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Abstract – We consider a model in which agents of different species move over a complex network,
are subject to reproduction and compete for resources. The complementary roles of competition
and diffusion produce a variety of fixed points, whose stability depends on the structure of the
underlying complex network. The survival and death of species is influenced by the network degree
distribution, clustering, degree-degree correlations and community structures. We found that the
invasion of all the nodes by just one species is possible only in Erdös-Renyi and regular graphs,
while networks with scale-free degree distribution, as those observed in real social, biological and
technological systems, guarantee the coexistence of different species and therefore help enhancing
species diversity.

Copyright c© EPLA, 2011

In the last few years, complex networks have been the
subject of an increasingly large interest in the scientific
community [1–3]. This is due to: i) the wide variety of
complex systems that can be described as graphs with
a complex topology; ii) the recent observation that vari-
ous dynamical processes taking place on networks, such
as epidemics [4], random walks [5,6], synchronisation [7]
and self-organised criticality [8,9], can be affected by the
underlying network structure. Concerning social interac-
tions, many models have been proposed in the last decades
to study evolution of relationships, culture segregation,
opinion formation and propagation of new ideas by means
of majority rules, melting or mixing, and have also been
studied on complex topologies [10–14]. Particularly impor-
tant contributions to the understanding of social dynamics
taking place on networks have been provided by evolution-
ary game theory [15,16]. Usually, when an evolutionary
game is studied on a graph, each individual is associated to
a node of the graph, and the social relationships are repre-
sented by the links. Individuals interact with their neigh-
bours on the graph by playing various evolutionary games,
and different collective behaviours emerge, such as global
cooperation or selfishness, according to the structure of the

(a)E-mail: vincenzo.nicosia@ct.infn.it

underlying network of relationships [17,18]. These models
on complex networks fail to catch one of the most impor-
tant characteristic of real evolutionary systems, namely
the possibility for the individuals to move through a
complex environment and to interact with a neighbour-
hood which changes over time [19]. Some recent works
have proposed extensions of evolutionary game theory to
moving agents [20,21]. In these latter models, the individ-
uals move over a continuous space or a discrete lattice, and
play games with other individuals in their spatial neigh-
bourhood. However, the hypothesis of a homogeneous and
continuous space is too simplistic, and does not corre-
spond to the structure of real social and technological
networks [1–3,22]. Metapopulation models with hetero-
geneous connectivity patterns, which incorporate mobil-
ity over the nodes, local interaction at the nodes, and a
complex network structure, have been recently proposed
only in specific contexts such as epidemic spreading [23]
or chemical reactions [24]. In this letter we propose and
study a simple and general model of evolution of species
over a complex network. In the model, each species can
represent either a biotype or a language, a culture or even
a consumer product. The species compete for space or
resources, represented by the nodes of the network. For
instance, if the species are consumer products, each node
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is a potential user and the species move from node to node
through the network of social relationships among users,
competing to be adopted by as many users as possible.
Instead, if we imagine each species as a different biotype,
the complex network represents the connections among
spatial environments, and species compete for food or
energy. The agents of different species move over the graph
by diffusion and their interaction at the nodes is modelled
by means of competition and replication rules. The aim of
the present work is to study the combined effects of diffu-
sion over a complex topology and of competitive selection
at nodes. Notice that whenever we refer to selection in
the following, we always intend competitive selection, i.e.
competition for resources among the different species at
the same node. As we will show in the following, the model,
although extremely simple, is rich enough to exhibit a
large variety of patterns over time and a final distribu-
tion of the species that is intrinsically connected with the
structure of the network.
Let us consider a connected graph with N nodes and
K links, described by an adjacency matrix A= {aij},
and a population of Ns different species, labelled by
the index α= 1, 2, . . . , Ns. Each node of the graph is an
environmental niche which can host individuals of one or
more species, and the links represent connections between
niches. At every single node of the graph, there is room
for each of the Ns species. We denote with P

α
i (t) the

relative abundance of the α-th species at node i at time t.
Such abundances are normalised so that all nodes have
the same capacity, i.e.

