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Dipartimento di Fisica e Astronomia, Università di Catania, and INFN sezione di Catania, via S. Sofia 64, 95123 Catania, Italy

Received 18 October 2005 / Received in final form 6 December 2005
Published online 12 April 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. We discuss two models of opinion dynamics. We first present a brief review of the Hegselmann
and Krause (HK) compromise model in two dimensions, showing that it is possible to simulate the dy-
namics in the limit of an infinite number of agents by solving numerically a rate equation for a continuum
distribution of opinions. Then, we discuss the Opinion Changing Rate (OCR) model, which allows to study
under which conditions a group of agents with a different natural tendency (rate) to change opinion can
find the agreement. In the context of the this model, consensus is viewed as a synchronization process.

PACS. 89.65.-s Social and economic systems – 05.10.Ln Monte Carlo methods – 05.45.Xt Synchronization;
coupled oscillators

Since the behavioral revolution and the birth of cyber-
netics, the so called ‘soft’ social sciences have emulated
both the intellectual and methodological paradigms of the
‘strong’ natural sciences [1]. The certainty and stability of
the Newtonian paradigm has represented for decades the
cornerstone of sciences like psychology, economy and so-
ciology, which have been largely inspired by classical me-
chanics and statistical thermodynamics. Clearly this trend
has continued when quantum mechanics and chaos and
complexity revolutions have leaded to a reconsideration
of the relevance of the Newtonian paradigm to all natural
phenomena.

In the last years, disciplines such as econophysics
and sociophysics have largely demonstrated the power of
agent-based computational models in simulating complex
adaptive systems (financial markets, cultural evolution,
social structures, voter communities) in which large num-
bers of individuals are involved in massively parallel local
interactions [2,3]. In agent-based models, individuals are
modeled as autonomous interacting agents with a variable
degree of internal complexity and the simulations repre-
sent computational laboratories to study the evolution of
a given social system under controlled experimental condi-
tions. Of course in many cases the individual cognitive be-
havior is oversimplified, as for example in opinion dynam-
ics models where human opinions are reduced to integer
or real numbers [4,5]. In more complicated models, indi-
viduals are simulated by means of simple neural networks
or associative memories. Also in this case, many of the
simplifications adopted are somehow unrealistic. On the
other hand, also the Kepler’s laws assumption of Earth as
a point-mass was not realistic at all, but for the purpose of

a e-mail: alessandro.pluchino@ct.infn.it

describing celestial motion it turned out very successful.
Furthermore, the aim of agent-based simulations is to pro-
vide information on averages over many people, and not
on the fate of a specific person. And in this sense, despite
of their simplicity, these models seem to work very well.
For example, the Sznajd model prediction of the distri-
bution of votes among candidates in Brazilian and Indian
elections is encouraging, although the model is not able to
predict the number of votes one specific candidate gets in
one specific election [6].

In the first part of this paper we discuss one of the
well known models of opinion dynamics, the so called
compromise model of Hegselmann and Krause [4], show-
ing some recent result about its continuum version in a
two-dimensional opinion space [7]. In the second part of
the paper we discuss a new perspective in opinion dynam-
ics based on the suggestion of a possible role of synchro-
nization in opinion formation. By means of the so called
Opinion Changing Rate model, a modified version of the
Kuramoto model adapted to a social context, we study
under which conditions a group of agents with a differ-
ent natural tendency (rate) to change opinion can find
agreement [8].

