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Abstract

We study the dynamics of a Hamiltonian system of N classical spins with in/nite-range in-
teraction. We present numerical results which con/rm the existence of metaequilibrium quasi
stationary states (QSS), characterized by non-Gaussian velocity distributions, anomalous di5u-
sion, L6evy walks and dynamical correlation in phase-space. We show that the thermodynamic
limit (TL) and the in/nite-time limit (ITL) do not commute. Moreover, if the TL is taken before
the ITL the system does not relax to the Boltzmann–Gibbs equilibrium, but remains in this new
equilibrium state where nonextensive thermodynamics seems to apply. c© 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Statistical thermodynamics is usually intended as the study of N -body systems at
equilibrium. However only a few textbooks [1] state clearly that the validity of equi-
librium ensembles as models of thermodynamics is not automatically granted, but de-
pends crucially on the nature of the Hamiltonian of the N -body system. In particular
the very same basic postulate of equilibrium statistical mechanics, the famous Boltz-
mann principle S = k logW of microcanonical ensemble, assumes that dynamics can
be automatically (and kind of easily) taken into account. However this is not always
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justi/ed [2,3]. 1 On the other hand, the Boltzmann–Gibbs canonical ensemble, is valid
only for suIciently short-range interactions and does not necessarily apply for example
to gravitational or unscreened Coulombian /elds for which the usually assumed entropy
additivity postulate is not valid [4,5]. In general, a series of thermodynamic anomalies
[6–12], which seem to escape a common general framework of understanding, has
been observed. A few years ago, a generalized thermodynamics formalism based on a
nonextensive entropy formula was proposed [13]. The latter has been encountering a
large number of successful applications in far-from-equilibrium situations, as for ex-
ample, to cite only a few cases among the most recent ones, in plasma physics [14],
heavy-ion collisions [15], turbulence [16], discrete maps [17] and even in interdisci-
plinary /elds such as bio-physics [18] and linguistics [19]. Such a formalism is the
best candidate to be the general framework for a thermodynamics when long-range
correlations or fractal structures in phase space are important and time evolution is
not trivial, in other words when the dynamics plays a nontrivial role [2,3]. In this
paper we study the dynamics of relaxation to equilibrium in a Hamiltonian system of
classical spins with in/nite-range interactions [20–23]. We show that, for some val-
ues of the initial energy and a class of o5-equilibrium initial conditions, the system
does not relax to the Boltzmann–Gibbs equilibrium, but exhibits di5erent equilibrium
properties characterized by non-Gaussian velocity distributions which can be /tted by
the probability distribution functions (pdfs) of nonextensive thermodyamics [13]. The
present study, together with the results presented in [24], provide the /rst indication
that the generalized nonextensive thermodynamics can be a good candidate to explain
some of the anomalies found in Hamiltonian systems with long-range interactions.

2. Dynamics and thermodynamics of the HMF model

The model, usually called Hamiltonian mean /eld (HMF), consists of N planar
classical spins interacting through an in/nite-range potential [20]. The Hamiltonian is

H = K + V =
N∑
i=1

p2
i

2
+

1
2N

N∑
i; j=1

[1− cos(�i − �j)] ; (1)

where �i is the ith angle and pi the conjugate variable representing the rotational veloc-
ity. Note that the summation in V is extended to all couples of spins and not restricted
to /rst neighbors. Following tradition, the coupling constant in the potential is divided
by N . This makes H only formally extensive, i.e., V ˙N when N →∞ [13,25], since
the energy remains nonadditive, that is the system cannot be trivially divided into

1 Usually W is put equal to the number of complexions... In order to calculate W , one needs a com-
plete (molecular-mechanical) theory of the system under consideration. Therefore it is dubious whether the
Boltzmann principle has any meaning without a complete molecular-mechanical theory or some other theory
which describes the elementary processes. S = (R=N ) logW + const: seems without content, from a phe-
nomenological point of view, without giving in addition such an Elementartheorie (translation: Abraham
Pais, Subtle is the Lord ..., 1982).
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Fig. 1. The /gure shows the initial time evolution from the water bag (WB) initial state to the QSS for
di5erent system sizes. The straight full line indicates the canonical equilibrium temperature.

two independent sub-systems. The model has an order parameter which is the mag-
netization M , i.e., the modulus of M = 1=N

∑N
i=1 mi, where mi = [cos(�i); sin(�i)].