∑

α P
α
i (t) = 1,∀i, t. We denote with

Pα(t) =
∑

i P
α
i (t) the overall abundance of species α in the

network, so that
∑

α P
α(t) =N . At each time step, the

model considers two different processes, namely diffusion
and competition. In the diffusion process, a fraction p
(0� p� 1) of the individuals which are at a given node
j move to one of the first neighbours of j, let us say i,
with a uniform probability:

aji∑
l ajl
. The remaining fraction

1− p stays at node j. After the diffusion process, the
selection process takes place, which normalises the number
of individuals at each node in order to guarantee that
∑

α P
α
i (t) = 1,∀i, t. The survival and death of individuals

at each node is governed by a generalised replicator
dynamics [15,16]. In its simplest version, which takes into
account an ecosystem with only two species, say X and Y ,
the equations of the replicator dynamics read

x(t+1) =
f [x(t)]

φ
x(t), y(t+1) =

g[y(t)]

φ
y(t), (1)

where x(t) and y(t) denote the percentages of individuals
of species X and Y at time t, respectively, while f [x(t)]
and g[y(t)] are two functions which measure the fitness
of each of the two species. The interaction between X
and Y is ruled by the quantity φ, which plays the role
of an environmental limit and is fixed to ensure the
normalisation x(t)+ y(t) = 1, ∀t. This gives φ= xf(x)+
yg(y), so that φ= φ(x, y) is the average fitness of the
population. The meaning of eq. (1) is the following: when

the only constraint imposed to the species evolution is the
environmental limit φ, their relative abundance at the
next time step will increase or decrease according to their
fitness. As for the fitness functions f(x) and g(y) we
consider the general case [16] f(x) = bxx

γ−1 and g(y) =
byy

γ−1, where bx > 0, by > 0, and the exponent γ is a real
number that can be varied to tune the dependence of the
fitness function of a species on its abundance. The fixed
points (x∗, y∗) of eq. (1), and their stability, depend on
the value of γ. We distinguish three cases: γ smaller than,
equal to or larger than 1. For γ < 1 there are two unstable
fixed points (1, 0) and (0, 1), and one stable fixed point

x∗ = (1+ (bx/by)
1

γ−1 )−1, y∗ = 1−x∗. The two species X
and Y will coexist despite their initial relative abundances
and fitness. This case is called survival for all. If γ = 1,
there are only two fixed points whose stability depends
on the respective values of bx and by. When bx > by
then (1, 0) is stable while (0, 1) is unstable, conversely
when bx < by, (0, 1) is a stable equilibrium while (1, 0) in
unstable. Independently of the initial distributions of the
two species, if bx > by then x will eventually overcome y
until all individuals of species y are extinct. This case is
called survival of the fittest. Finally, for γ > 1 the third
fixed point is unstable, while (1, 0) and (0, 1) are both
stable. In particular if the initial condition x(0) is such
that x(0)>x∗, then x(t) will eventually overcome y(t),
independently of the value of bx and by, while y(t) will
overcome x(t) if x(0)<x∗ (notice that x∗ = 1/2 when
bx = by). This super-exponential growth always guarantees
the survival (and reproduction) of the most abundant
species, so that the case γ > 1 is usually called survival
of the first. In order to implement a strong competition
among species at a node, in the following we always
consider γ > 1. The replicator dynamic can be easily
extended to Ns different species. A super-exponential
growth is predicted for the Ns-dimensional replicator
equations when γ > 1, and all the corners of the Ns-
dimensional simplex are stable fixed points. We consider
a fitness function of the form f(Pαi ) = b

α
i (P

α
i )
γ−1, where

γ > 1 and, without any lack of generality, we set bαi = 1,
∀i, α. In fact, when γ > 1 only the most abundant species
will survive, despite the relative values of bαi (survival
of the first). The final model consists of the following
equations:

