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Abstract
In this work, a novel approach based on the estimate of time-varying graph
indices is proposed in order to capture the basic schemes of communication
within the functional brain networks during a simple motor act. To achieve this,
we used a cascade of computational tools able to estimate first the electrical
activity of the cortical surface by using high-resolution EEG techniques.
From the cortical signals of different regions of interests we estimated the
time-varying functional connectivity patterns by means of the adaptive partial
directed coherence. The time-varying connectivity estimation returns a series
of networks evolving during the examined task which can be summarized and
interpreted with the aid of mathematical indices based on graph theory. The
combination of all these methods is demonstrated on a set of high-resolution
EEG data recorded from a group of healthy subjects performing a simple foot
movement. It can be anticipated that the combination of the time-varying
connectivity with the theoretical graph analysis is able to reveal precious
information about the interconnections of the cerebral network as the significant
persistence of mutual links and three-node motifs.
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1. Introduction

The extraction of relevant features from brain connectivity patterns is an open challenging
topic, since often the estimated cerebral networks have a relative large size and complex
structure. Recently, it was realized that functional connectivity networks estimated from the
actual brain-imaging technologies (MEG, fMRI and EEG) can be analysed with the tools
of graph theory (Stam 2004, Salvador et al 2005, Micheloyannis et al 2006). Beyond the
investigation of the network main global features, such as the presence of a small-world
behaviour (Watts and Strogatz 1998, Strogatz 2001, Sporns et al 2004, Sporns and Zwi 2004),
and of scale-free degree distributions (Barabási and Albert 1999, Jeong et al 2000, Amaral
et al 2000), the understanding of the basic structural elements composing brain networks
would reveal important information about the basic type of communication among different
cerebral areas. In particular, a study of link reciprocity, i.e. the degree of mutual interaction
between couples of nodes (Garlaschelli and Loffredo 2004), and the investigation of recurring
patterns of interconnections, known in the literature as motifs (Milo et al 2002), represent two
adequate candidates for the analysis of cerebral networks.

Since brain connectivity is often modulated by rapid changes in time and frequency, the
necessity to detect and study such dynamics has been recently underlined (Boccaletti et al
2006). In this regard, the use of an adaptive multivariate auto-regressive (aMVAR) model
for the estimation of the time-varying cortical connectivity is particularly effective. In fact, it
characterizes at the same time the evolving direction and spectral properties of the interaction
between different brain signals and requires only one model to be estimated from all the time
series (Ding et al 2000, Moeller et al 2001). In addition to this, the recent developments in
the field of the high-resolution EEG techniques (Babiloni et al 2000) allow us to estimate
accurately the electrical activity in particular regions of interests (ROIs) of the human cortex,
giving the opportunity to go beyond the raw EEG signals that return lower quality results
(since in this case the nodes within the network represent electrodes on the scalp, which might
have indirect links with the cortical areas beneath them).

In this work, we consider time-varying cortical networks constructed from a set of high-
resolution EEG recordings in a group of normal subjects performing a task consisting of a
foot movement. We present an analysis of the time evolution of the networks in terms of
link reciprocity and presence of three-node-directed motifs during the task performance. In
particular, the main questions we want to address are as follows.

(1) How do the mutual interactions evolve in a normal subject during the foot movement?
(2) What are the privileged building blocks of the cortical network that significantly occur

during the task performance?
(3) Does any persistent pattern of interconnections appear within the temporal period of

interest?

2. Materials and methods

Five voluntary and healthy subjects participated in the study (age, 26–32 years; five males).
They had no personal history of neurological or psychiatric disorder, and they were free from
medications, alcohol or drugs abuse. The informed consent signature was obtained from each
subject after the explanation of the study, which was approved by the local institutional ethics
committee. For the EEG data acquisition, subjects were comfortably seated on a reclining
chair in an electrically shielded and dimly lit room and they were asked to perform a dorsal
flexion of their right foot (each subject was right-footed). The movement task was repeated

2



J. Phys. A: Math. Theor. 41 (2008) 224014 F De Vico Fallani et al

every 8 s, in a self-paced manner and 200 single trials were recorded by using 200 Hz of
sampling frequency. A 96-channel system (BrainAmp, Brainproducts GmbH, Germany) was
used to record EEG and EMG electrical potentials by means of an electrode cap and surface
electrodes, respectively. The electrode cap was built accordingly to an extension of the 10–20
international system to 64 channels. Structural MRIs of the subject’s head were taken with
a Siemens 1.5 T Vision Magnetom MR system (Germany). Three-dimensional electrode
positions were obtained by using a photogrammetric localization (Photomodeler, Eos Systems
Inc., Canada) with respect to anatomic landmarks: nasion and the two pre-auricular points.
Trained neurologists visually inspected EEG data and trials containing artefacts were rejected.
Subsequently, they were baseline adjusted and low-pass filtered at 45 Hz.

