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Most real-world networks present some similar remarkable properties, as small “shortest path length”, high “clustering”, low “cost” and scale-free degree distribution. In this paper we analyze these properties and quantify them with appropriate variables. Then we compare some well-known models, focusing our attention on how accurate they are in representing real-world networks.

1. Introduction 

Recently, an always increasing attention is devoted to the study of Complex Systems, i.e. systems composed of a large amount of elementary components that mutually interact through non-linear interactions, so that the overall behavior is not a simple combination of the behavior of the elementary components*.

The great interest in studying complex systems can be easily understood, because a large variety of different fields is involved, from social science to biology, from economics to technology: for instance, examples of complex systems are a social system, a brain, or the Internet.
For years, the attention has been mainly devoted to the analysis of the behavior of a single component within the system and to the study of the non-linear nature of the interactions. More recently, on the contrary, the attention has been also directed to the study of the connectivity properties and (the topology) of complex systems, i.e. to the study of Complex Networks [1]. Following this approach the emphasis is neither on the behavior of the single individuals  nor in the nonlinear interaction between individuals, but on the information of “who is connected to who”. Therefore complex systems are  modeled by graphs, mathematical entities composed of vertices or nodes (representing components) and edges or links (representing the existence or not existence of a direct connection between components). As for the already mentioned examples, in a social system the people are the nodes and two nodes are linked by an edge only if the corresponding individuals are friends, in a brain neurons are the nodes and two nodes are linked by an edge only if the corresponding neurons are connected by a synapse, etc. 

The research on complex networks has two main purposes: 1) characterization of real-world networks by means of appropriate variables, bound up with remarkable topological properties; 2) development of accurate models for the simulation of real-world networks. In particular, a large variety of different networks has been studied in the literature:

· the Internet [2], in which nodes are computers and routers and edges are physical or wireless connection between them;

· the World Wide Web [3], in which nodes are web pages and edges are hyperlinks;

· the C. elegans neural network [4], in which nodes are neurons and edges are connections between neurons;

· the scientific collaboration network [5,6], in which nodes are scientists and edges represent collaboration in scientific papers (two scientists are linked if and only if they are coauthors of the same paper);

· the citation network [7], in which nodes are papers and edges are citations between papers;

· the movie collaboration network [8], in which nodes are actors and edges represent collaboration in films (two actors are connected if and only if they acted in the same film);

· the sexual contacts network [9], in which nodes are people and edges are sexual relationships between them.

In this paper we present a brief review of the main results obtained in the modeling of complex networks. The paper is organized as follows. In Section 2 we introduce the most important properties of real-world networks. In Section 3 we present some models, known in literature, focusing our attention on how accurate they are in reproducing the properties found in real networks. We conclude by discussing the future perspectives of the new Science of Complex Networks. 

2. Characterization of real-world networks.

In this section we present a list of the most important properties of real-world networks. Of course the knowledge of such properties is of fundamental importance in the development of accurate models.
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Figure 1. Examples of connected and non-connected graphs.

2.1. Small “ shortest path length”

Social networks are historically the first complex networks explored. In fact one of the most famous experiments in social systems was performed by Stanley Milgram already in the late 1960’s [10]. He asked people, randomly selected in Boston and Omaha, to direct letters to a distant target individual. Letters had to be forwarded to a single acquaintance, thought to be closer to the final recipient. The experiment showed that the average number of steps from the sender to the final recipient (i.e. the acquaintance chain length) was only about six. This phenomenon is often referred to as “six degrees of separation”[25]. 

Analysis on other different networks showed similar properties: in most real-world networks it is possible to reach a node from another one, going through a number of edges that is small if compared to the total number of existing nodes in the system. 

In order to measure the typical separation between two generic nodes in a graph G, the characteristic path length L coefficient was introduced in ref. [8]:
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In this formula N is the total number of nodes in G and dij is the shortest path length between nodes i and j (i.e. the minimum number of edges covered in order to reach j from i). It is easy to understand that, if the graph G is connected (i.e. for any couple of vertices there exists at least a path connecting them), then dij is a finite quantity 
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, leading L to be finite too. On the contrary, if G is a non-connected graph (see Fig. 1), then it exists a couple of vertices i and j, such that dij=+( and L is an ill-defined quantity because it diverges. In order to avoid this problem and extend the analysis to non-connected graphs too, two of us [11] defined a new quantity: the global efficiency Eglob. The efficiency between node i and j, (ij, is assumed to be inversely proportional to the shortest path length, i.e. (ij=1/dij. When there is no path linking i and j it is assumed dij=+( and, consistently, (ij=0. The global efficiency of a graph G (connected or non-connected) is defined as the average of (ij:
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In the case of topological (unweighted) graphs, Eglob assumes growing values of efficiency from 0 to 1 and therefore no normalization is required for comparisons of different networks. Extension to weighted graphs (e.g. metric systems) is also possible. In both weighted and unweighted graphs, we can express the property of small “shortest path length”, saying that real-world networks are efficient systems in a global scale.

