob-
tained by respectively fixing wα = CB

α and wα = CI
α,

with α = 1, ..., K. Since the two centrality measures focus
on different properties of the network, using both of them
allows us to enforce our analysis. Moreover, as shown in
Figure 2 left panels, CB and CI are correlated, although
it is possible to find edges with a low value of CB and a
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Fig. 3. Spanning trees of Bologna (above) and San Francisco (below). From left to right, mLSTs, betweenness-based and
information-based MCSTs.

high CI (and vice versa). The coefficients of linear corre-
lation are respectively equal to r = 0.69 and r = 0.46. For
the computation of the MCSTs (and of the mLSTs) we
have used the Prim’s algorithm [25] that allows to obtain
the result in a time proportional to K log N . The MCST
for the city of Bologna contains K ′ = N − 1 = 540 links,
i.e. 70% of the links of the original graph, while the MCST
for San Francisco has K ′ = 168, i.e. 62% of the links of
the original graph. Since the links have been chosen ac-
cording to their centrality values, it turns out that the
set of selected edges in the betweenness-based MCST of
Bologna (San Francisco) possesses the 86% ( 82%) of the
total betweenness centrality of the original graph, defined
as

∑
α=1,K CB

α [14]. Similarly, the set of selected edges in
the information-based MCST of Bologna (San Francisco)
possesses the 84% (95%) of the total information central-
ity. This is both due to the shapes of the centrality distri-
butions shown in Figure 1 and to the edge selection that
avoids, in the tree construction, the formation of cycles.
The values of CB and CI for the selected edges are shown
in the scatter plots of Figure 2. In the case of Bologna,
the two measures of centrality have the same correlations
as in the original graph (the correlation coefficients in the
MCST are rB = 0.61 and rI = 0.64). Conversely, in San
Francisco, the two variables are less correlated in the MC-
STs (rB = 0.10 and rI = 0.29) than in the original graph
(r = 0.46). In Figure 1 (top panels) we have plotted the
edge length distributions of the betweenness-based MC-
STs (dashed lines). It is interesting to observe that, for
the city of Bologna, n(l) has the same shape both in the

original graph and in its betweenness-based MCST. This
means that, in the construction of the tree, edges with all
lengths have been removed (with the same probability)
from the original graph. Conversely, in San Francisco most
of the edges not included in the betweenness-based MCST
are those with the largest length. The same result has been
found for the information-based MCSTs and seems to be
a common characteristic of other planned grid-like cities.

In Figure 3 we compare graphically the two MCSTs
with the minimum length spanning trees [25]. In the con-
struction of the latter, the weight wα associated to each
edge α is set to be equal to the length of the edge lα and
represent the cost of the edge. A Minimum Length Span-
ning Tree (mLST) is then a spanning tree with weight
(cost) smaller than or equal to the weight of every other
spanning tree of the graph. The MCSTs obtained are dif-
ferent from the mLSTs. In the case of Bologna, the be-
tweenness (information) based MCST has a total length
equal to 1.15 (1.14) times the total length of the mLST,
while in the case of San Francisco this ratio is equal to
1.15 (1.07). In the case of Bologna, the MCST based on
betweenness (information) has 82% (75%) of the edges in
common with the mLST, while in San Francisco it has
70% (76%) of the edges in common with the mLST. It is
worth noting that the two MCSTs have 77% of the edges in
common in Bologna, whereas such a percentage is smaller
in San Francisco (66%). The graphical visualization of the
maximum centrality trees is of interest for urban plan-
ners since the trees express the uninterrupted chain of ur-
ban spaces that serves the whole system while maximizing
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centrality over all edges involved. This method identifies
the backbone of a city system as the sub-network of spaces
that are most likely to offer the highest potential for the
life of the urban community in terms of popularity, safety
and services locations, all factors geographically related
with central places. This is evident in Figure 3, where the
comparison between the trees in the two cities clearly in-
dicates that the spatial sub-system that keeps together a
city in terms of the shortest trip length is not the same
spatial sub-system that does it in terms of the highest cen-
trality. It is also worth noting that metric distance is also
involved in the algorithms for the calculation of centrality
indices, so that all kinds of trees considered hereby are
rooted in the geographic space. The second thing is that
while the shortest length backbone performs effectively
when applied to planned urban fabrics like San Francisco,
in self-organized evolutionary cases like that of Bologna it
does not find continuous routes nor clearly distinguishes a
hierarchy of sub-systems in the network, while the highest
information and especially the highest betweenness back-
bones do. In a way, we would say that organic patterns
are more oriented to put things and people together in
public space than to shorten the trips from any origin to
any destination in the system, this latter character being
more typical of planned cities.

In conclusion, in this work we have shown that the con-
cept of MCST leads to a meaningful picture of the primary
sub-system of a city network, which makes it a single com-
ponent while minimizing the cost of moving around and
maximizing the potential of places to achieve social suc-
cess, safety and popularity. Therefore, the method has the
potential of becoming an useful tool in city planning and
design, due to its immediate and powerful visualization
outcome.

We thank P. Crucitti for many helpful discussions and
suggestions.
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