2.1. Estimation of the cortical activity

High-resolution EEG technologies have been developed to enhance the poor spatial
information content of the EEG activity (Le and Gevins 1993, Gevins et al 1994, Nunez 1995).
Principally, this technique involves the use of a large number of scalp electrodes (64–256),
realistic MRI-constructed subject’s head models (Babiloni et al 1997, 2000) and spatial de-
convolution estimations, which are commonly computed by solving a linear inverse problem
based on boundary-element (BEM) mathematics (Grave de Peralta Menendez and Gonzalez
Andino 1999). In this work, the cortical activity from EEG recordings was estimated by using
a realistic head model whose cortical surface consisted of about 5000 uniformly-disposed
dipoles. Estimation of the current density strength for each dipole was computed by solving
the linear inverse problem according to techniques described in previous papers (Babiloni
et al 2005, Astolfi et al 2006). By using the passage through the Tailairach coordinates
system, 16 ROIs were then obtained by segmentation of the Brodmann areas on the accurate
cortical model utilized for each subject. Bilateral ROIs considered in this analysis are the
primary motor areas for foot (MF) and the proper supplementary motor area (SM), the lateral
pre-motor area (6), the cingulated motor area (CM) and the associative area (7), the frontal
areas 9, 8 and the inferior parietal area 40. According to high-resolution EEG techniques,
electrical activity was estimated in these 16 Brodmann areas of interest for this task. In order
to inspect the brain dynamics during the execution of the foot movement, a time segment of
2 s centred on the onset detected by a tibial EMG was analysed. In fact, the most interesting
cerebral processes subserving the movement are actually thought to occur within such an
interval.

2.2. Time-varying connectivity

The partial directed coherence or PDC (Baccalà and Sameshima 2001) is a spectral measure
used to determine the directed influences between any given pair of signals in a multivariate data
set. As recently stressed in Kus et al (2004), the multivariate approach avoids the problem of
the estimation of spurious functional links, which is very common with conventional bivariate
approaches like, for instance, the ordinary coherence. The PDC is obtained from a unique
MVAR model estimated on the entire set of trials, according to the method proposed by Ding
et al (2000). MVAR estimators have been already applied to cortical waveforms estimated
from high-resolution EEG recordings in order to achieve static connectivity networks during
motor tasks in normal subjects and spinal cord injured patients and during cognitive tasks
(Babiloni et al 2005, Astolfi et al 2005, 2007, De Vico Fallani et al 2007b). In order to capture
the cerebral network dynamics, a time-varying formulation of PDC based on an adaptive
MVAR (aMVAR) model is employed in this study. Time-dependent parameter matrices were
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estimated by means of the recursive least squares (RLS) algorithm with the forgetting factor,
as described in Moeller et al (2001) and Hesse et al (2003). Time-varying PDC allowed for the
observation of transient influences among different cerebral regions during the execution of the
experimental task and provided the evolving patterns of connectivity in particular frequency
ranges. The rough connectivity estimation returns a fully connected weighted and asymmetric
matrix, representing the Granger-causal influences (Granger 1969) among all the cortical
regions of interest. In this work, we considered unweighted networks with a common number
of connections that resulted statistically different from a rest period (see the appendix).

2.3. Graph analysis: reciprocity and motifs

Application of graph theory to small networks is rather new when compared to standard
applications of such theory in the biological context. However, the need for the use of graph
analysis applied on small cerebral networks has been recently thoroughly discussed (Hilgetag
et al 2000, Stam et al 2006a, 2006b). Although the application of graph theory to 28 raw
EEG signals has been already addressed (Micheloyannis et al 2006), we want to stress here
that the opportunity to deal with the cortical activity allows representing nodes as particular
Brodmann areas on the cortex (Babiloni et al 2005, De Vico Fallani et al 2007a). The use of
raw EEG signals instead returns less powerful results since nodes within the network represent
electrodes on the scalp, which could have indirect links with the cortical areas beneath them.