Qαi (t) = (1− p)P
α
i (t)+ p

∑

j

Pαj (t)aji
∑

l ajl
, (2)

Pαi (t+1) =
[Qαi (t)]

γ

∑

β [Q
β
i (t)]

γ
, (3)

where i= 1, . . . , N . Equation (2) accounts for the diffu-
sion process while eq. (3) accounts for the selection, with
0� p� 1 and γ > 1 being the two control parameters of
the model. The quantity Qαi represents the local abun-
dance of species α at node i before selection takes place,
while Pαi is the local abundance of species α at node i after
selection. The dynamics of the model finally converges to a
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stationary state with a fixed number of surviving species.
We have found that this number can vary from 1 up to
Ns, according to the values of the two parameters p and γ.
Notice that a species α can be considered extinct when
Pα(t) =

∑

i P
α
i (t)<

1
Ns(t)N

, where Ns(t) is the number

of species still present on the network at time t. This
comes directly from the observation that when γ > 1 a
species can grow and exponentially reproduce on a node
if and only if it is the most abundant species on that
node. If at time t the overall abundance of a species
is lower than 1

Ns(t)N
, then it cannot be the most abun-

dant species at any node, and will eventually disappear.
A very interesting feature of the model is that the number
of species at equilibrium depends, as expected, on the
diffusion (parameter p) and on the strength of interaction
(the γ exponent), but it is also heavily affected by the
topology of the underlying network. An effective visual
representation of the depencence of the dynamics on the
network structure is the phase diagram which reports the
number of surviving species as a function of p and γ. In
fact, the shape of the phase diagram seems to be tightly
connected with the topological structure of the network.
We first show how to derive analytically some information
on the number of surviving species in the simple case of
random regular graphs. The fixed points of eq. (3) and
their stability can be studied analytically in a mean-field
approximation. In the mean field the adjacency matrix of
the graph is expressed in terms of the probabilty aij =

kikj
2K

of having the edge aij between nodes i and j if ki and kj
are, respectively, the degree of node i and node j, and K
is the number of edges in the graph [25]. Using the mean-
field approximation for aij in eq. (2) and substituting back
in eq. (3), we obtain the following time evolution for the
occupation probabilities:

Pαi (t+1) =
[Pα(t)]γ

[

(1− p)
Pαi (t)
Pα(t) + p

ki
2K

]γ

∑

β [P
β(t)]γ

[

(1− p)
P
β
i (t)

Pβ(t)
+ p ki2K

]γ . (4)

We can therefore look for the fixed points: Pα(t+1) =
Pα(t),∀α, and check for their linear stability to small
perturbations. In the following we consider the case
NS =N , i.e. a number of species equal to the number
of nodes. It is easy to prove that in this case state
S1 ≡ {P

α = 1,∀α} is a stable fixed point for p= 1, and
that state S2 ≡ {P

ᾱ =N,Pα = 0, ∀α �= ᾱ} is a stable
fixed point ∀p. In general, finding all the fixed points
of eqs. (4), for any value of p and γ, is not an easy
task because of the dependencies of the equations on
the node degrees. A drastic simplification is obtained
if we make the assumption that all the nodes have
the same degree ki = k=

2K
N
, i.e. when the graph is

regular. It is easy to verify that for regular graphs in
the mean-field approximation, the state S3 ≡ {P

α = 1,
∀α;Pαi = δiα} is a fixed point for all values of p and γ.
Notice that in state S3 each node contains individuals of
only one species, and each species α is present only on one
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Fig. 1: (Colour on-line) Final number of speciesNs on a random
regular graph with N = 500 nodes and k= 100 (averaged over
200 realizations), as a function of the two parameters p and γ.
The yellow area corresponds to 500 surviving species, while
black area indicates only one surviving species. The red
line marks the edge of stability for S3 in the mean-field
approximation.

node. The edge of the stability region for state S3 is given
by the equation

c

[

x

(N − 1)ay+ bx
+

N − 1

(N − 2)a+ b+ az

]

