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Abstract

We discuss the role of the initial conditions for the dynamical anomalies observed in the
quasi-stationary states of the Hamiltonian mean .eld (HMF) model.
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1. Introduction

The Hamiltonian mean .eld (HMF) model is a system of N fully coupled iner-
tial spins which has been intensively studied in the last years [1–12]. The model
is particularly important for the paradigmatic anomalous behavior exhibited by its
out-of-equilibrium dynamics. Motivated by recent papers [13,14] in which such anoma-
lies were conjectured to exist only for very special initial conditions, in this paper we
show that anomalous dynamics, and in particular fractal-like structures in phase space,
power-law decay of correlations and superdi5usion are obtained for a large class of
initial conditions. Our results indicate that these anomalous behavior represents more
the rule rather than the exception. Connections with Tsallis thermostatistics [15–18] are
brie?y addressed.
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2. The model

The model describes a system of N planar classical spins s̃i = (cos �i; sin �i) with
unitary mass and with an in.nite-range interaction [1]. The Hamiltonian, in the ferro-
magnetic case can be written as

H = K + V =
N∑

i=1

p2
i

2
+

1
2N

N∑

i; j=1

[1− cos(�i − �j)] ; (1)

where �i ∈ [ − �; �]; is the angle of the ith spin and pi the corresponding conjugate
variable representing the rotational velocity. Since the modulus of each spin is unitary,
we can also view the system as N interacting particles moving on the unit circle.
The standard order parameter of the model is the magnetization M , de.ned as M =
1=N |∑N

i=1 s̃i|. The equilibrium solution of the model exhibits a second-order phase
transition from a low-energy condensed (ferromagnetic) phase with magnetization M �=
0, to a high-energy (paramagnetic) one, where the spins are homogeneously oriented
on the unit circle and M = 0. The caloric curve, i.e., the dependence of the energy
density U = E=N on the temperature T , is given by U = T=2 + 1

2 (1−M 2) [1,2]. The
critical point is at energy density Uc = 3

4 , which corresponds to a critical temperature
Tc = 1

2 .
The dynamics of the HMF model shows several anomalies before complete equi-

libration. More precisely, if we adopt the so-called M1 initial conditions, i.e., �i = 0
for all i (M (0) = 1) and velocities uniformly distributed (water bag), the results of
the simulations, in a special region of energy values ( 12 ¡U ¡Uc), show a disagree-
ment with the equilibrium prediction for a transient regime whose lifetime depends on
the system size N [4,6]. In such a regime, the system remains trapped in metastable
quasi-stationary states (QSS) characterized by a temperature lower than the equilibrium
one, a vanishing value of magnetization and Lyapunov exponents [5], anomalous di5u-
sion and long-range correlations [3,4,8], very slow and glassy-like dynamics [7,9,10].

3. Out-of-equilibrium dynamics vs initial conditions

In this section we show, by means of a series of numerical simulations, that the
majority of the dynamical anomalies of the QSS regime are present not only for M1
initial conditions (ic), but also when the initial magnetization M (t=0) is in the range
(0; 1]. We concentrate on the energy value U = 0:69, where the anomalies are more
evident. The case M (0) = 0 has been studied in Refs. [8,13,14] and corresponds to a
stable stationary state of the Vlasov equation [14]. Such a state is spatially homoge-
neous from the beginning, thus the force acting on each spin is zero since t = 0 and
correlations are almost absent. This case represents a limiting situation as it will be
shown in the following. To prepare the initial magnetization in the range 06M6 1,
we distribute uniformly the orientation angle of the spins into a variable portion of
the unitary circle. In this way we .x the potential energy and we assign the remain-
ing part of the total energy as kinetic energy by using the usual water bag uniform
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Fig. 1. Time evolution of the temperature for U=0:69; N=1000. Di5erent initial conditions of magnetization,
ranging from M = 1 to 0, averaged over 100 events, are considered.

distribution for the momenta. For the details on the numerical integration used see
Refs. [2,3,5].

3.1. Temperature plateaux and structures in phase-space

In Fig. 1 we plot the time evolution of the temperature T , calculated by means of
the average kinetic energy as T=2〈K〉=N . The simulations refer to U=0:69; N=1000
and to di5erent initial conditions. All the curves, except the one referring to M = 0
ic, show a fast relaxation from the high initial temperature value. Then one observes
small ?uctuations around a plateau region, before relaxation to equilibrium. We report
as dashed line the equilibrium value. The curves are obtained after an average over
100 events. Increasing this number ?uctuations disappears completely. The plateaux
temperatures are smaller than the equilibrium temperature and depend on the size and
on the initial conditions used. No qualitative di5erence is found for greater sizes, apart
from the fact that for N → ∞ all the plateaux increase in time duration and tend to a
limiting temperature TN=∞ = 0:38 (for U = 0:69). For any .nite N the system always
relaxes to the usual Boltzmann–Gibbs equilibrium value Teq = 0:476, although the
relaxation time diverges linearly with N . Therefore the QSS regime can be considered
a real equilibrium regime when the in.nite size limit is taken before the in.nite time
limit [4,6].
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Fig. 2. For U = 0:69; N = 10; 000 we show a sequence of snapshots of the �-space at di5erent times (from
top to bottom). Four di5erent initial magnetizations, namely M = 1; 0:8; 0:4, and 0 are considered.

