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We introduce the concept of entropy rate to characterize a diffusion process on a complex network. The
entropy rate represents the minimal amount of information necessary to describe the diffusion on the network,
and is a quantity extremely sensitive to the network topology and dynamics. By opportunely tuning the kind of
diffusion, the entropy rate allows one to extract different properties of the network structure. Moreover, entropy
maximization indicates how to design optimal diffusion processes, providing a new theoretical tool with
applications to social, technological, and communication systems.
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Entropy is a key concept in statistical thermodynamics
�1�, in the theory of dynamical systems �2�, and in informa-
tion theory �3�. In the realm of complex networks �4,5�, the
entropy has been used as a measure to characterize properties
of the topology, such as the degree distribution of a graph
�6�, or the shortest paths between couples of nodes, with the
main interest in quantifying the information associated with
locating specific addresses �7�, or to send signals in the net-
work �8�. Alternatively, various authors have studied the en-
tropy associated with ensembles of graphs, and provided, via
the application of the maximum entropy principle, the best
prediction of network properties subject to the constraints
imposed by a given set of observations �9–11�.

The main theoretical and empirical interest in the study of
complex networks is in understanding the relations between
structure and function. Many of the interaction dynamics tak-
ing place in social, biological, and technological systems can
be analyzed in terms of diffusion processes on top of com-
plex networks, e.g., data search and routing, information, and
disease spreading �4,5�. It is therefore of utmost importance
to relate the properties of a diffusion process with the struc-
ture of the underlying network �12,13�.

In this paper, we show how to associate an entropy rate to
a diffusion process on a graph. In this context, the entropy
rate is a quantity more similar to the Kolmogorov-Sinai en-
tropy rate of a dynamical system �2,14� than to the entropy
of a statistical ensemble �1,4�, and measures what is, on av-
erage, the shortest per step description of the diffusion on the
network �3�. Therefore a high entropy rate indicates a large
randomness, or easiness of propagating from one node to
another, and can be related to an efficient spreading over the
network �14�. Differently from the network entropies previ-
ously defined, the entropy rate of a diffusion depends both on
the dynamical process and on the graph topology. This al-
lows us to use the entropy rate in two different ways: �i� to
characterize with a single measure various structural proper-
ties of real-world networks, and �ii� to design optimal diffu-
sion processes which maximize the entropy. As an example
of the powerful possibilities of the introduced measure, we

consider the diffusion of random walkers whose motion is
biased accordingly to a generic topogical or dynamical node
property. In particular, for degree-biased random walks we
find �i� the analytical expression for the entropy rate in scale-
free networks, as a function of the bias; �ii� the dependence
of the entropy on the degree distributions and correlations;
�iii� the optimal bias which maximizes the entropy in differ-
ent real networks.

Let us consider a connected undirected graph with N
nodes and K links, described by the adjacency matrix A
= �aij�, and a diffusion process that can be represented as a
time invariant ergodic Markov chain with a transition matrix
���� ji� �3�. The entry � ji is the probability to go, in one
time step, from node i to node j, and satisfies the normaliza-
tion � j� ji=1∀ i. If the N-dimensional column vector w�t�
= �w1�t� ,w2�t�¯wN�t��� represents the node occupation
probabilities at time t �with �i=1

N wi�t�=1∀ t�, then the dy-
namical evolution of the diffusion process can be expressed
as w�t+1�=�w�t�. An ergodic Markov chain has a unique
stationary distribution w*, such that limt→��tw�0�=w* for
any initial distribution w�0�. The dynamical properties of the
diffusion over the graph can be accounted by evaluating the
entropy rate of the associated Markov chain that, in the case
of an ergodic Markov chain, is given by �3�

h = − �
i,j

� ji � w
i
* ln�� ji� , �1�

where w
i
* is the i component of the stationary distribution.