The canonical analytical solution of the model predicts a second-order phase transition
from a low-energy ferromagnetic phase with magnetization M ∼ 1, to a high-energy
one, where the spins are homogeneously oriented on the unit circle and M ∼ 0. The
dependence of the energy density U = E=N on the temperature T , usually called the
caloric curve, is given by [20,21]

U =
T
2
+

1
2
(1−M 2) : (2)

The critical point is at energy density Uc = 0:75 corresponding to a critical temper-
ature Tc = 0:5 [20]. The dynamics of HMF can be investigated by starting the system
with out-of-equilibrium initial conditions and integrating numerically the equations of
motion [21]. In particular in Refs. [21,24] we have adopted water bag (WB) initial
conditions, i.e., �i = 0 for all i (M = 1), and velocities uniformly distributed. In a
special region of energy values (0:5¡U ¡Uc) the results of the simulations show,
for a transient regime which depends on the system size, a disagreement with the
canonical ensemble. In this region the dynamics is characterized by L6evy walks and
anomalous di5usion, while in correspondence the system shows a negative speci/c
heat [23]. Ensemble inequivalence and negative speci/c heat have also been found in
self-gravitating systems [6,7], nuclei and atomic clusters [9–11], though in the present
model such anomalies emerge as dynamical features [26,27]. In this paper we focus
on a particular energy value belonging to the anomalous region, namely U =0:69, and
we study the time evolution of temperature, magnetization, velocity distributions.
In Fig. 1 we report the time evolution of 2〈K〉=N , a quantity that coincides with the

temperature (〈·〉 denotes time averages). The system, started with WB initial conditions,
rapidly reaches a metastable quasi-stationary state (QSS) which does not coincide with
the canonical prediction. In fact, after a short transient time, 2〈K〉=N assumes a /xed
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Fig. 2. For N = 500 we show the time evolution of the temperature plateau correspondent to the quasi
stationary state (QSS) calculated with di5erent accuracies, reported in the plot. The initial time interval
t0 = 100, shown in Fig. 1, has been subtracted for clearness.

value (the plateau in /gure) corresponding to a N -dependent temperature TQSS(N )
lower than the canonical prediction, also reported. In correspondence of this plateau
one gets for the magnetization a value MQSS ∼ 0. If we want to observe relaxation
to the canonical equilibrium state with temperature Tcan = 0:476 and magnetization
Mcan = 0:307, we have to wait for a time longer than that shown in Fig. 1, as shown
for example in Fig. 2 for the case N =500. In Ref. [24] the following scaling relations
have been found:
(i) the duration of the plateau, the lifetime of the QSS �, increases as �˙N ;
(ii) TQSS(N )→T∞ = 0:380, a value obtained analytically as the metastable prolon-

gation, at energies below Uc, of the high-energy solution (M = 0) as [TQSS(N ) −
T∞]˙N−1=3. This implies that MQSS˙N−1=6 (see Fig. 1(c) of Ref. [24]).
These numerical results clearly indicate that

• the two limits, the in:nite-time limit (ITL) t→∞ and the thermodynamic limit
(TL) N →∞ do not commute;

• if the TL is performed before the ITL, the system does not relax to the BG
equilibrium and lives forever in the QSS.

The robustness of the above results was checked in two di5erent ways: (1) by adopting
di5erent initial conditions, as for example double water bag (DWB) initial conditions,
and checking that we get the same QSS (see Ref. [24] for details); (2) by changing
the level of accuracy of the numerical integration, as shown in Fig. 2. We expect these
results to be ubiquitous in nonextensive systems as conjectured in Ref. [13].
In Fig. 3 we study the velocity pdfs. The initial velocity pdfs (WB or DWB initial

conditions) quickly acquire and maintain during the entire duration of the metastable
state a non-Gaussian shape. In Figs. 3(b) and (c) we see that the pdfs of the QSS do
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Fig. 3. Time evolution of numerical velocity pdfs for N=1000 starting from WB and DWB initial conditions,
panel a). For comparison we show also the equilibrium Gaussian curve (full line) in the QSS regime, panel
b–c) (time t = 1200; 8000), and in the equilibrium one, panel d) (time t = 500000).