The first analysis we perform is that of link reciprocity. Reciprocity reflects the tendency,
in a directed network, of vertex pairs to form mutual connections between each other
(Wasserman and Faust 1994). Here we compute, as a function of time, the correlation
coefficient index ρ proposed by Garlaschelli and Loffredo (2004) that measures whether
double links (with opposite directions) occur between vertex pairs more or less often than
expected by chance. The correlation coefficient can be rewritten as a function of the time
variable t as follows:

ρ(t) = r(t) − c

1 − c
. (1)

In this formula, r(t) is the ratio of the number of links pointing in both directions to
the total number of links at the time t, while c is the connection density, which equals
the average probability of finding a reciprocal link between two connected vertices in a
random network. As a measure of reciprocity, ρ(t) is an absolute quantity which directly
allows one to distinguish, at each time, between reciprocal (ρ(t) > 0) and anti-reciprocal
(ρ(t) < 0) networks, with mutual links occurring more or less often than random, respectively.
The neutral or areciprocal case corresponds to ρ(t) = 0. Note that if all links occur in reciprocal
pairs, one has ρ(t) = 1 as expected.

The second analysis we perform consists in finding the statistically significant motifs in
the network evolution. By motif, it is usually meant a small connected graph of M vertices
and a set of edges (maximally M2 − M, for directed graphs), forming a subgraph of a larger
network with N > M nodes. For each N, there are a limited number of distinct motifs. For
N = 3, 4 and 5, the corresponding numbers of directed motifs are 13, 199 and 9364 respectively
(Harary and Palmer 1973). In this work, we focus on directed motifs with N = 3. The
13 different three-node-directed motifs are shown in figure 1.

Counting how many times a motif appears in a given network yields a frequency spectrum
that contains important information on the network basic building blocks. Introducing the time
variable, a time-varying motif spectrum can be represented as a three-dimensional histogram,
which illustrates the evolving participation of different motifs within the functional network
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Figure 1. Representation and numeration of all the possible directed motifs with three nodes
(3-motifs).

at each time instant. All the indexes computed8 for cortical networks were standardized by
considering their Z-score with respect to the distribution obtained from an ensemble of 100
random graphs. Random graphs were generated from the cerebral network (separately for
each subject, band and time sample) by maintaining the same number of nodes and links,
and randomly (with uniform probability) shuffling the connections in order to destroy the
cortical relationships present in real networks. By means of this procedure, we can look at
those motifs within the cortical networks that occur at a frequency significantly higher than in
random graphs (Milo et al 2002).

3. Results

Figure 2(a) presents a superimposition of the electrode montage with the actual head structures
for a representative subject as an example for the different steps involved in the estimation
of the high-resolution EEG signals obtained in this study. The locations of the ROIs are
illustrated on the left hemisphere of the cortex together with their estimated temporal activity.
As described above, the use of the time-varying PDC on the cortical waveforms obtained
from EEG signals returns a cortical network for each selected time sample and frequency. In
this study, we focused the analysis on two particular spectral ranges related to the movement,
namely the Alpha and Beta bands. In fact, these frequency bands have been suggested as
most responsive to the preparation and execution of a simple limb movement (Pfurtscheller
and Lopes da Silva 1999). In figure 2(b) the time-varying functional networks extracted at
three particular instants are illustrated for the representative subject. The Granger causality
from an area X to Y is represented by an arrow between the nodes X and Y. The colour of the
arrow indicates if the particular link changed (light) or not (dark) its direction in at least one
of the three instants.