Although from the plot of T vs time the QSS behavior seems to be the same for
all the initial conditions, this is not true for what concerns the correlations and their
decay. In Fig. 2, for U = 0:69 and N = 10; 000, we show the �-space of the system
at di5erent times and for four di5erent initial magnetizations. The di5erent colours
distinguish fast initial spin velocities (in red) and slow ones (in black). While in the
QSS regime the magnetization vanishes immediately after the violent initial relaxation,
dynamical structures, having fractal-like features [4], emerge in the �-space and then
fade away only after a long time. These structures, that have been already studied in
detail for M1 ic [4,8], depend on the initial magnetization and thus on the initial value
of the force, acting on each spin j, being Fj = −Mx sin(�j) + My cos(�j). They are
clearly visible for M08 and also for M04, while they are almost absent for M0 ic.

3.2. Long-range correlations and anomalous di9usion

In this section we focus on the decay of velocity correlations. A quantitative way to
estimate the velocity correlations is the autocorrelation function, de.ned as

C(t) =
1
N

N∑

j=1

pj(t)pj(0) : (2)
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Fig. 3. Correlation functions vs time for di5erent initial magnetizations (symbols). The curves are normalized
q-exponentials de.ned by Eq. (3).

In Fig. 3 we plot the velocity autocorrelation functions for N = 1000 and M (0) =
1; 0:8; 0:6; 0:4; 0:2, and 0. Averages are taken over 500 di5erent realizations. The
initial fast relaxation illustrated in Fig. 1 has not been considered. For M (0)¿ 0:4 the
correlation functions are very similar, while the decay is faster for M (0) = 0:2 and
even more for M (0) = 0. The autocorrelation functions can be reproduced by means
of the q-exponential function

eq(z) = [1 + (1− q)z]1=(1−q) (3)

proposed by Tsallis in his generalized thermodynamics [15–17] with z = −x=�. Here
� is a characteristic time. Notice that one recovers the usual exponential decay for
q = 1 [15–17]. In this way we can quantitatively discriminate between the di5erent
initial conditions. In fact we get a q-exponential with q = 1:5 for M¿ 0:4, while we
get q = 1:2 and 1.1 for M = 0:2 and 0, respectively. Thus for M ¿ 0 correlations
exhibit a long-range nature and a slow decay: they are very similar, but they diminish
progressively below M = 0:4 to become almost exponential for M = 0. In Ref. [13] it
was shown that this limiting case can been also .tted by a stretched exponential. In
Fig. 4 we plot the q-values obtained for di5erent initial conditions and di5erent sizes of
the system. It is possible to observe that the increase of q from 1.1 to 1.5 with the initial
magnetization and the almost constant value for M (0)¿ 0:4. is not much dependent
on the size of the system. Thus, in general, long-range correlations are obtained for
a wide spectrum of initial conditions, while, again, the case M0 seems to be a very
special one. The latter has been studied in detail in Refs. [13,14] and it has been
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Fig. 4. Entropic index q extracted from the decay of the correlation functions as a function of the initial
magnetization and for several system sizes. The dashed line is the average behavior.

proven to be a stationary solution of the Vlasov equation that tends to attract the QSS.
On the other hand, Tsallis nonextensive thermostatistics scenario seems to be a better
candidate to explain the dynamical anomalies observed for .nite initial magnetization
[6,16–18]. A further indication in this direction is provided by the correlation between
the value of the entropic index q and the exponent  of anomalous di5usion [19,20].
The latter occurs if the mean square displacement in angle !2 ˙ t has an exponent
 �= 1. Superdi5usion ( ¿ 1) has been observed in the HMF model for M1 initial
conditions [3,6]. In the present investigation we have checked that even decreasing
the initial magnetization the system continues to show superdi5usion. We illustrate
this behavior in Fig. 5, where one sees, after a ballistic regime ( = 2) proper of the
initial fast relaxation, that in the QSS plateau region and afterwards, the system shows
superdi5usion. The exponent goes progressively from  = 1:4–1.5 for 0:4¡M (0)¡ 1
to  = 1:2 for M0. In the latter case we have checked that increasing the size of the
system di5usion tends to be normal ( = 1 for N = 10; 000). In correspondence, as
previously shown, the entropic index q characterizing the correlation decay, diminishes
from 1.5 to 1.1, in good agreement with the relationship  =2=(3− q) [19]. A detailed
study of this behavior will be reported elsewhere [21].

4. Conclusions

The results discussed in this paper show that dynamical anomalies such as the
emergence of fractal-like structures in �-space, q-exponential velocity correlations and
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Fig. 5. We plot the mean square displacement of the angular motion !2 ˙ t [3] vs time for di5erent initial
magnetizations. The exponent  which characterizes the behavior in the QSS regime and in its successive
decay is also reported. The dashed lines have a slope corresponding to these values.

superdi5usion, previously observed only for M (0) = 1 initial conditions and pointing
towards Tsallis thermodynamics scenario, are always present when the initial magneti-
zation is greater than zero. Conversely, starting with M (0)=0, the dynamics produces
a very peculiar kind of QSS, di5erent from all the other cases. A possible explanation
of this di5erent behavior could be the sudden initial quenching characterizing, with
di5erent intensities, the dynamics for .nite initial magnetization. This fast relaxation
is absent only for M (0) = 0, which represents a limiting case. In general our results
show that anomalous behavior is more ubiquitous than previously supposed.
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