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Novel Scaling of Multiplicity Distributions in Sequential-Fragmentation
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A novel scaling for the distributions of total number of fragments (i.e., multiplicity) is found in the
shattering phase of nonequilibrium, sequential-fragmentation process and in the percolation process. It
is the counterpart of the Koba-Nielsen-Olesen scaling when multiplicity fluctuations are small. The
relations betweem-fragment cumulants and two-fragment cumulants provide easy tests to check this
scaling experimentally. [S0031-9007(97)03383-8]
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Fragmentation is an ubiquitous and universal process isatisfy in the shattering phase of the FIB model where
nature. One of the simplest and most puzzling features agthe fragment mass distribution is also a power law but
pearing in various experiments is the power-law behaviowith the exponent- > 2 [1,5]? The FIB model, which
of the fragment-sizémass)distribution: n(s) ~ s~7. By  describes well the data both on the fragment-size (mass or
analogy with the scaling theory of phase transitions, thisharge) distributiom; in nuclear heavy-ion fragmentation
behavior was often interpreted as the signature of the critif6] as well as on the hadron (fragment) multiplicity
cal behavior though a more precise analysis [1] indicatedistributions P(m) in strong interaction physics [7], is
that this sign is equivocal and other pertinent observablewell suited to investigate these two different aspects of
have to be considered. One of the simplest ones is thine fragmentation process.
fragment-multiplicity distributior(a distribution of the to- To address the first question, let us choose a multiplicity
tal number of fragments)(m) = >, P,(m), whereP,(m)  mwith a probability distribution centered at(m), x) and
is the probability distribution of the number of fragments of standard deviatioa ((m), x), with x distributed or{(0, =)
of sizes. This quantity is intensely studied, e.g., in the according to some probability lay(x). Two simple cases
strong interaction physics where simple behavior of mucltan be considered with wide fluctuations of the standard
of the data on hadron muiltiplicity distributions [2] seemsdeviation, sayg?({(m), x) ~ (m)x.
to point to a simple and perhaps deep statistical mechanism (i) The Poisson transform gf(x),
of the particle production, which can be rather independent % [v((m), x)]"
of the particular dynamical process [3]. Some time ago P(m) = [ f)exd—w(m), x)] —————dx, (2)
Koba, Nielsen, and Olesen (KNO) suggested an asymp-_ 0 o N m‘w
totic scaling of the multiplicity probability distribution in With the normalization conditiond = [ f(x)dx and
strong interaction physics [4], (m) = [y f(x)v((m),x)dx. This corresponds tdarge
fluctuations of »((m),x) since v({m),x) ~ o*({m), x),

(m)P(m) = ®(z), z= m<_—§m> (1)  and one obtains asymptotically
m
where the asymptotic behavior is defined as) — ex;i—(rn}x)M — L6<x - i>;
m! (m) (m)

o.m— o for a fixed (m/(m)) ratio and (m) is the
multiplicity of fragments averaged over an ensemble of-€., P(m) given in (2) satisfies the KNO scaling if the
events. The KNO scaling means that data for differingwidth of the distributionf(x) is larger than the width of
energies (hence differingm)) should fall on the same the Poisson distribution.

curve when(m)P(m) is plotted against the scaled variable (i) The Gauss transform of (x),

m/{m). More recently, the studies using the nonequilib- < 1 (m — (m))?
rium and conservative fragmentation-inactivation binary P(m) = ]0 f(x) \/Wex T 2m)x >dx~
(FIB) model [1,5] have shown that the KNO scaling 3)

(1) is a benchmark of the second-order shattering phase

transition associated with breaking the initial mass intg/Vith the normalization conditiond = Jo f(x)dx and

the “dust fragments.” An asymptotic — «) fragment ") = {m) Jof(x)dx. In this case, fluctuations of
mass distribution at this phase transition is the power law ({7) x) are indeedsmall since v((m), x) ~ (m) is the
with exponentr = 2 [1,5]. Natural questions appear S&Me for all yalues ok, and P(m) given by (3) satisfies
then: () Is the KNO a unique asymptotic scaling of then the scaling law

the multiplicity probability distributions, and (i) what
kind of scaling, if any, do the multiplicity distributions