The reciprocity indices were gathered from the cortical network of all the subjects in each
time instant. In particular, we calculated the correlation coefficient ρ that indicates the level of
links reciprocity of the networks estimated with respect to a random reorganization of the actual
connections. In figure 3(a), the average profile of the correlation coefficient ρ(t) is shown for

8 The motifs detection algorithms that we used are available in Matlab format at http://www.indiana.edu/∼cortex/
CCNL.html (Sporns 2002).
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Figure 2. (a) Realistic head model for the representative subject. On the right hemisphere
of the scalp, the positions of the electrodes are depicted as white little spheres. On the left
hemisphere of the cortex, all the cortical regions of interest are displayed and opportunely labelled.
The trial-averaged waveforms for a particular subset of areas (7 L, MF L, SM L, CM L, 9 L)
are illustrated. (b) Functional networks of the subject in the Beta frequency band during three
representative instants (−1 s, onset, +1 s) of the task performance. Dark arrows represent the
functional links that persist in all the three instants, while the light arrows represent those flows
that changed direction in at least one instant.

the representative Beta frequency band. The overall presence of mutual links in the cortical
networks is always higher with respect to random (ρ > 0). However, a different behaviour can
be found between the preparation and the execution of the movement. In particular, during
the movement preparation the reciprocity of the cortical networks moves from a relative high
reciprocal state (ρ > 0.25) to a lower (ρ < 0.17) level as revealed by the negative slope of
ρ(t) for −1 < t < 0 s. Instead, during the movement execution the average trend of ρ(t) for
0 < t < 1 s constantly remains in the low reciprocal state reached in proximity of the onset
(0.15 < ρ < 0.2). In figure 3(b), the level of reciprocity of all the possible connections within
the cortical network is illustrated for the same band and during the entire period of interest.
The level of grey codes the number of subjects that actually hold a particular reciprocal link
identified by the values at the ordinates. In table 1, the correspondence between the y-values and
the bilateral link can be deduced by inspecting the values of the symmetric adjacency matrix.
The presence of continuous horizontal lines indicates a sort of ‘persistence’ of particular
reciprocal connections which can also remain active during the entire task performance, as for
the cingulate motor areas (CM L and CM R) with the ipsi-lateral supplementary motor areas
(SM L and SM R), respectively. In such a case, at least three subjects present these persistent
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(a)

(b)

Figure 3. (a) Group-averaged time-varying ‘reciprocity’ during the period of interest in the Beta
band. On y-axes is the correlation coefficient ρ, while time in seconds is on x-axes. Dotted lines
represent the 25th and 75th percentiles. (b) Representation for the persistence of the bilateral
connections within the cortical network during the task performance. On y-axes are all the
120 possible reciprocal connections, while time in seconds is on x-axes. The colour of the line
corresponding to a particular link codes the number of subjects that actually hold such a connection.

connections. Analogous results were observed in the Alpha band, whose data are not shown
here.

The level of involvement for the basic building blocks within the time-varying functional
networks estimated was analysed by means of the motifs’ spectra. The occurrences of all the
3-motifs’ classes were recorded from the evolving cortical networks of each subject in the Beta
band. Figure 4(a) shows the average time-varying motifs spectra by means of the respective
histograms (seen from above). On the ordinates, all the possible 13 motifs with three nodes are
listed (the respective sub-graph structures are shown in figure 1), while on the abscissas time
in seconds is displayed; the greyscale codes the average count for the motifs’ occurrences of
the experimental group. Successively, the contrast with the random networks was addressed
for every subject by calculating the Z-score of all the three motifs’ occurrences in each
temporal instant. By means of this procedure, we can look at these motifs within the cortical
networks that occur with a significant frequency than in random graphs. Figure 4(b) shows
the average Z values for the time-varying motifs’ spectra according to the conventions used
for the previous figure. The significant (p � 0.01) role of two types of building blocks (the
third and eleventh called ‘single-input’ and ‘uplinked-mutual-dyad’, respectively) is revealed
by the persistent high Z values observed during the entire period analysed. Moreover, the
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Table 1. Numeration of all the possible reciprocal connections among the ROIs within the cortical
network.

9-L 9-R 8-L 8-R CM-L CM-R 6L-L 6L-R SM-L SM-R MF-L MF-R 40-L 40-R 7-L 7-R

9-L – 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
9-R – – 16 17 18 19 20 21 22 23 24 25 26 27 28 29
8-L – – – 30 31 32 33 34 35 36 37 38 39 40 41 42
8-R – – – – 43 44 45 46 47 48 49 50 51 52 53 54
CM-L – – – – – 55 56 57 58a 59 60 61 62 63 64 65
CM-R – – – – – – 66 67 68 69a 70 71 72 73 74 75
6L-L – – – – – – – 76 77 78 79 80 81 82 83 84
6L-R – – – – – – – – 85 86 87 88 89 90 91 92
SM-L – – – – – – – – – 93 94 95 96 97 98 99
SM-R – – – – – – – – – – 100 101 102 103 104 105
MF-L – – – – – – – – – – – 106 107 108 109 110
MF-R – – – – – – – – – – – – 111 112 113 114
40-L – – – – – – – – – – – – – 115 116 117
40-R – – – – – – – – – – – – – – 118 119
7-L – – – – – – – – – – – – – – – 120
7-R – – – – – – – – – – – – – – – –

a Persistent connections.