The value of h measures how the entropy of the process
grows with the number of steps. In the information-theoretic
language, the entropy rate h is the minimal amount of infor-
mation necessary to describe the diffusion process on the
graph. To evaluate h for a given graph we need to calculate
w*. This can be done analytically for a general class of dif-
fusion processes such as random walks in which, at each
time step, the walker at node i chooses one of the first neigh-
bors of i, let say j, with a probability f j � f�xj� depending on
the node property xj. The node property x can be topological
�degree, betweenness, clustering coefficient, etc.� or any
other quantity relevant to the diffusion dynamics �node con-
gestion, healthy state, etc� �5�. In the case of an undirected*Corresponding author: jesus.gardenes@ct.infn.it
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and connected network, such random walks are described by
an ergodic Markov chain �15� with a transition probability
matrix �:

� ji =
aijf j

� jaij f j
. �2�

To calculate w* we consider the probability Wi→j�t� of going
from node i to node j in t time steps,

Wi→j�t� = �
j1,j2,. . .,jt−1

�i,j1
� � j1,j2

� ¯ � � jt−1,j . �3�

Since the network is undirected we have aij =aji∀ i , j. Hence
the relation between the two probabilities Wi→j�t� and
Wj→i�t� can be written as

cif iWi→j�t� = cjf jWj→i�t� , �4�

where ci=� jaij f j. The above relation implies that for the sta-
tionary distribution w* the equation cif iwj

*=cjf jwi
* holds,

and hence w* reads

w
i
* =

cif i

�lclf l
. �5�

By plugging expressions �2� and �5� into the definition of
entropy �1�, we finally get a closed form for the entropy rate
of a diffusion process on the graph.

As an example of the potential of the introduced entropy
rate, we consider the case in which f j has a power law de-
pendence: f j =xj

� with ��R. In this way, by changing the
exponent � we can tune the dependence of the diffusion
process on the node property x, and we can visit the graph in
various ways. When ��0 we are introducing in the random
movement of the particle a bias towards high-x ���0� or
low-x �when ��0� neighbors. On the other hand, when �
=0 the standard �unbiased� random walk is recovered. The
entropy rate reads

h =
�ixi

�� jaijxj
� ln�xj

�� − �ixi
�ci ln�ci�

�icixi
� �6�

and, as expected, it depends on the the kind of bias in the
random walker and also on the graph topology.

Our focus now is to investigate the entropy rate of biased
random walks in real and synthetic scale-free �SF� graphs
with a power-law degree distribution Pk	k−�, and ��2
�4,5�. A natural choice in such a case is to consider degree-
biased random walks, i.e., to take xj =kj.

Synthetic SF networks. Let us start with the particular case
�=0 where the transition probability reads � ji=aij /ki, and
the stationary distribution is w

i
*=

ki

2K . Substituting this expres-
sion in Eq. �1� and changing the sum over node indexes into
a sum over degree classes, we can write the entropy rate of
an unbiased walk on a network with degree distribution Pk as

h =
N

2K
�

k

kPk ln�k� =

k ln�k��


k�
. �7�

In the case of SF networks of size N, the value of h can be
easily expressed as a function of � and N taking into account
that the maximum degree of the network is kmax	k0N1/��−1�,

with k0 being the minimum degree of a node. From Eq. �7�,
and approximating k as a continuum variable, we get

h��,N� = ln�k0� +
1

� − 2
+

N�2−��/��−1� ln�N�
�� − 1��N�2−��/��−1� − 1�

. �8�

The above expression diverges for SF networks when �
→2. Conversely, when ��2 SF networks have a finite en-
tropy in the thermodynamic limit N→�: h���=ln�k0�+ 1

�−2 .
In order to check the analytical results we have con-

structed ensembles of 102 SF networks with N=105 nodes
and different values of �. We have obtained numerically the
stationary distribution w*, and computed the entropy directly
from Eq. �1�. The results, averaged over the ensemble of
networks, are reported in Fig. 1 as a function of �. We notice
a good agreement between numerics and Eq. �8�.