− 1 = 0, (5)

where

a=

(

1+
ε

N − 1

)γ

, b= (1− ε)γ ,

c= (1− ε)γ−1, x=

[

N(1− p)

p
+1

]γ

,

y=

⎡

⎢

⎣

N(1− p) ε
N−1

p(1+
ε

N − 1
)
+ 1

⎤

⎥

⎦

γ

, z =
N(1− p)

p(1+
ε

N − 1
)
+ 1,

and ε is a small perturbation of the fixed point S3.
Equation (5) is obtained by imposing that S3 is a fixed
point, i.e. that relative species abundances on the whole
graph remain constant over time, and then performing a
small perturbation on the abundance of just one species.
In particular, we imagine that one of the species decreases
its abundance by a small amount ε, and that this amount
is uniformly redistributed to the other N − 1 remaining
species, in order to guarantee that the total amount
of individuals on the network remains constant. Notice
that eq. (5) depends only on p, γ and N , and does not
depend on the number of links K, since in the mean-
field approximation each node is connected to all the
other nodes. The red line drawn in fig. 1 is the numerical
solution of eq. (5) for different values of (p, γ) and for
ε→ 0 on a regular network with N = 500 nodes. The
state S3 with N surviving species is unstable for values
of (p, γ) below the red line, while it is stable for (p, γ)
above the red line. To check the validity of the mean-
field approximation, we simulated the dynamics of eq. (2)
over a regular random graph with N = 500 nodes, and
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Fig. 2: (Colour on-line) Number of species Ns on the graph at equilibrium as a function of the two parameters p and γ.
Three classes of graphs with N = 500 nodes and 〈k〉= 6 were considered: (a) regular ring lattice, (b) Erdös-Renyi random
graph, (c) scale-free graph.

a large average degree k= 100, for different values of
(p, γ), initialising the system in state S3. In fig. 1 we
plot as a colour map the number of species surviving at
equilibrium for different values of p and γ. Yellow regions
correspond to 500 surviving species, while black regions
correspond to only one surviving species. Notice that the
agreement with the theory is very good: the yellow area
approximately coincides with the region where S3 is stable,
while the black zone corresponds to the region where
S3 is unstable. Notice also that the transition is very
sharp and well defined in the (p, γ)-plane, meaning that
the system suddenly moves from a state where Ns =N
to a state where Ns = 1. To explore the dependence of
the dynamics on the degree distribution of the network,
we have simulated eq. (2) with initial state S3 over
three different networks, namely regular lattices (RL) with
periodic boundary conditions, Erdös-Renyi (ER) random
graphs, and scale-free (SF) graphs with degree distribution
P (K)∼ k−3 [1–3]. All the graphs have been created with
the same number of nodes (N = 500) and the same number
of links (〈k〉 ≃ 6). The phase diagrams in fig. 2 show the
number of species Ns remaining at equilibrium on the
three classes of graphs as a function of the two parameters
p and γ. We observed that a stationary value of Ns is
reached on these graphs after no more than 200 iterations
of eq. (2), and we have checked that this value does not
change for at least 20000 iterations. Diagrams for ER and
SF graphs are obtained as an average over 200 realizations,
even if the fluctuations from one realization to another
are very small. We notice that both p and γ play an
important role on the final number of species remaining at
equilibrium. For small p and large γ all the species survive,
with each species remaining in its starting node. In fact,
when p is close to 0, only a small amount of individuals
leave their starting nodes and die almost immediately after
they arrive at neighbouring nodes due to selection. This
corresponds to the large yellow area (Ns = 500) present in
all the phase diagrams reported in fig. 2. As the diffusion
probability p increases, a stronger selection (larger value
of γ) is needed to prevent the invasion and let all the

