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Abstract

With the help of the di0usion entropy technique we show the non-Poisson statistics of the
distances between consecutive Omori’s swarms of earthquakes. We give an analytical proof of
the numerical results of an earlier paper (Phys. Rev. Lett. 90 (2003) 188501).
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The model usually adopted to describe the time distribution of earthquakes is the
generalized Poisson (GP) model [1–5]. The GP model assumes that the earthquakes
are grouped into temporal clusters of events and these clusters are uncorrelated, and,
therefore, completely unpredictable: The clusters are supposed to be distributed at
random in time and therefore the time intervals between one cluster and the next one
follow a Poisson distribution. The intra-cluster earthquakes are in fact correlated as it
is expressed by the Omori’s law [6,7], an empirical law stating that the main shock,
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i.e., the highest magnitude earthquake of the cluster, occurring at time t0 is followed
by a swarm of triggered earthquakes (after shocks) whose number (or frequency) n(t)
decays in time as a power law, n(t) ˙ (t − t0)−p, with the exponent p being very
close to 1. If we denote with the symbol � the time intervals between one earthquake
and the next, then right after a main shock, a short value of � is followed with a large
probability by another short value. For the same reason, far from a main shock and
prior to the next one, a long value of � is followed by another long value of �. This
implies that the correlation function 〈(�i −〈�〉)(�j −〈�〉)〉 is not zero for i �= j and that
it survives for all pairs of seismic events in between two consecutive unpredictable
shocks. Omori’s law also implies [8] that the distribution of �, is a power law  (�) ˙
�−p. This expression is valid in the time regime inside a swarm, and it is then truncated
by a sharp cuto0 caused by the arrival of the next swarm.

The catalog we have studied covers the period 1976–2002 in the region of Southern
California spanning 20◦N–45◦N latitude and 100◦W–125◦W longitude. 1 This region
is crossed by the most seismogenetic part of the San Andrea fault, which accommodates
by displacement the primarily strike-slip motion between the North America and the
PaciHc plates, producing velocities up to 47 mm=yr [9]. The total number of recorded
earthquakes in the catalog is 383,687.

Herein we disprove the GP model, providing evidence for the non-Poisson statistics
of inter-cluster times, by applying to the mentioned catalog the Di0usion Entropy (DE)
technique [10]. Here we discuss with analytical arguments some issues that in an earlier
paper [11] we have examined by means of a numerical treatment. As in the GP model,
we assume that each cluster starts with an unpredictable triggering event (it may or
may not be the main-shock). The distance between the ith and the (i + 1)th cluster
is therefore the time distance between such events, which we indicate as �[m]

i , obeying
the non-correlation property, 〈�[m]

i �[m]
j 〉 = 〈�[m]〉2 if i �= j. The superscript m stands for

main-shock, but we actually need not to make the assumption that the triggering event
is a large earthquake. As we shall see, the DE measures statistical properties of events
with no need of identifying them.

Let us recall the deHnition of the DE functional S(t) as the Shannon entropy of
p(y; t), the probability distribution to observe a Hxed number of seismic events y in
a given time interval [10]. This observation is equivalent to observing the spreading
of a number of walkers making one step forward at each time where an event is met.
Hence the term “di0usion entropy”. Di0erent trajectories are chosen with the usual
method of observing di0erent time windows in the sequence, which is herein assumed
to be stationary. Let us assume that p(y; t) follows the scaling law with the form

p(y; t) =
1
t


F
( y
t


)
; (1)

where 
 is a positive exponent and F(x) is a positive and integrable function of x. As
a consequence of this assumption, after a straightforward algebra, we Hnd that

S(t) = A + 
 ln(t) : (2)

1 The catalog has been downloaded from the Southern California Earthquake Data Centre
http://www.scecdc.scec.org/ftp/catalogs/SCSN/.

http://www.scecdc.scec.org/ftp/catalogs/SCSN/
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This means that the entropy of the di0usion process is a linear function of ln(t) and a
measure of the slope is equivalent to the determination of the scaling parameter 
.

We now show that, in the earthquake series under investigation, the principal source
of entropy increase is given by the occurrence of the cluster-initiating seismic events.
Let us indicate with �(�[m]) the probability density function (pdf) of times between
clusters and with h(x) the pdf of the number of earthquakes in a cluster. The function
h(x), usually referred to as the Pareto’s law of earthquakes, is known to decay as
h(x) � 1=x�+1, where � is a positive number. In the literature an exponent for clusters
size distribution � ranging from �=1:25 [12] to 3 [4] is reported. On the other hand, we
assume for �(�[m]), which is exponential in the GP model, a form �(�[m]) � (1=�[m])�.
We also assume that 26 �¡ 3. As it will become clear in the next paragraphs, beyond
the upper limit it is impossible for the DE to distinguish between an inverse-power
law and an exponential; for �¡ 2, on the other hand, the signal cannot be stationary
[10]. The connection between x and the early deHned variable y, over which the DE
is calculated, is

y(t) =
z(t)∑
i=1

xi ; (3)

where the sum is carried over di0erent clusters, xi is the number of shocks in the
ith cluster and z(t) is the number of clusters in the same time window of length t
considered for y.