not change up to a time t = 8000 for a system with N = 1000. The velocity pdf of
the QSS is wider than a Gaussian for small velocities, but shows a faster decrease for
p¿ 1:2. The enhancement for velocities around p∼ 1 is consistent with the anomalous
di5usion and the L6evy walks observed in the QSS regime [22]. The following rapid
decrease for p¿ 1:2 is due to conservation of total energy. From a dynamical point of
view, the stability of the QSS velocity pdf can be explained by the fact that, for N →∞,
MQSS → 0 and thus the force on the spins Fi = (−Mx sin �i + My cos �i)→ 0. On the
other hand, when N is /nite, we have always a small random force, whose strength
depends on N , which makes the system eventually evolve into the usual Maxwell–
Boltzmann distribution after some time. We show this for N =1000 at time t=500 000
in Fig. 3(d). When this happens, L6evy walks disappear and anomalous di5usion leaves
place to Brownian di5usion [22].
We /t the non-Gaussian pdf in Fig. 3(b) by using the one-particle prescription of

the generalized thermodynamics (see Ref. [24] for more details):

P(p) =
[
1− (1− q)

p2

2T

]1=(1−q)

: (3)

This formula recovers the Maxwell–Boltzmann distribution for q = 1 and has been
recently used to describe successfully turbulence [16] and non-Gaussian pdfs related to
anomalous di5usion of Hydra cells in cellular aggregates [18].
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Fig. 4. Nonextensive theoretical pdf, with cut-o5 (dashed curve) in comparison with the numerical ones
(points) and the gaussian equilibrium prediction (full curve). In the inset we report the scaling of
! = Pth − Pnum with N for those points indicated by the arrows.

In our case, the best /t is obtained by a curve with q = 7, T = 0:38 as shown in
Fig. 4. The agreement between numerical results and theoretical curve improves with
the size of the system. A /nite-size scaling con/rming the validity of the /t is reported
in the inset, where !=Pth−Pnum, the di5erence between the theoretical points and the
numerical ones, is shown to go to zero as a power of N (for four values of p). Since
q¿ 3, the theoretical curve does not have a /nite integral and therefore it needs to be
truncated with a sharp cut-o5 (herein assumed to be discontinuous for simplicity) to
make the total probability equal to one. It is however clear that, the /tting value q=7
is only an e5ective nonextensive entropic index. Although similar non-Gaussian pdfs
have been found previously, it was for dissipative systems [16], while this is the /rst
evidence in a Hamiltonian system.
In order to investigate deeper the dynamics of the plateaux observed in Figs. 1 and

2, we have studied the Lyapunov exponent in the QSS regime. In Fig. 5 we show that,
as expected, the largest Lyapunov exponent (LLE) tends to zero when N increases.
The scaling behavior of the LLE can be understood following the same argument
already applied in Ref. [21] in the overcritical region. It is known in fact that, when
the Lyapunov can be estimated by the product of random matrices, the LLE scales
with the power 2

3 of the perturbation [28,21]. In our case the perturbation is given
by the magnetization, for which we have the scaling law M 2˙N−1=3 in the QSS
regime [24], thus we get the scaling LLE˙M 2=3˙ (N−1=3)1=3 = N−1=9. The latter is
in perfect agreement with the numerical results as shown in the /gure. Since LLE
tends to zero as the system is increasingly large, one can safely say that mixing is
increasingly slower and the observed anomalies in the relaxation process are naturally
expected in the sense predicted by Krilov [29]. We note /nally that, emergence of
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Fig. 5. Open points indicate the Largest Lyapunov Exponent (LLE) vs N for the QSS regime. An average
over 10 runs is considered. Straight line indicates the theoretical prediction for LLE scaling, see text.

dynamical correlations and /lamentary sticky structures in the &-space have also been
observed in the QSS regime [24].

3. Conclusions

In this paper we have studied a simple Hamiltonian system with long-range inter-
action. The dynamics of relaxation process is extremely rich and the system shows
the existence of QSS di5erent from the canonical equilibrium. These states satisfy the
usual attributes of thermal equilibrium though they systematically di5er from what BG
statistical mechanics has made familiar to us. Our results provide a /rst veri/cation
of nonextensive statistical mechanics [13] in long-range Hamiltonian systems, and il-
lustrate the correctness of the criticism that Einstein developed in his celebrated 1910
paper [2] about the possible nonuniversality of Boltzmann thermostatistics, and the
need of providing a mechanical basis to it (including naturally time in the discussion).
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