1 Discrete and continuum opinion dynamics
in the 2-vector HK consensus model

For the sociologist Robert Axelrod “culture” is modelized
as an array of features, each feature being specified by
“traits”, which are expressed by numbers. The number of
features or dimensions is nothing but the number of com-
ponents of a vector, and two persons interact if and only
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Fig. 1. Sequence of snapshots of the
2D squared opinion space for the 2-
vector discrete HK model with N =
2000 agents and ε = 0.25. The points
in the upper-left panel represent differ-
ent randomly distributed opinions at
t = 0. In the other panels, where we
show successive (but not consecutive)
time steps of a Monte Carlo simula-
tion with simultaneous update, opin-
ions merge together in different clus-
ters. Finally, in the lower-left panel
(t = 12) the consensus is reached and
all the opinions occupate the same po-
sition. In the second-last panel, the
number of opinions concentrated in the
bottom clusters is also indicated (see
text).

if they share at least one common feature (i.e. the same
value of the corresponding vector component) [9]. In this
model, two persons are culturally closer the more features
they have in common, and the number of these common
features is, in turn, related to the probability for the two
individuals to interact. Starting from the Axelrod model,
several simple agent-based models of opinion formation
have been devised, mostly by physicists [3–5].

In general, a typical scalar opinion formation model
starts by assigning randomly a real number (chosen in a
given interval) to every agent of the system. Then the dy-
namics starts to act, and the agents rearrange their opin-
ion variables, due to their interactions. At some stage, pos-
sibly, the system reaches a configuration which is stable
under the dynamics. This final configuration may repre-
sent consensus, when all agents share the same opinion,
polarization, when there are two main clusters of opinions
(“parties”), or fragmentation, when several opinion clus-
ters survive. However, a discussion between two persons is
not simply stimulated by their common view/preference
about a specific issue, but it in general depends on the
global affinity of the two persons, which is influenced by
several factors. So, for a more realistic modeling of opin-
ion dynamics, one should represent the opinions/attitudes
like vectors (as in the Axelrod model), and not like scalars.
In this section we will focus on the 2-vector version of the
Hegselmann and Krause (HK) compromise model and we
will show that it is possible to simulate the discrete opin-
ion dynamics in the limit of an infinite number of agents
by solving numerically a rate equation for a continuum
distribution of opinions [7].

The HK model [4] is based on the concept of
bounded confidence, i.e. on the presence of a parameter ε,
called confidence bound, which expresses the compatibility
among the agents in the opinion space. If the opinions of
two agents i and j differ by less than ε, their positions
are close enough to allow for a discussion, which even-

tually leads to a change in their opinions, otherwise the
two agents do not interact with each other. The physical
space occupied by the agents living in a society or a com-
munity can be modelized as a graph, where the vertices
represent the agents and the edges relationships between
agents. So we say that two agents can eventually talk to
each other if there is an edge joining the two correspond-
ing vertices (in graph language, if the two vertices are
neighbours). In the following we will consider only the
general case of a society where everybody talks to every-
body.The dynamics of the HK model is usually simulated
by means of Monte Carlo (MC) algorithms. One chooses
at random one of the agents and checks how many of its
neighbours (in the physical space) are compatible, i.e. lie
inside the confidence range in the opinion space. Next, the
agent takes the average opinion of its compatible neigh-
bours. The procedure is repeated by selecting at random
another agent and so on. The type of final configuration
reached by the system depends on the value of the con-
fidence bound ε. For a scalar opinion space [0, 1] it has
been shown that consensus is reached for ε > εc, where
the critical threshold εc is strictly related to the type of
graph adopted to modelize society: actually, it can take
only one of two possible values, εc ∼ 0.2 and 0.5, depend-
ing on whether the average degree of the graph (i.e. the
average number of neighbours) diverges, as in our case
of a completely connected graph, or stays finite when the
number of vertices goes to infinity [10]. On the other hand,
the 2-vector HK model on a completely connected graph is
much less studied than the 1-dimensional version. In this
case the opinion space is represented by the points (x, y)
of a bidimensional manifold, that in general is a square
[0, 1] × [0, 1] and the confidence range is a circle whose
radius is the confidence bound ε.