Ns = 500 species survive. Despite some similarities for
small p and large γ, the three graphs exhibit different
behaviour when diffusion and selection are such that some
species can invade neighbouring nodes, and some other
species eventually disappear. According to the values of
p and γ, the combination of diffusion and competition
determines stationary solutions with different number Ns
of surviving species, also with a few remaining species,
or even just one, as in the black regions. The differences
between the three graphs are evident from the various sizes
and shapes of the coloured regions. In both ER and scale-
free graphs we have cases where only one species survives
(black regions in fig. 2(b) and in fig. 2(c)) and invades
the whole network. However, the black region is much
larger in the phase diagram of the ER random graphs
than in that of the scale-free graphs, where a single species
overcomes all the others only when p∼ 0.95 and γ ∼ 1.2.
The differences between the phase diagrams of ER and
SF graphs are due to the different degree distribution in
the two graphs. In fact, the diffusion process naturally
favours species starting at poorly connected nodes, since
the average number of individuals of such species that will
move to first neighbours is higher than the average amount
of individuals coming from highly connected nodes. Hence,
species starting at poorly connected nodes have a higher
probability to survive and to invade neighbours. In the ER
graph, these are the few species that survive and invade
the graph for (p, γ) in the bottom right part of the diagram
(purple and black colour), with the competition process
involving species starting at nodes with increasingly large
degree, as p decreases. The same considerations, based
on neighbourhood invasion by species starting at poorly
connected nodes, hold for scale-free graphs as well, with
the main difference that in a power-law degree distribution
the majority of nodes are poorly connected, while just a
few hubs have a lot of links. Consequently, species starting
at hubs will disappear soon, while a large number of
species tends to survive for a wide range of p and γ.
This explains why the black region for SF graphs is much
smaller than for ER graphs, and why at any given point
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Fig. 3: (Colour on-line) Cumulative distribution of surviving
species in ER graphs for 0� p < 1 and 1<γ � 6 (averaged over
200 realizations). Panel (a): 〈k〉= 8 andN = 500,N = 1000 and
N = 2000 nodes. Panel (b): N = 1000 and different values of
〈k〉.

(p, γ) of the phase diagram, the number of species Ns
on an ER random graph is always equal or lower than
the number of species on a scale-free graph. The diagram
for a regular lattice reported in fig. 2(a) is very similar
to that shown in fig. 1. These results confirm that the
degree distribution of the network plays an important role
in the extinction and survival of species. We have also
investigated how the dynamics of the system depends on
other structural properties of the network, namely the
number of nodes, the average node degree, the clustering
coefficient, degree-degree correlations and the presence
of communities. In the following, we use an alternative
method to display the information contained in the phase
diagrams. Namely, we plot the cumulative distribution of
the percentage of surviving species at equilibrium, over all
the couples of parameters (p, γ) in the phase diagram. This
is useful to compare the phase diagrams corresponding to
different networks.
In fig. 3(a) we report the cumulative distribution of the

percentage of surviving species over (p, γ) for three ER
random graphs, having average degree 〈k〉= 8 and size
N = 500, N = 1000 and N = 2000, respectively. For the
ER random graph with N = 500 nodes more than 22%
of the (p, γ) values cause the invasion of the network
by one species, and Ns/N = 1 for more than 45% of the
(p, γ) values. The percentage of pairs (p, γ) which allow
invasion by only one species decreases to 20% and to
18%, respectively for N = 1000 and N = 2000, while there
is no appreciable difference among the three curves for
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Fig. 4: (Colour on-line) Panel (a): cumulative distribution of
surviving species for the US Airports network and a random
network with the same degree distribution. Panel (b):
cumulative distribution of surviving species for the GN bench-
mark, the LFR benchmark, a random regular graph and a
scale-free random graph. The two benchmark networks have
4 communities of 250 nodes each.