) pn) = (&), 2= M @)
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with O (2)

®() = ]Ox%ex%—gwx. 5) 03

This is the second possible form of the asymptotic scaling
law of multiplicity distributions. The scaling functions
in the class of Gauss transforms (5) are symmetric about 03 |
z/ = 0 though, in generakp(z’) could be asymmetric.

In the FIB model [1,5], one deals with fragments char-
acterized by some conserved scalar quantity that is called
the fragment mass The ancestor fragment of masé
is relaxing via an ordered and irreversible sequence of 017
steps. The first step is either a binary fragmentation, ]
(N) — (j) + (N — j), or an inactivation(N) — (N)*. 0.0 & ‘ : -
In the following steps, the relaxation process continues 4 2 0 2 4
independently for each active descendant fragment until z
either the low mass cutoff for monomers is reached or alFiG. 1. Typical multiplicity  distributions  [®(z/) =
fragments are inactive. For any event, the fragmentatiotm)'/2P(m)] in the shattering phase of the FIB process
and inactivation occur with the probabilities per unit of for the rate functionsF;—; = [j(k — )1, I = k# with
time ~F;,_; and ~I;, respectively. The fragmentation Parametersa = —1/3, f = —1 and & =2/3, 5 =1 are

o ; o plotted in the scaling variable’ = (m — (m))/(m)"/? (4).
probability p without specifying the masses of the de'Open circles and crosses correspond to the Monte Carlo

scendants igp(k) = Y= Fip—i (It + X/=) Fis—)~'.  solutions of the multiplicity rate equations of the FIB model
If instability of smaller fragments is more important than for initial sizes N = 2!'' = 2048 and N = 2" = 8192, re-

instability of larger fragmentspy is a decreasing func- spectively. Each point in these plots has been obtained for
tion of the fragment size. This is the-cluster phase. 10° events. The solid curve shows the Shanks extrapolation

o L ; . (N — o) of the solution of theexactrecurrent equations of the
The transition lineis characterized by the fragment-size g|g model for the system up to si2é = 1024.