In Figure 1 we plot a sequence of snapshots of the opin-
ion space for a discrete configuration of N = 2000 agents
and a value ε = 0.25. Each point in the first snapshot
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Fig. 2. Sequence of snapshots of the 2D
circular opinion space for the 2-vector
discrete HK model with N = 2000
agents and ε = 0.25. The dynamics is
the same than in Figure 1. The differ-
ent shape of the space influences the dy-
namical evolution of the opinions and
consensus is reached in a shorter time
(t = 6) than in the case of Figure 1.

(upper-left panel) represents the opinion of one agent at
time t = 0. Then the system evolves by means of simul-
taneous updates (i.e. all the opinions are updated at each
MC time step) merging the opinions in bigger and bigger
clusters until a stationary state is reached. After 12 time
steps (lower-right panel) consensus is fully obtained and
all the opinions lie on the same cluster. More in general,
from extended numerical simulations it results [7] that the
consensus threshold for the discrete 2-vector HK model is
εc ∼ 0.24, a value slightly greater than that one found for
the scalar model with the same topology. This value tends
to the value εc ∼ 0.23 when the number of agents grows.

If we look at the basis of the triangle in the second-last
snapshot of Figure 1, just before reaching final consensus,
we can see that the two big clusters at the vertices, made
by around 500 opinions and lying at a reciprocal distance
greater than the confidence bound (thus a priori not in-
teracting), are keeping in contact only by means of a small
cluster of 21 agents. Such a phenomenon is very frequent
in the Monte Carlo simulations of the HK model when the
system is approaching consensus (in both one and two di-
mension); indeed, almost always consensus is reached only
because of this phenomenon. This models an important
feature of real social networks, i.e. the existence of the so
called connectors which play the role of a bridge between
otherwise not interacting social groups, thus ensuring the
cohesiveness of the entire network [11].

Another peculiar feature of the HK model, clearly vis-
ible in the upper snapshots of Figure 1, is the fact that
the dynamics always starts to act from the edges of the
opinion space, where the opinion distribution is necessar-
ily inhomogeneous, so that it is essentially the shape of
the opinion space which rules the symmetry of the result-
ing cluster distribution. In order to better appreciate this
effect, we plot in Figure 2 the temporal evolution of the
same system of Figure 1, but with a circular opinion space.

In this case, even if the final configuration is the same
as before, the resulting dynamics is different and, for the
same value of the confidence bound, consensus is reached
more quickly (six MC time steps with simultaneous up-
date) due to the greater symmetry of the opinion space.
The circular symmetry has a remarkable effect also on the
consensus threshold, that in this case tends to that of the
corresponding scalar HK model, i.e. ε ∼ 0.2. In a recent
paper [7] it has been shown that the 2-vector HK model on
a completely connected graph and with a squared opinion
space can be described by means of a rate equation for
a continuum distribution of opinions P (x, y, t). The rate
equation can be solved numerically, as already done for
the scalar compromise model of Deffuant et al. [12]. The
advantages of the evolution equation over discrete Monte
Carlo simulations are that one can directly deal with a sys-
tem with an arbitrarily large number of agents, and that
the final cluster configurations for a continuum distribu-
tion are much more symmetric and regular, thus allowing
a better resolution of the progressive merging of opinion
clusters.

This is clearly visible in Figure 3, where we show the
final configurations of the opinion space for several values
of the confidence bound. In this case the squared (x, y)
opinion space has been reduced to a grid of 100 × 100
bins. All the simulations start from a flat distribution
P (x, y, t = 0) = const. and the dynamics runs until the
distribution P (x, y, t) reaches a stationary state for a given
value of the confidence bound [7].

As one can see that, for small value of ε, a regular
lattice of clusters appears, with a squared shape inher-
ited by the shape of the opinion space (as happened for
the discrete HK model). Going on, for greater values of
ε, one can observe the progressive merging of the pairs
of clusters with reciprocal distance less than the confi-
dence bound radius. Finally, above the critical threshold
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Fig. 3. Final configurations of
the 2-vector HK model with a
continuum distribution of opin-
ions. From top left to bottom
right: ε = 0.08, 0.10, 0.15; 0.20,
0.22, 0.24.