Let us now concentrate on the general case ��0. The
entropy rate of Eq. �6� can be rewritten by changing again
the sums over node indexes into sums over degree classes, as

h = −
�kk

�Pk�Ck ln�Ck� − �k�k�k��Pk��k ln�k���

�kCkk
�Pk

, �9�

where Ck=k�k�k��Pk��k, and Pk��k is the conditional probabil-
ity that a link from a node of degree k ends in a node with
degree k�. We notice that the entropy rate of degree-biased
random walks depends on the degree distribution of the net-
work Pk and on the conditional probabilities Pk��k. In the
particular case of a network with no degree-degree correla-
tions we can write Pk��k=k�Pk� / 
k�, and the expression for
the entropy reduces to

h = �1 − ��

k�+1 ln�k��


k�+1�
+ ln 
k�+1�


k�
� . �10�

This expression only depends on the degree distribution of
the network. For SF networks, we get in the the continuum-
degree approximation:

11
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1
2.2 2.4 2.6 2.8 3 3.2 3.4

h

γ

Thermodynamic limit
h(γ,N=105)

Synthetic SF networks

FIG. 1. Entropy rate h of unbiased random walks on SF net-
works with N=105 nodes as a function of the exponent � of the
degree distribution. Numerical results �circles� are compared with
the two analytical curves corresponding to Eq. �8� �dashed line� and
to the limit N→� �solid line�.
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h��,�,N� =
1 − �

� − � − 2
+

�1 − ��N��+2−��/��−1� ln�N�
�� − 1��N��+2−��/��−1� − 1�

+ ln� k0�� − 2��N��+2−��/��−1� − 1�
�� − � − 2��N�2−��/��−1� − 1� � . �11�

When N→�, the entropy rate in SF networks with ��2
+� diverges as h	 ln�N�. On the other hand, when ��2
+�, the entropy rate in the limit N→� is finite and equal to

h��,�� =
1 − �

� − � − 2
+ ln� k0�� − 2�

� − � − 2
� . �12�

Such an expression, valid in infinite size limit, shows a
monotonic growth of the entropy h�� ,�� with the degree-
bias �, with h tending to infinity as �→ ��−2�−. More inter-
estingly, the entropy rate in finite networks, Eq. �11�, shows
a single maximum at a value of � that depends on �. This
result indicates that, for a given network, it is possible to
maximize the entropy of the process by opportunely tuning
the bias � of the walker.

To check the above analytical expressions we have com-
puted numerically the entropy rate of degree-biased random
walkers on computer-generated uncorrelated SF networks, as
we did for the unbiased case. In Fig. 2�a� we report the
entropy rate as a function of the degree bias � for SF net-
works of size N=105. In Fig. 2�b� we show the scaling of h
with the system size N, in SF network with �=3. In both

cases Eq. �11� is in good agreement with the numerical re-
sults reproducing the qualitative behavior of h as a function
of � �being the global maximum of h well reproduced� and N
�being both the divergence of h, for ���−2, and the
asymptotic finite value of h, when ���−2, correctly repro-
duced�

Real SF networks. Up to now, we focused on the entropy
rate of biased random walks on SF networks. However, real
networks are not perfect scale free and show additional to-
pological properties such as degree-degree correlations,
structural motifs, nonvanishing clustering coefficient, etc.,
�4,5�. Therefore one important question regarding real net-
works is to unveil how a diffusion process is affected by
these topological features. To this end, we compare the en-
tropy rate for a real network with the value hRand, obtained
from Eq. �10�, for a randomized network with the same de-
gree sequence and no correlations �16�. In Fig. 3 we report
the entropies h and hRand as a function of the bias parameter
� for six real networks. We find that the entropy of real
networks h is either larger or smaller than hrand for all the
range of positive values of � �17�. We have observed the
same behavior in other real communication, technological,
and social networks analyzed. Our experiments reveal that
social networks have always h�hRand, while the other net-
works have h�hRand, with the exception of Internet routers.
This difference in the entropy rate has its roots on the nature
of degree-degree correlations, and points out that assortativ-
ity plays a key role in facilitating the spread of information
across the whole network.
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FIG. 2. �Color online� �a� Entropy rate h, as a function of �, for
�-biased random walks on SF networks with N=105 nodes and �
=2.6,3 ,3.4. Symbols represent the values of h found numerically,
while the lines are the corresponding analytical predictions
h�� ,� ,N� of Eq. �11�. �b� Entropy rate h for �-biased random walks
on SF networks with �=3, as a function of the system size N and
for several values of �. Again, symbols are the results of numerical
simulations, while the lines correspond to Eq. �11�.
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FIG. 3. Entropy rate h for �-biased random walks on six real
networks �filled circles�. The networks from �a� to �f� correspond to
Refs. �18–22�. In each case, h is compared to the entropy rate hRand