independence of the probabilityr (the scale-invariant
branching process) at any stage of the process until the
cutoff scale for monomers. Finally, when instability of ~The higher order multiplicity correlations of a FIB
|arger fragments is more important than mstabmty of process at the transition line have the Iinked-pair, hier-
smaller onespy is an increasing function of the frag- archical structure [8], and higher order cumulayitscan
ment size and the total mass is converted into finite-siz8€ expressed as sums of products of linked two-particle
fragments. This is thehattered phase. cumulantsf,. To see the structure of the correlations as-
In F|g 1 we show examp|es of the asymptotic frag-SOCiated with the Scaling law (4), let us first define the
ment multiplicity distributions in the shattering phase ob-
tained by solving the FIB cascade equations with the ,
rate functions:F;,—; =[jk — j)1*, I, = k# for two D(z’)
sets of parametersy = —1/3, 8 = —1 anda = 2/3, 0.4
B = 1, which yield asymptotically the power-law mass
distribution [1] withexactlythe same exponent= 10/3.
One may notice that for both fragmentation rate functions 0.3 1
Fjx—; in Fig. 1, the scaling function is asymmetric about
7z = 0. In general, this asymmetry increases when ap-
proaching the transition line. The strong dependence of 0.2 |
the multiplicity distributions on the rate functions (see
Fig. 1) together with the knowledge of the fragment-size
distribution, allows one to constrain the choice of phe- 0.1 ¢
nomenological rate functions and hence to learn about
the nonequilibrium dynamical phase of the fragmentation. ) }
Below we will discuss examples of the multiplicity dis- 0.0 10 . 0 i S 10
tributions in the percolation to show that the scaling law i i >
(4) has a broad range of the validity. In Fig. 2 we show
the multiplicity distributions in a 3D-bond percolation on FIG. 2. The multiplicity distributions for the 3D-bond perco-
a cubic lattice of different sizes for a fixed bond activationalion on cubic lattices of different sizes/[= 6" (asterisks),
o . 93 (crosses), 12(triangles), and 15 (circles)] and for a fixed
paramet.e.EqCR o 0'2_488 W.hlcihicorresponds toa Sec?”d' bond activation parameteir = 0.2488. The solid line shows
order critical point in the infinite network. ®(z’) at this  the Gaussian fit of results fof = 123. Each point in this plot
point is almost symmetric about = 0. has been obtained for t@vents.
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generating functio@y(x) =Y _, Py(m) (1 + x)™, asso- 2D 3D
ciated with the probability distributio®y (m) for a finite osh S, F T
valueN of the initial mass [9]. With the hypothesis of the ﬁ”“% xf-*'?"“*;?m
scaling (4), one gets in the limit of large:) (i.e., largeN), g oof----° " &Eh;;; “““““““ o T
© 3 -05F on T "o b
ox)=01+ x)<m>f @ (7)) expz/(m)"*In(1 + x)] dz’ " * ™
—o -1.0f + *]
% I/ZIn 1 " ¢ 2F T T T T = T T T T o
— (1 + x)(m) Z i [<m> ( X)] , (6) N N . i ) ® ]
I A . ;
1=0 E ob™. I L ]
. \v L4 A
where u; = (') are the normalized moments of the - ﬁx“‘“w L%
scaling function®(z’) (4) which are free asymptotically e T ]
from the redundant dependence on the average multiplicity 2 b b L Lt d

. . 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
(m). Equation (6) allows one to express momenisin

terms of the factorial cumulant momenftsand in this way
to find the relation betweefu,;} moments and integrals of FIG. 3. y,(m) (~u,) and y;(m)* are plotted versus the re-

<m>/N

the cumulant correlation functions. In particular, duced multiplicity(m)/N for percolation networks of different
sizes in the 2D square lattic&/ [= 15° (squares), 3D(crosses)
mo=1, wu =0, and 9@ (circles)] and in the 3D cubic latticel[ = 6° (squares),
N 1 102 (crosses), and Z](circles)]. Each calculation corresponds
pa = y2lm) ) to 10° events.
1 — 2y,(m)
. 3/2 Y2
= ya(m¥? + 3(yalm) + 1) yvell not only _around the critical point but also outside of
s it and, in particular, foly < gcr. We have checked that
L+ | yalm)” = 23yalm) + 1 these results argquantitativelyunchanged when solving
24{m) ’ percolation on various types of lattices. This confirms the

universal and robust character of these correlations and

) ) makes them suitable for the phenomenological analysis of
vp in the above formula are the normalized cumulant movaripus fragmentation processes in nature. The maximum
ments,f,/(f1)”. Different terms in the squared brackets of ,,, is found at the value of the reduced multiplicity
vanish wherN becomes |nf|n|te._ Note that in the Gaussian ;) /N correspondingexactlyto the value at the critical
case,y, = 0 (p = 3) asymptotically and, consequently, point [10] both in 2D and 3D percolation. We have
m3 =0, s = 3(y2fm) + 1)%, and so on. This is be- checked that the same features holdzfor> 3.
cause the generating function in this case [©lx)] = For the experimental verification of the scaling laws
LIn[1 + (1 — pox)] andy, ~ (m)!™7 for p = 3. For (1) and (4), the scaling functiof®(z) or ®(z/)] or its
large multiplicities Eqs. (7) can be rewritten as relationsmoments, as well as the value oh) (or (m)/N), have

between normalized factorial cumulant moments, to be calculated always for a fixed given value of the
Yy = A, (7)) = AP(\/E P (p=3.4,..), “control parameter” in the studied process. Data obtained