εc ∼ 0.23, consensus is completely reached. This result
confirms the threshold value found with the MC simula-
tions for a discrete dynamics of opinions in the limit of
a large number of agents and encourages further appli-
cations of the rate equation technique to other opinion
formation models.

2 The opinion changing rate model: a role
for synchronization in opinion formation

Most of the opinion formation models, e.g. the HK model
presented in the previous section, have the limitation
of not taking into account the individual inclination to
change, a peculiar feature of any social system. In fact,
each one of us changes ideas, habits, style of life or way of
thinking in a different way, with a different velocity. There
are conservative people that strongly tend to maintain
their opinion or their style of life against everything and
everyone. There are more flexible people that change ideas
very easily and follow the current fashions and trends. Fi-
nally, there are those who run faster than the rest of the
world anticipating the others. These different tendencies
can be interpreted as a continuous spectrum of different
degrees of natural inclination to changes.

In a recent paper [8] we have showed how such an in-
dividual inclination to change, differently distributed in
a group of people, can affect the opinion dynamics of
the group itself. If we switch from the question: “Could
agents with initial different opinions reach a final agree-
ment?” into the more realistic one “Could agents with a
different natural tendency to change opinion reach a final
agreement?”, we can introduce a new concept, the natural
opinion changing rate, that is very similar to the charac-
teristic frequency of an oscillator. In such a way, we can

treat consensus as a peculiar kind of synchronization (fre-
quency locking), a phenomenon which has been very well
studied in different contexts by means of the Kuramoto
model [13].

The Kuramoto model of coupled oscillators is one of
the simplest and most successful models for synchroniza-
tion. It is simple enough to be analytically solvable, still
retaining the basic principles to produce a rich variety of
dynamical regimes and synchronization patterns. The dy-
namics of the model is given by

θ̇i(t) = ωi +
K

N

N∑

j=1

sin(θj − θi) i = 1, . . . , N (1)

where θi(t) is the phase (angle) of the ith oscillator at
time t (−π < θi(t) < π), while ωi is its intrinsic frequency
randomly drawn from a symmetric, unimodal distribu-
tion g(ω) with a first moment ω0 (typically a Gaussian dis-
tribution or a uniform one). These natural frequencies ωi

are time-independent. The sum in the above equation is
running over all the oscillators so that this is an example
of a globally coupled system. The parameter K ≥ 0 mea-
sures the coupling strength in the global coupling term.
For small values of K, each oscillator tends to run indepen-
dently with its own frequency, while for large values of K,
the coupling tends to synchronize (in phase and frequency)
the oscillator with all the others. Kuramoto showed that
the model, despite the difference in the natural frequencies
of the oscillators, exhibits a spontaneous transition from
incoherence to collective synchronization, as the coupling
strength is increased beyond a certain threshold Kc [14].

The existence of a critical threshold for synchroniza-
tion in Kuramoto model is very similar to the consensus
threshold found in the majority of the opinion formation
models. Of course, at variance with the phases in the Ku-
ramoto model, in a model for opinion dynamics we do not
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Fig. 4. OCR model for N =
1000 and K = 1.0 (incoherent
phase). In panels (a) and (b)
we report, for each time step,
1000 points corresponding re-
spectively to the opinions and
opinion changing rates of the N
agents, while in panels (c) and
(d) we show, respectively, the fi-
nal distribution of opinions and
the time evolution of the order
parameter R.

need periodic opinions nor limited ones: in fact, the opin-
ions have a very general meaning and can represent the
style of life, the way of thinking or of dressing etc. Thus
we do not consider periodic boundary conditions and we
assume xi ∈]−∞, +∞[ ∀i = 1, ..., N . The dynamics of the
OCR model is governed by the following set of differential
equations [8]:

ẋi(t) = ωi+
K

N

N∑

j=1

α sin(xj−xi)e−α|xj−xi| i = 1, . . . , N.

