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A novel scaling for the distributions of total number of fragments (i.e., multiplicity) is found in the
shattering phase of nonequilibrium, sequential-fragmentation process and in the percolation process. It
is the counterpart of the Koba-Nielsen-Olesen scaling when multiplicity fluctuations are small. The
relations betweenn-fragment cumulants and two-fragment cumulants provide easy tests to check this
scaling experimentally. [S0031-9007(97)03383-8]
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Fragmentation is an ubiquitous and universal proces
nature. One of the simplest and most puzzling features
pearing in various experiments is the power-law behav
of the fragment-size(mass)distribution: nssd , s2t . By
analogy with the scaling theory of phase transitions, t
behavior was often interpreted as the signature of the c
cal behavior though a more precise analysis [1] indica
that this sign is equivocal and other pertinent observab
have to be considered. One of the simplest ones is
fragment-multiplicity distribution(a distribution of the to-
tal number of fragments)Psmd ­

P
s Pssmd, wherePssmd

is the probability distribution of the number of fragmen
of size s. This quantity is intensely studied, e.g., in th
strong interaction physics where simple behavior of mu
of the data on hadron multiplicity distributions [2] seem
to point to a simple and perhaps deep statistical mechan
of the particle production, which can be rather independ
of the particular dynamical process [3]. Some time a
Koba, Nielsen, and Olesen (KNO) suggested an asym
totic scaling of the multiplicity probability distribution in
strong interaction physics [4],

kmlPsmd ­ Fszd , z ;
m 2 kml

kml
, (1)

where the asymptotic behavior is defined askml !

`, m ! ` for a fixed smykmld ratio and kml is the
multiplicity of fragments averaged over an ensemble
events. The KNO scaling means that data for differi
energies (hence differingkml) should fall on the same
curve whenkmlPsmd is plotted against the scaled variab
mykml. More recently, the studies using the nonequili
rium and conservative fragmentation-inactivation bina
(FIB) model [1,5] have shown that the KNO scalin
(1) is a benchmark of the second-order shattering ph
transition associated with breaking the initial mass in
the “dust fragments.” An asymptoticst ! `d fragment
mass distribution at this phase transition is the power l
with exponentr # 2 [1,5]. Natural questions appea
then: (i) Is the KNO a unique asymptotic scaling
the multiplicity probability distributions, and (ii) wha
kind of scaling, if any, do the multiplicity distributions
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satisfy in the shattering phase of the FIB model whe
the fragment mass distribution is also a power law b
with the exponentt . 2 [1,5]? The FIB model, which
describes well the data both on the fragment-size (mas
charge) distributionns in nuclear heavy-ion fragmentation
[6] as well as on the hadron (fragment) multiplicit
distributions Psmd in strong interaction physics [7], is
well suited to investigate these two different aspects
the fragmentation process.

To address the first question, let us choose a multiplic
m with a probability distribution centered atnskml, xd and
of standard deviationsskml, xd, with x distributed ons0, `d
according to some probability lawfsxd. Two simple cases
can be considered with wide fluctuations of the standa
deviation, say,s2skml, xd , kmlx.

(i) The Poisson transform offsxd,

Psmd ­
Z `

0
fsxd expf2nkml, xdg

fnskml, xdgm

m!
dx , (2)

with the normalization conditions1 ­
R`

0 fsxd dx and
kml ­

R`
0 fsxdnskml, xd dx. This corresponds tolarge

fluctuations of nskml, xd since nskml, xd , s2skml, xd,
and one obtains asymptotically

exps2kmlxd
skmlxdm

m!
!

1
kml

d

µ
x 2

m
kml

∂
;

i.e., Psmd given in (2) satisfies the KNO scaling if the
width of the distributionfsxd is larger than the width of
the Poisson distribution.

(ii) The Gauss transform offsxd,

Psmd ­
Z `

0
fsxd

1p
2pkmlx

exp

µ
2

sm 2 kmld2

2kmlx

∂
dx .

(3)

with the normalization conditions1 ­
R`

0 fsxd dx and
kml ­ kml

R`

0 fsxd dx. In this case, fluctuations of
nskml, xd are indeedsmall since nskml, xd , kml is the
same for all values ofx, andPsmd given by (3) satisfies
then the scaling law

kml1y2Psmd ­ Fsz 0d , z0 ­
m 2 kml

kml1y2 , (4)
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Fsz0d ­
Z `

0

fsxd
p

x
exp

µ
2

z02

2x

∂
dx . (5)

This is the second possible form of the asymptotic scali
law of multiplicity distributions. The scaling functions
in the class of Gauss transforms (5) are symmetric ab
z0 ­ 0 though, in general,Fsz0d could be asymmetric.