in this way for different values of this parameter can then
®)  be compared. In the above studied case of percolation,
with the (m)-independent hierarchical amplitudes,, for a given sizeN of the network, the evolution of
which measure the amplification of higher order cor-the fragmentation process was controlled by the bond
relations and provide a unique characterization of anyctivation parameter. In the strong interaction physics,
fragmentation model obeying the scaling law (4) in any ofthis is a total energy in the center of mass [2] for
its multiplicity domains. a given reaction. For processes like the fragmentation
We have seen in Fig. 2 that the multiplicity probability in evolving porous media [11] or the cluster-cluster
distribution in the 3D percolation af = qcr is well  aggregation [12], the appropriate control parameter is the
approximated by the distribution in the class of Gaussnean fragment size which is related to the elapsed time in
transforms. At this point, bothy,(m) (~u,) andys(m)>  these processes.
are approximately constant, independently of the size of In conclusion, we have demonstrated an existence of the
the network. To see the validity of this scaling alsonew asymptotic scaling law (4) for distributions of the to-
outside of the critical point, in Fig. 3 we plai(m) and tal number of fragments (i.e., multiplicity), which includes,
v3{m)?* vs (m)/N for different lattice sizes of the 2D and as a special limit, the typical thermodynamic system such
3D bond percolation. Each point in Fig. 3 correspondsas the percolation. In view of the generality of the mod-
to the calculation for dixedvalue of the bond activation els considered, one is tempted to conjecture that there ex-
probability g. As seen from these plots, the results forist two and only two scaling laws. (i) The KNO scaling
percolation networks of different sizes are superposingaw (1) associated with large multiplicity fluctuations at the
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shattering phase transition, and (ii) the new scaling law (4)[3] A familiar example of this kind is the Maxwellian energy
associated with small multiplicity fluctuations. In the lat- distribution of molecules in thermal equilibrium whose
ter case, the scaling law and the corresponding correlation  form is independent of the detailed force law.

coupling scheme (8) hold in the whole shattering phase ofl4] Z. Koba, H.B. Nielsen, and P. Olesen, Nucl. Phigl0,
the FIB process and in the percolation. Similarly as for the 317 (1972). ,

KNO problem, all essential information about the multi- [°! Rl.glggtet and M. Ploszajczak, Phys. Rev. L8, 3696
plicity distributions are reducible to the form of the scaling ( )

. . . [6] R. Botet and M. Ploszajczak, Phys. Lett382 30 (1993).
function ®(z’) which is a benchmark of the fragmentation [7] R. Botet and M. Ploszajczak, iProceedings of the

process, allowing one not only to distinguish between dif- * * 7ih |nternational Workshop on Multiparticle Production
ferent fragmentation models but also, for a given model,  correlation and Fluctuations, Nijmegen, The Netherlands,
between different fragmentation domains. This important 1996, edited by R.C. Hwa, E.W. Kittel, W.J. Metzger

function can be studied phenomenologically using the new  and D.J. Schotanus (World Scientific, Singapore, 1996).
family of {«;} moments or, equivalent, using the relations [8] R. Botet and M. Ploszajczak, Phys. Rev. 3, 3320
(7) and (8) for factorial cumulant moments. The values  (1996).

of momentsu, and the corresponding hierarchical am- [9] The factorial moments are then given sz(vN(;f) =
plitudesA, for different reduced multiplicitieém)/N, to- >i—o Fix*/k!. The factorial cumulant momeni& " and
gether with the moments of the fragment-size distribution  factorial momentsF,  are related to each other by
n, provide the two independent and complementary pieces the identitiesF, = P Cp-1fp-mFn where C;; =

of information characterizing the fragmentation process. m~'B~'(p,m) andB is the beta function.
[10] In the infinite system aty = gcgr, the reduced mean

multiplicity is (m)/N = {(7)/{(7 — 1).
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