Ns/N > 0.4. Therefore, for ER random graphs an increase
in the network size producees a slight decrease of the area
of the phase diagram for which we observe invasion by only
one species. In fig. 3(b) we compare ER random graphs
with N = 1000 nodes and different values of 〈k〉, namely
6, 8, 10, 15, 20. As the average degree increases, the shape
of the distribution tends to that of a homogenous network.
In particular, for 〈k〉= 20, the phase diagram is similar to a
stepwise function: only one species survives for 25% of the
(p, γ) pairs, while all the Ns = 1000 initial species survive
for more than 60% of the possible (p, γ) values.
While ER random graphs are characterised by the size

of the network and by the average degree, networks from
the real world usually show also non-trivial degree-degree
correlations and a relatively high number of triangles. In
fig. 4(a) we report the cumulative distribution of surviv-
ing species at equilibrium for the US Airport network [26].
This network has N = 500 nodes, representing airports,
2980 links, indicating flight connections, a degree distri-
bution with a power-law tail with an exponent ∼−1, a
clustering coefficient C = 0.62 and disassortative degree-
degree correlations. In the same figure we report the
cumulative distribution of surviving species for a random
graph having the same degree sequence of the US Airports
network. The randomisation washes out all correlations, so
that this network has C = 0.09 and no degree-degree corre-
lations. Notice that the US Airports network allows the
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survival of a higher percentage of species than its random
counterpart. More than 85% of (p, γ) values guarantee
the survival of more than 50% of the species, and for more
than 95% of (p, γ) values we observe survival of at least
40% of the species. Conversely, in the random graph only
50% of the species survive for 60% of (p, γ) values. This
suggests that even if two networks have exactly the same
degree distribution, the existence of clustering or degree-
degree correlations favours the survival of a larger number
of species.
We have also found that the presence of modules and

communities can affect the dynamics of the system.
In fig. 4(b) we show the cumulative distribution of
the percentage of surviving species for two standard
benchmark networks having a predefined community
structure (Girvan-Newman’s benchmark (GN) [27]
and Lancichinetti-Fortunato-Radicchi’s benchmark
(LFR) [28]) and for the corresponding random graphs
without any community structure. All the networks have
N = 1000 nodes. The GN benchmark is a regular network
with k= 12, while the LFR benchmark is a scale-free
network with P (k)∼ k−2 and 〈k〉= 6. The two bench-
mark networks have 4 communities of 250 nodes each:
on average, 90% of the links of each node are inside its
community and the remaining 10% of links point to nodes
outside the community. The distribution of surviving
species in the LFR benchmark is very similar to that of
a random scale-free graph: at least 50% of the species
survive for 90% of (p, γ) values and more than 70% of
the species survive for more than 45% of (p, γ) values.
Conversely, the GN benchmark has a slightly different
behaviour compared to the corresponding regular random
graph. In the regular random graph only 1 species
eventually invades the network for 22% of possible (p, γ)
values, while all Ns species survive for 65% of (p, γ) pairs.
For the GN benchmark, instead, more than 20% of (p, γ)
pairs guarantee the survival of exactly 4 species. We have
checked that in this case each of the four surviving species
is confined into one of the four communities, and that
each node of a given community contains individuals of
only one species. These results indicate that the existence
of communities in the underlying network can affect
the evolution of the system, especially in graphs with
homogeneous degree distributions.
Summing up, we have found that network structure

can strongly affect the dynamics of simple diffusion-
competition processes. A central role in determining the
strength of segregation and the number of surviving
species at the equilibrium is played by the degree distrib-
ution. A network with heterogeneous degree distribution
guarantees, for a wider ranges of diffusion and selection
parameters, the survival of a higher number of species
compared to the case of a homogeneous network. In partic-
ular, degree heterogeneity helps to avoid the invasion of
the network by only one species. We have also investi-
gated the effect of other structural properties, such as
the size of the network, the average degree, the existence
of degree-degree correlations and community structures.

In conclusion, the results confirm that the actual struc-
ture of the network has to be taken seriously into account
for the study of competitive processes on complex topolo-
gies, since small differences in the network structure can
produce large differences in the observed dynamics. Our
simple model sheds light on the role of the environment
in diffusion-competition dynamics, and might find useful
to explore how cultures, languages, biotypes and compet-
ing populations in general may survive or get extinct
according to the structure of the network they live in.
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