In the FIB model [1,5], one deals with fragments cha
acterized by some conserved scalar quantity that is ca
the fragment mass. The ancestor fragment of massN
is relaxing via an ordered and irreversible sequence
steps. The first step is either a binary fragmentatio
sNd ! s jd 1 sN 2 jd, or an inactivationsNd ! sNdp.
In the following steps, the relaxation process continu
independently for each active descendant fragment u
either the low mass cutoff for monomers is reached or
fragments are inactive. For any event, the fragmentat
and inactivation occur with the probabilities per unit o
time ,Fj,k2j and ,Ik, respectively. The fragmentation
probability pF without specifying the masses of the de
scendants ispFskd ­

Pk21
i­1 Fi,k2i sIk 1

Pk21
i­1 Fi,k2id21.

If instability of smaller fragments is more important tha
instability of larger fragments,pF is a decreasing func-
tion of the fragment size. This is thè-cluster phase.
The transition line is characterized by the fragment-siz
independence of the probabilitypF (the scale-invariant
branching process) at any stage of the process until
cutoff scale for monomers. Finally, when instability o
larger fragments is more important than instability o
smaller ones,pF is an increasing function of the frag
ment size and the total mass is converted into finite-s
fragments. This is theshattered phase.

In Fig. 1 we show examples of the asymptotic frag
ment multiplicity distributions in the shattering phase o
tained by solving the FIB cascade equations with t
rate functions:Fj,k2j ; f jsk 2 jdga , Ik ; kb for two
sets of parameters,a ­ 21y3, b ­ 21 and a ­ 2y3,
b ­ 1, which yield asymptotically the power-law mas
distribution [1] withexactlythe same exponentt ­ 10y3.
One may notice that for both fragmentation rate functio
Fj,k2j in Fig. 1, the scaling function is asymmetric abou
z0 ­ 0. In general, this asymmetry increases when a
proaching the transition line. The strong dependence
the multiplicity distributions on the rate functions (se
Fig. 1) together with the knowledge of the fragment-siz
distribution, allows one to constrain the choice of ph
nomenological rate functions and hence to learn ab
the nonequilibrium dynamical phase of the fragmentatio
Below we will discuss examples of the multiplicity dis
tributions in the percolation to show that the scaling la
(4) has a broad range of the validity. In Fig. 2 we sho
the multiplicity distributions in a 3D-bond percolation o
a cubic lattice of different sizes for a fixed bond activatio
parameterqCR ­ 0.2488 which corresponds to a second
order critical point in the infinite network.Fsz0d at this
point is almost symmetric aboutz0 ­ 0.
4594
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FIG. 1. Typical multiplicity distributions fFsz0d ;
kml1y2Psmdg in the shattering phase of the FIB proces
for the rate functionsFj,k2j ­ f jsk 2 jdga , Ik ­ kb with
parametersa ­ 21y3, b ­ 21 and a ­ 2y3, b ­ 1 are
plotted in the scaling variablez0 ; sm 2 kmldykml1y2 (4).
Open circles and crosses correspond to the Monte Ca
solutions of the multiplicity rate equations of the FIB mode
for initial sizes N ­ 211 ­ 2048 and N ­ 213 ­ 8192, re-
spectively. Each point in these plots has been obtained
106 events. The solid curve shows the Shanks extrapolat
sN ! `d of the solution of theexactrecurrent equations of the
FIB model for the system up to sizeN ­ 1024.

The higher order multiplicity correlations of a FIB
process at the transition line have the linked-pair, hie
archical structure [8], and higher order cumulantsfp can
be expressed as sums of products of linked two-parti
cumulantsf2. To see the structure of the correlations a
sociated with the scaling law (4), let us first define th

FIG. 2. The multiplicity distributions for the 3D-bond perco
lation on cubic lattices of different sizes [N ­ 63 (asterisks),
93 (crosses), 123 (triangles), and 153 (circles)] and for a fixed
bond activation parameterqCR ­ 0.2488. The solid line shows
the Gaussian fit of results forN ­ 123. Each point in this plot
has been obtained for 105 events.
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generating functionQN sxd ­
P`

m­0 PN smd s1 1 xdm, asso-
ciated with the probability distributionPN smd for a finite
valueN of the initial mass [9]. With the hypothesis of th
scaling (4), one gets in the limit of largekml (i.e., largeN),

Qsxd ­ s1 1 xdkml
Z `

2`
Fsz0d expfz0kml1y2lns1 1 xdg dz0

­ s1 1 xdkml
X̀
l­0

ml
fkml1y2lns1 1 xdg,

l!
, (6)

where ml ; kz0ll are the normalized moments of th
scaling functionFsz0d (4) which are free asymptotically
from the redundant dependence on the average multipli
kml. Equation (6) allows one to express momentsml in
terms of the factorial cumulant momentsfp and in this way
to find the relation betweenhmlj moments and integrals o
the cumulant correlation functions. In particular,

m0 ­ 1, m1 ­ 0 ,

m2 ­ g2kml 1 1 ,

m3 ­ g3kml3y2 1

"
1 2 2g2kml

kml1y2

#
, (7)

m4 ­ g4kml2 1 3sg2kml 1 1d2

1

"
6g3kml2 2 23g2kml 1 1

24kml

#
,

...