2.2. High “clustering”

Another important property of real–world networks is high clustering. For instance, in a social system, there is a high probability that two individuals linked by acquaintance have a third acquaintance in common: people show their inclination for self-organization in small communities within the system. The same local property can be found in a great variety of different networks.

In order to quantify the local clustering of the graph G, the clustering coefficient C is defined as follows. For each node i, we consider the subgraph Gi of his first neighbours, obtained in two steps:

1. extracting i and his first neighbours from G; 

2. removing the node i and  all the incident edges.

If the node i has ki neighbours, then Gi will have ki nodes and at most ki (ki-1)/2 edges. Ci is the fraction of these edges that really exist and C is the average of Ci, calculated over all nodes:
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Different definitions of C are present in literature [12]. 

Consistently with the global analysis, also in the local analysis we can use the efficiency variable [11]: 
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and d’lm is the shortest path length between node l and m, calculated in the subgraph Gi. A complex system can be therefore analyzed both in global and local scale by means of a single variable: the efficiency. As for Eglob, also Eloc is already normalized for topological graphs. 

The property of “high clustering” can be now expressed, saying that real-world networks are efficient system on a local scale.

Table 1. Some examples of real-world networks. They all show small characteristic path length (high global efficiency) and high clustering (high local efficiency).
	
	L
	Eglob
	C
	Eloc
	Cost

	C. elegans
Film actors
Internet
	2.65

3.65
3.77
	0.46
0.41
0.29
	0.28

0.79
0.3
	0.47
0.67
0.26
	0.06
0.0002
0.006


2.3. Low cost. 

In real-world networks, both man-made and nature made, each edge has got his cost. Neither nature nor man are interested in realizing high cost networks, i.e. networks with a large number of edges. Therefore many networks are found to be low cost.

In quantitative terms, the Cost for a graph G, composed by N vertices and K edges, can be defined as the normalized number of edges [13,14]:
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Cost varies in [0,1] and no normalization is required. As for L, Eglob, C, Eloc, extension to weighted graphs is possible, just considering that the longer the edge is, the higher the cost. 

2.4. Scale-free  degree distribution.

Another important property for networks is their degree distribution: not all vertices in a network have the same number of edges. The degree of a vertex is defined as the number of edges incident with the node (i.e. the number of first neighbours of the node); consistently the degree distribution P(k) is defined as the probability of finding nodes with k links: P(k)=N(k)/N, where N(k) is the number of nodes with k links. 

Analysis on a large number of complex systems (including the World Wide Web [3], the Internet [2] and the movie actors collaboration network [8]) showed that in many real large networks the degree distribution follows a power law for large k:
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where ( is an exponent that often varies between 2 and 3.

Networks with such degree distribution are called scale-free.

3. Modeling real-world networks.

 In this section we review different models, know in literature, and show how accurate they are in representing real-world networks.
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Figure 2. Regular ring with k=4 edges per node.

3.1. Regular lattice.

The first model to be presented is the regular lattice (see Fig. 2). In our particular case we consider a regular ring. Because of its excessive regularity, this model is a bad representation of reality. In fact, in a network with N nodes and K edges (k=2K/N edges per node), we have to make the condition of K<<N(N-1)/2 in order to assure low cost. Under this condition, though the network has the property of high clustering (in the particular case of Fig. 2, where k=4, we find C=1/2, Eloc=13/18), it lacks of good global properties (L(N/2k>>1 and Eglob(2k/N<<1) and its degree distribution (a pulse centered at the value k) strongly differs from the scale-free distribution.
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Figure 3. Cayley tree (or Bethe lattice) with k=4 edges per node.

3.2. Cayley tree.

In the Cayley tree (or Bethe lattice) [15] each node has k links (as in the regular lattice) and no cycles exist (unlike the regular lattice) (see Fig. 3). Such a network can be useful to explain the phenomenon of “six degrees of separation”. From the central node (the root) it is possible to reach k nodes in 1 step, k(k-1) nodes in 2 steps and, in general, k(k-1)i-1 in i steps. If k>>1 we can assume that the total number N of nodes is about that of the external nodes (i.e. N(k(k-1)D-1(kD). Under this assumption, the minimum number of steps necessary to reach a generic node from the root is at most D=log(N)/log(k). If we think that in the world we are about N=109 and each person has got about k=102 friends, we can conclude that, in order to reach any person from the root, 4.5 average steps are sufficient! Though its good global properties under low cost condition, the Cayley tree presents terrible clustering (C=0, Eloc=0) and a degree distribution composed of two pulses (the first one at the value k for all the internal nodes and the second one at the value 1 for the external nodes). Furthermore, it appears too much root-centered to be a good model of real-world networks.