(2)
Here xi(t) is the opinion (an unlimited real number) of the
ith individual at time t, while ωi represents the so called
natural opinion changing rate, i.e. the intrinsic inclina-
tion, or natural tendency, of each individual to change his
opinion (corresponding to the natural frequency of each
oscillator in the Kuramoto model). As in the Kuramoto
model, also in the OCR model the ω’s are randomly drawn
from a given symmetric, unimodal distribution g(ω) with
a first moment ω0. Usually a uniform distribution centered
at ω0 is used. In this way one simulates the fact that in
a population there are: 1) conservative individuals, that
naturally tend to change their opinion very slowly, and
thus are characterized by a value of ωi smaller than ω0; 2)
more flexible people, with ωi ∼ ω0, that change idea more
easily and follow the new fashions and trends; 3) individu-
als with a value of ωi higher than ω0, that run faster than
the others in suggesting new ideas and insights.

In the equation (2) K, as usual, is the coupling
strength. The exponential factor in the coupling term en-
sures that, for reciprocal distance higher than a certain
threshold, tuned by the parameter α, opinions will no
more influence each other. Such a requirement is inspired
by the confidence bound concept discussed in the previous
section. (Please note that, due to a misprinting, there is
an α factor missing in the coupling term of Eq. (7) of Ref.

[8].) At this point we can study the opinion dynamics of
the OCR model by solving numerically the set of ordinary
differential equations (2) for a given distribution of the ω’s
(natural opinion changing rates) and for a given coupling
strength K. In particular, we want to find out if, as a func-
tion of K, there is a transition from an incoherent phase,
in which people change opinion each one with his natu-
ral rate ωi, to a synchronized one in which all the people
change opinion with the same rate and share a common
social trend, a sort of ‘public opinion’. In order to measure
the degree of synchronization of the system we decided to
adopt an order parameter R(t) related to the standard
deviation of the opinion changing rate ẋj(t) and defined

as R(t) = 1 −
√

1
N

∑N
j=1(ẋj(t) − Ẋ(t))2, where Ẋ(t) is

the average over all individuals of ẋj(t). It is easy to see
that R = 1 in the fully synchronized phase, where all the
agents have exactly the same opinion changing rate (and
very similar opinions), while R < 1 in the incoherent or
partially synchronized phase, in which the agents have dif-
ferent opinion changing rates and different opinions. The
numerical simulations have been performed typically with
N = 1000 agents and with an uniform distribution of the
initial individual opinions xi(t = 0) in the range [−1, 1].
The natural opinion changing rates ωi are taken from a
uniform distribution in the range [0, 1]. We fix the value
of the coupling K and we let the system to evolve un-
til a stationary (asymptotic) value R∞ for the order pa-
rameter is obtained. In this way it is easy to recognize
a Kuramoto-like transition from an incoherent phase (for
K < Kc ∼ 1.4) to a partially coherent (for K ∈ [1.4, 4.0])
and, finally, to a fully synchronized phase (for K > 4.0) [8].
We now focus on the details of the dynamical evolution in
each of the three phases.

In Figure 4 we analyze the case of very small coupling,
K = 1.0. In the left part we show the time evolution of
the opinions and of the opinion changing rates (angular
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Fig. 5. OCR model for
N = 1000 and K =
2.0 (partially coherent
phase). Same quantities
as in Figure 4.

Fig. 6. OCR model for
N = 1000 and K =
4.0 (synchronized phase).
Same quantities as in the
previous figures.

velocities or frequencies). In the right part, instead, we
plot the final distribution of opinions and the order pa-
rameter time evolution. Because of the weak interactions
we are in the incoherent phase and each agent tends to
keep his natural opinion changing rate. It follows that the
different opinions diverge in time without reaching any
kind of consensus. In correspondence, the order parame-
ter R takes the minimum possible value that, at variance
with the Kuramoto model, is not zero. We could look at
this case as to an ‘anarchical’ society.