gp in the above formula are the normalized cumulant m
ments,fpysf1dp . Different terms in the squared bracke
vanish whenN becomes infinite. Note that in the Gaussi
case,gp ­ 0 sp $ 3d asymptotically and, consequently
m3 ­ 0, m4 ­ 3sg2kml 1 1d2, and so on. This is be-
cause the generating function in this case is lnfQsxdg ­
L lnf1 1 s1 2 m2xdg and gp , kml12p for p $ 3. For
large multiplicities Eqs. (7) can be rewritten as relatio
between normalized factorial cumulant moments,

gp ­ Ãps
p

g2 dp ­ Ãps
p

f2f21
1 dp s p ­ 3, 4, . . .d ,

(8)

with the kml-independent hierarchical amplitudes̃Ap ,
which measure the amplification of higher order co
relations and provide a unique characterization of a
fragmentation model obeying the scaling law (4) in any
its multiplicity domains.

We have seen in Fig. 2 that the multiplicity probabili
distribution in the 3D percolation atq ­ qCR is well
approximated by the distribution in the class of Gau
transforms. At this point, bothg2kml s,m2d andg3kml2

are approximately constant, independently of the size
the network. To see the validity of this scaling als
outside of the critical point, in Fig. 3 we plotg2kml and
g3kml2 vs kmlyN for different lattice sizes of the 2D and
3D bond percolation. Each point in Fig. 3 correspon
to the calculation for afixedvalue of the bond activation
probability q. As seen from these plots, the results f
percolation networks of different sizes are superpos
ity
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FIG. 3. g2kml s,m2d and g3kml2 are plotted versus the re
duced multiplicitykmlyN for percolation networks of different
sizes in the 2D square lattice [N ­ 152 (squares), 302 (crosses)
and 902 (circles)] and in the 3D cubic lattice [N ­ 63 (squares),
103 (crosses), and 203 (circles)]. Each calculation correspond
to 105 events.

well not only around the critical point but also outside
it and, in particular, forq , qCR. We have checked tha
these results arequantitativelyunchanged when solving
percolation on various types of lattices. This confirms t
universal and robust character of these correlations
makes them suitable for the phenomenological analysis
various fragmentation processes in nature. The maxim
of m2 is found at the value of the reduced multiplicit
kmlyN correspondingexactly to the value at the critical
point [10] both in 2D and 3D percolation. We hav
checked that the same features hold forD . 3.

For the experimental verification of the scaling law
(1) and (4), the scaling functionfFszd or Fsz0dg or its
moments, as well as the value ofkml (or kmlyN), have
to be calculated always for a fixed given value of th
“control parameter” in the studied process. Data obtain
in this way for different values of this parameter can th
be compared. In the above studied case of percolat
for a given sizeN of the network, the evolution of
the fragmentation process was controlled by the bo
activation parameter. In the strong interaction physi
this is a total energy in the center of mass [2] f
a given reaction. For processes like the fragmentat
in evolving porous media [11] or the cluster-clust
aggregation [12], the appropriate control parameter is
mean fragment size which is related to the elapsed time
these processes.

In conclusion, we have demonstrated an existence of
new asymptotic scaling law (4) for distributions of the to
tal number of fragments (i.e., multiplicity), which includes
as a special limit, the typical thermodynamic system su
as the percolation. In view of the generality of the mo
els considered, one is tempted to conjecture that there
ist two and only two scaling laws. (i) The KNO scalin
law (1) associated with large multiplicity fluctuations at th
4595
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shattering phase transition, and (ii) the new scaling law (
associated with small multiplicity fluctuations. In the lat
ter case, the scaling law and the corresponding correlat
coupling scheme (8) hold in the whole shattering phase
the FIB process and in the percolation. Similarly as for th
KNO problem, all essential information about the mult
plicity distributions are reducible to the form of the scalin
functionFsz0d which is a benchmark of the fragmentatio
process, allowing one not only to distinguish between d
ferent fragmentation models but also, for a given mod
between different fragmentation domains. This importa
function can be studied phenomenologically using the ne
family of hmlj moments or, equivalent, using the relation
(7) and (8) for factorial cumulant moments. The value
of momentsmk and the corresponding hierarchical am
plitudesÃk for different reduced multiplicitieskmlyN, to-
gether with the moments of the fragment-size distributio
ns provide the two independent and complementary piec
of information characterizing the fragmentation process
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