3.3. Erdös-Rényi (ER) random graph.

The random graph [16] is the most investigated graph in literature. A random graph can be constructed from an initial condition with N nodes and no connections by adding K edges (in average k per node), randomly selecting the couples of nodes to be connected.
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Figure 4. Erdös-Rényi model.

If low cost is assumed, the Erdös-Rényi model (see Fig. 4) presents small characteristic path length (L=log(N)/log(k)), but low clustering (C=k/N) and a Poissonian degree distribution (see Fig. 5). Not even this graph is a good representation of reality. 
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Figure 5. Poissonian degree distribution of the Erdös-Rényi model.

3.4. Molloy-Reed (MR) random graph.

A substantial improvement to the Erdös-Rényi model is the model proposed by Molloy and Reed [17] to realize random graphs with a generic degree distribution. The initial condition is identical to that of the E.-R. graph: N nodes and no edges. Then, in order to add K links:

a. a list of N integer numbers {k1, ... kN} representing the degree of each node (i.e. the number of end-links of each node) is randomly generated according to the probability P(k) and with the constraint 
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b. pairs of end-links are chosen at random and connected to form a link.   

In particular, this is a model to construct a graph with a scale-free degree distribution. Furthermore it has good global properties. In fact it can be shown that
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where k2 is the average number of second-nearest neighbours of a node.

No warranty, however, can be given for the local clustering. 

3.5. Small-world networks.

In the already presented models we found small characteristic path length and low clustering (Cayley tree, E.-R. and M.-R. random graphs) or large characteristic path length and high clustering (regular lattice). In other words, we analyzed models that result efficient or on a global or on a local scale. Nevertheless, as seen in Section 2, most real-world networks are efficient both on a global and on a local scale [11]. 

In order to interpolate between regular and random graphs, D. J. Watts and H. Strogatz [8] developed a one-parameter model in which the introduction of few long range connections leads to good global properties, without altering the high clustering, typical of regular networks. This is the case of a social system in which people are organized in small communities, but individuals can have a few acquaintances outside of their own community, for example abroad.

[image: image17.png]o8 CpIC(0)

06
04

02 L(p)L(0)

0 L L
0.0001 0.001 001 0.1 1
P




Figure 6. L and C (normalized by the values L(0) and C(0) of the regular lattice) are plotted as function of the rewiring probability p. The economic small-world effect appears for p~0.01.

The model starts from an initial condition of a regular ring lattice with N nodes and k edges per vertex (Section 3.1). Then a random rewiring procedure is implemented: each link is rewired  with probability p; i.e. with probability p, in proximity of one end, an edge is cut and randomly reattached to another vertex. Effect of rewiring is that of substituting some short range connections with long range ones. By means of varying p it is possible to tune the graph from the regular configuration (p=0) to the random one (p=1) and for 0<p<<1 the small-world behaviour appears (see Fig. 6): a few rewired edges are sufficient to obtain small L and high C, i.e. efficient local and global communication. Under the assumption of low cost (a few edges in the initial condition), economic small-worlds networks are obtained [13,14]. 

Though this model solves problems concerning the concurrent presence of good global and local properties (the “small-world” effect), it shows a degree distribution strongly peaked at the average degree k. This degree distribution is unlikely to be found in real networks.

3.6. Barabasi-Albert (BA ) scale-free model.

Though the Molloy-Reed model (Section 3.4) is able to generate networks with a scale-free degree distribution, it does not contain any dynamical evolution of real-world networks. In order to overcome this problem Barabasi and Albert [3,18] developed a model, that mimics two dynamical mechanism present in real-world networks:

1. Growth: most real-world networks are open systems, i.e. the number of nodes is not fixed and grows with the age of the network. For example, in the World Wide Web new web pages are added daily.

2. Preferential attachment:  in real-world networks new vertices are not randomly connected to existing nodes with uniform probability, but they are linked with greater likelihood to “important” vertices, i.e. to high degree vertices. In the World Wide Web network a new web page will be most likely connected to a well-known search engine, rather than to a little known page. This phenomenon is also referred to as “the rich get richer”.