In Figure 5 we plot the same quantities than before but
in the case K = 2.0. The coupling is still weak but strong

enough to give rise to three different clusters of evolv-
ing opinions, each with a characteristic changing rate: the
largest number of the agents, representing what we could
call the “public opinion”, moves with an intermediate rate
along the opinion axis, but there is a consistent group of
people remaining behind them and also a group of inno-
vative people (quicker in supply new ideas and ingenuity).
From a political point of view, we could interpret this sit-
uation as a sort of ‘bipolarism’ with a large number of
‘centrists’. In this case the order parameter is larger than
in the previous example, but still less than one since the
opinion synchronization is only partial.
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Fig. 7. OCR model for N = 100 and a value of K increasing with a constant rate from 0.1 up to 10.1. Same quantities as in
the previous figures.

Finally, in Figure 6 we report the case K = 4.0. Here
the coupling is so strong that all the opinions change at the
same rate and we observe a single final cluster in the opin-
ion distribution. In this ‘dictatorial’ society all the agents
think in the same way and follow the same trends and fash-
ions. Although the natural frequencies of the agents are
— as in the previous examples — different from each oth-
ers, their opinion changing rates rapidly synchronize (fre-
quency locking) and thus the order parameter R reaches
a saturation value equal to one.

Summarizing, it has been found [8] that in order to
ensure a ‘bipolarism’ — i.e. an equilibrium between con-
servative and progressist components — a changing so-
ciety needs a level of coupling K strictly included in a
narrow window (1.5 < K < 2.5) inside the partially syn-
chronized phase. Otherwise such an equilibrium will be
broken and the final result will be anarchy or dictatorial
regime. But it is worth to observe that these conclusions
have been obtained for systems with fixed coupling K,
simulating societies with a stable degree of interconnec-
tions among their members. Thus it is interesting to ex-
plore what happens if the coupling is let to increase its
value during the dynamics, in order to simulate a society
in which the interconnections between the agents increase
in time, due for example to the improvement in transport
or in communications.

In Figure 7 we show the results for a system in which
the coupling is uniformly increased from K = 0.1 to
K = 10.1. The agents’ opinions initially spread freely, and
then rapidly freeze in a large number of non-interacting
clusters with different changing rates and variable sizes.
Actually, it results that this particular cluster distribu-
tion, that could be socially interpreted as a multipolar-

ism, cannot be obtained in simulations with a constant
coupling. This could suggest that the increase of inter-
actions between the members of a society is crucial to
stabilize a plurality of different non-interacting clusters of
opinions (different ideologies, political parties, etc.) typ-
ical of a multipolar democracy. It seems to suggest also
that a stable bipolarism is possible only in societies with
a fixed degree of internal interconnections.

3 Conclusions

In this paper we have shown that even simple opinion for-
mation models are able to capture many general features
of real social systems. In the first part we have discussed an
extension of the scalar opinion dynamics of Hegselmann-
Krause model to the case in which the opinion is not
just a scalar but a 2-vector with real-valued components.
We investigated a community where everybody talks to
everybody by means of Monte Carlo simulations of dis-
crete opinion distributions (for squared or circular opin-
ion space) and by solving numerically a rate equation for
a continuum opinion distribution. By studying the con-
sensus thresholds we found that the continuum case can
be considered as the limit of the discrete one for a great
number of agents. In the second part of the paper we have
discussed a social variation of the Kuramoto model, the so
called Opinion Changing Rate model (OCR). The concept
of ‘opinion changing rate’ transforms the usual approach
to opinion consensus into a synchronization problem. Sim-
ilarly by the Kuramoto model, the OCR model exhibits a
phase transition from an incoherent phase to a synchro-
nized one and shows many interesting features with a clear
social meaning.
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