Let us call �̂(s) the Laplace transform of �(�[m]) and ĥ(k) the Fourier transform of
h(x). Suppose now that the time duration of a cluster is negligible with respect to the
mean time distance 〈�[m]〉. In this case we can use directly a continuous time random
walk (CTRW) formalism to calculate the probability p(y; t) that a random walker,
moving of a quantity x at the time at which there is a cluster of size x (and resting
otherwise), is at position y after a time t. For the Fourier–Laplace transform of p(y; t)
we will have, from the theory of CTRW [13,14],

p̂(k; s) =
1 − �̂(s)

s
1

1 − �̂(s)ĥ(k)
: (4)

To obtain the asymptotical behavior we write, if 2¡�¡ 3,

�̂(s) � 1 − 〈�[m]〉s + cs� ; (5)

where � ≡ � − 1. Eq. (4) becomes

p̂(k; s) � 〈�[m]〉
1 − ĥ(k) + s〈�[m]〉ĥ(k) − cĥ(k)s�

: (6)

Considering that

ĥ(k) � 1 + ik〈x〉 + bk� ; (7)

if 1¡�¡ 2, we see that Eq. (6) leads to a ballistic scaling in the laboratory reference
frame. The DE is insensitive to drifts, so we assume that Eq. (1) is fulHlled in a
“detrended” moving reference frame, namely, where the position of the walker y fulHlls



204 L. Palatella et al. / Physica A 338 (2004) 201–205

0 2 4 6 8 10 12
0

2

4

6

8

10

ALL
M>2
M>3
M>4

δ=0.94
S

 (
t)

ln (t)

Fig. 1. The Shannon entropy S(t) of the di0usion process as a function of the logarithm of time, expressed
in minutes. From top to bottom, the curves refer to all events (full circles) and to events with threshold
MM = 2–4 (open symbols). The straight lines have the slope 
 = 0:94.

the condition 〈y(t)〉 = 0 at each time t. To obtain p̂(k; s) in such a moving reference
frame we have to perform the following substitution

s → s + ik
〈x〉
〈�[m]〉 : (8)

After that, we apply the di0usive limit k�s obtaining

p̂(k; s) � 〈�[m]〉
s〈�[m]〉 − bk� − c(i〈x〉=〈�[m]〉)�k� ; (9)

thus proving that the most anomalous, namely, the smallest between the two exponents,
either �+1 or �, determines the asymptotic scaling according to the prescription 
=1=�
or 
 = 1=(� − 1), respectively.

In Fig. 1 we report the results of the DE method. In full circles we plot the entropy
S(t) as a function of time when all the seismic events of the catalog are considered
(independently of their magnitude M). A Ht in the linear region gives a value of
the scaling parameter 
 = 0:94. We next consider (open symbols in Fig. 1) only the
earthquakes with magnitude larger than a Hxed value MM =2–4. We see that, regardless
of the value of the threshold MM adopted, the function S(t) is characterized by the
same long-time behavior with the same slope. This indicates that we are observing a
property of the time location of the main earthquakes. Moreover, if the value of 

were due to h(x) we should observe at most 
 = 1=� = 1=1:25 = 0:80. This leads us
to conclude that the asymptotic form (and scaling) of p(y; t) is determined by the
probability p(z; t) of Hnding z unpredictable events in a time window of duration t.
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This is in turn determined by a �(�[m]) decaying as an inverse power law with exponent
� = 2:06. Using the theory of Ref. [10] we also determine the form of p(z; t), which
is well approximated by an asymmetric LOevy distribution with LOevy index � − 1.

In conclusion, in this paper we have studied the statistical properties of earth-
quakes time distribution. Inter-cluster distances obey an inverse power law prescription
�(�[m]) ˙ (�[m])−� with � = 2:06 ± 0:01 thus ruling out the GP model. The method
proposed is based on the fact that the asymptotic properties of di0usion process gen-
erated by the seismic events are scarcely sensitive to the memory stemming from the
Omori’s law. They are, on the contrary, sensitive to the anomalous statistics generated
by the non-Poisson nature of the time distance between two consecutive large earth-
quakes. This non-Poisson behavior rePects, in our opinion, the cooperative behavior of
the geological processes triggering the main shock, and consequently, to some extent,
some sort of predictability. The emergence of this possibility will be investigated in
the future.

As a Hnal remark, we recall that throughout our analysis we made the reasonable
hypothesis that the series is stationary. On a formal ground, a scaling value 
 ∼ 1 is
compatible with a nonstationary process. These nonstationary contributions may have
di0erent origins. The most trivial is the lack of statistics: we may have for instance,
a small number of Omori’s swarms, but very extended in time. For this reason we
repeated the analysis using only portions of the series, obtaining the same results. An-
other, more interesting, source of non-stationarity could be a strong correlation among
the series of the triggering processes, namely the condition 〈�[m]

i �[m]
j 〉 �= 〈�[m]〉2. It is

interesting to notice that also this condition might rePect a form of predictability to
assess through a properly tailored form of statistical analysis of time series. We leave
this as a subject of further investigation.
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