The implementation of these two mechanisms in a model is sufficient for the generation of scale-free networks. The BA model starts with a small number of nodes m0 and at each timestep:

1. a new vertex with 
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 links is added (growth);

2. the probability ( that the new vertex is connected to a particular node i is proportional to its degree ki  (preferential attachment):
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After t timesteps the network has N=m0+t nodes and K=mt edges (ignoring  eventual edges of the initial condition). The numerical simulation and the analytical solution of the model in the mean field approximation predicts a degree distribution that asymptotically converges for 
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with an exponent ( = 3, independent of m and of the size N of the network (see Fig. 7).

Because of its connectivity properties, the BA model shows good robustness in error tolerance, i.e. efficiency in communication between vertices is not affected by a small percentage of random removals of existing nodes (see Fig. 8). On the contrary, the model shows high vulnerability to attacks, i.e. it is sufficient to remove a few “important” nodes in order to destroy the efficiency of the network [23,24].
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 Figure 7. Degree distribution for the BA (indicated as SFBA with full circles) and the KE (indicated as SFKE with open squares) scale-free models. Systems with N=15000 nodes and K=75000 edges are considered.

Though this simple model solves the problem of simulating the emergence of scale-free in the dynamic evolution of low cost, globally efficient networks, it does not show high clustering. Furthermore, the exponent ( is fixed and cannot be tuned to simulate different real networks. 
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 Figure 8. Error and attack tolerance: analysis of the global properties, plotted as function of the percentage p of removals of nodes. The BA model (SFBA) is compared with a random graph (EXP) .

The BA model can be considered as a particular case of the Simon’s model [19], recently  reformulated for network growth [20].

3.7. Klemm-Eguìluz (KE) high clustered scale-free model.

A substantial improvement of the BA model is that developed by Klemm and Eguìluz [21,22]. It produces low cost scale-free networks that are both globally and locally efficient, i.e. networks well-representative of most real-world systems. The KE model is based on the fact that nodes can age and their state can be switched from the active to the non-active one, i.e. they can loose importance in time. For instance, in the citation network links are most likely added to recent papers (the active nodes), while older papers (non-active nodes) can continue to be cited only if they are very “important” papers, as the Milgram publication (1967) [10] is for complex networks.

The algorithm starts from an initial condition of a fully-connected graph of m active nodes. Then, for each timestep:

1. a new node with m edges is added (growth);

2. the new vertex can be connected to active or non-active nodes; with probability (, the new node is connected to m existing nodes according to preferential attachment of the BA model (see Eq.10); with probability 1-(, the m links of the new node are connected to the m active vertices.

3. one of the m active nodes is chosen for deactivation; the probability that the node i is chosen is: 
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4. the new node is set in the active state.

Limiting cases of this model are a regular high clustered  graph (for (=0) and the BA scale-free model (for (=1). Klemm and Eguìluz showed that for 0<(<<1 (see Fig. 7) we obtain a low cost small world network with scale-free degree distribution P(k)=2m2k–3 (for k(m). 

As for as error and attack tolerance are concerned, the KE model shows results (see Fig. 9) that are similar to those obtained for the BA model, though less marked differences from the random network are present [24].
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 Figure 9. Error and attack tolerance: analysis of the global properties, plotted as function of the percentage p of removals of nodes. The KE model (SFke) is compared with a random graph (EXP) .

A good representation of real-world networks is possible with the KE model. However, other high clustered scale-free models have been recently developed [26,27].

Conclusions 

Thanks to the availability of new databases of various real-world networks, the researchers had in the last few years the possibility to investigate the connectivity properties of a complex system, and to find that many interesting structural properties are common to some apparently different networks.    

In this paper we have presented a brief review of the main results recently obtained in the characterization of the structural properties and in the modeling of complex networks.  

We conclude by saying that the study of  Complex Networks is still a quite active field. And now that the structure of real-world networks has been  characterized and understood quite well, the research is  slowly moving in other directions.  We list what we think are the most interesting open problems and the most promising directions to follow  (see Fig. 10): 

1. Formation of networks: what are the dynamical mechanisms responsible for the formation and  the evolution of  the remarkable properties we have found in the real-world complex networks ?

2. Construction of optimal networks: how can we use the information we got from the study of real-world networks to design networks with optimum global and local efficiency, high robustness and low cost ? 

3. Protection of existing networks: how can we improve an already existing network ? For example can we locate critical nodes and edges  in order to protect them  from attacks and failures ?
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Figure 10. Future perspectives of the new Science of Complex Networks.
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* The given definition is the most commonly accepted, though there is not a unique and universally recognized formulation.
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