obtained on a randomized version of the network �full circles�. The
continuous line is the numerical computation of the entropy S �Eq.
�13��. The three measures are shown as a function of �.
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More interestingly, all the real networks studied present a
well defined maximum for the entropy rate at some finite
value �opt of the bias parameter. Therefore a byproduct of the
analysis presented here is the possibility to design optimal
diffusion processes by finding the value �opt where the en-
tropy rate is maximal. In particular, our results for degree
biased random walks indicate that, for assortative networks
�e.g., social networks�, the maximal entropy rate is obtained
with a value �opt�1 while, for disassortative networks, �opt

is located in the sublinear bias region.
Optimal diffusion processes. What are the interesting fea-

tures of a diffusion process with maximal entropy rate? To
illustrate the physical meaning of h and �opt in a practical
case, let us consider a communication network in which,
under stationary conditions, a large number of M information
packets are sent from node to node according to a degree-
biased rule. The goal of each node is to spread information
about its current state �such as its healthy or infected state, its
availability to perform tasks, etc.� to other nodes in the most
efficient way. The state of a given node can be represented
by assigning to each node a different color c �c=1, . . . ,N�.
For instance, we color node i, and also all ni	w

i
* packets

located at node i at time t, with color ci= i. After this color-
ing, the ni packets are delivered to the neighbors of i, thus
passing the color �the information about the state i at time t�
to them. All the nodes make the deliveries simultaneously,
and after the exchange process every node i contains packets
of different colors. The most efficient routing policy is such
that the entropy S of the distribution of colors across the
nodes of the network, after the diffusion step, is maximal.
This entropy can be written as

S = �
i=1

N
ni

M
Si with Si = − �

c=1

N
ni

c

ni
ln

ni
c

ni
, �13�

where Si is the entropy of the color distribution at node i, and
ni

c ��c=1
N ni

c=ni∀ i� is the number of packets of color c at node

i. Hence S is the node average of Si, weighted by the number
of packets that a node is handling. Since ni

c is equal to the
number of packets arrived to i from node j=c, by simple
algebra it is easy to prove that S=h. We have confirmed
numerically that the average entropy of the color distribution
per node is equal to the entropy rate, by performing simula-
tions of the color exchange dynamics on top of the six real
networks. In Fig. 3, the values of S are reported as a function
of �. In conclusion, the bias �opt for which the entropy rate h
is maximal corresponds also to the maximal entropy S of the
color distribution. Therefore finding the diffusion process
with maximal entropy rate for a given network topology is
equivalent to designing the routing policy for which the av-
erage information of network elements about the status of
their neighbors at the previous time step is maximal.

Summing up, in this paper, we have introduced the en-
tropy rate of a diffusion process, a measure that is particu-
larly suited to capture the interplay between network struc-
ture and diffusion dynamics. We have studied how the
entropy rate of degree-biased random walks depends on the
topology of synthetic and real networks. Our results indicate
that it is possible to tune a diffusion process in order to
maximize its entropy rate on a given topology. This maximi-
zation allows us to obtain systems where the information of
nodes about the state of the rest of the network elements is
maximal. Therefore the concept of entropy rate and its maxi-
mization can find useful applications to information dissemi-
nation in social networks, transfer of data in grid computing
systems, or to the design of efficient vaccination campaigns.
The approach adopted here can be easily extended to more
general network topologies, such as weighted graphs and
also, with some appropriate modifications, to directed and
unconnected graphs.
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