fifth and sixth 3-motifs show an increasing and decreasing involvement, respectively. In
fact, during the movement preparation (from about −1 to 0 s) the significant (p < 0.05)
presence of the sixth motif (called ‘feedback-with-one-mutual-dyad’) is revealed by Z values
>1.96, while a rapid decaying in the zone of non-significance occurs during the execution.
A contrary behaviour can be observed for the fifth motif (called ‘feed-forward-loop’), which
instead tends to significantly (p < 0.05) appear during the movement execution (from about 0
to +1 s). Analogous results were observed in the Alpha band, whose data are not shown here.

4. Discussion

Many of the anatomical and functional networks of the human brain have been shown to
share non-trivial properties related to their complex organization. The large part of the studies
showed interesting evidences related to the global features of the networks inspected. Among
these, the ‘small-world’ property (Strogatz 2001, Stam 2004, Salvador et al 2005, Sporns and
Zwi 2004) of short paths between any two nodes and highly clustered connections and the
‘scale-free’ characteristic of a few nodes with many more connections than the average node
has (Barabási and Albert 1999, Jeong et al 2000) represented the most important and frequent
outcomes. However, the necessity to capture simpler mechanisms such as the presence of
basic building blocks (i.e. motifs) and mutual interactions (i.e. reciprocity) within the cerebral
network represents another interesting aspect that has been poorly inspected. Moreover, even
if the study of brain connectivity by means of graph theory has already provided some clues
in understanding some cortical functions (Tononi et al 1994, Sporns et al 2004, Stam et al
2006a), several aspects still remain unclear. Among these, the absence of a computational
model able to study how the brain dynamics can be affected by a time-varying connectivity as
well as the negligence of considering asymmetric couplings make up real obstacles to the study
of the cerebral interactions. In order to overcome this limitation, the possibility of tracking
the time evolution of the functional connectivity patterns by means of the adaptive partial
directed coherence could represent a major breakthrough in the analysis of EEG and MEG
data. In this study, the indices related to the link reciprocity and three-motifs spectrum have
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Figure 4. (a) Representation for the group average of the time-varying 3-motifs spectra in the Beta
band. On y-axes all the 13 possible directed 3-motifs are listed, while time in seconds is displayed
on x-axes. The colour codes the average count of the motifs’ occurrences. (b) Contrast between
the cortical and random time 3-motifs spectra. Same previous conventions for the axes, while the
colour now codes the group average of the Z-values obtained.

been applied to the time-varying cortical functional networks estimated in a group of healthy
subjects during a simple foot movement. In order to limit the analysis and the discussion of
the results, we presented the results obtained mainly in the Beta frequency band that together
with the Alpha band is known to be involved mainly in the cortical activity involved in the
preparation and the execution of simple motor acts (Pfurtscheller and Lopes da Silva 1999).
However, it must be noted that the methodology presented here is not limited to a particular
frequency band or a particular set of ROIs, and can be adapted to investigate both cognitive
and motor tasks in all the desired spectral content.

The analysis of the average time-varying reciprocity index revealed the significant
presence of mutual links within the cortical networks during the entire period analysed. In
particular, during the preparation (from about −1 to 0 s) of the movement in the Beta frequency
band the functional network moved from a high (ρ > 0.25) to a lower (ρ < 0.17) reciprocal
state. This aspect emphasizes the role of the early preparation in which a higher level of
mutual exchange of information is required to speed up the cortical process in expectation of
the execution. Although the cortical networks seem not much correlated during their maximum
state of reciprocity, this result does not diverge too much from other empirical results obtained
for networks of neuron classes in which values ranged around 0.17–0.18 (Garlaschelli and
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Loffredo 2004). Moreover, by tracking the evolving involvement of each single reciprocal
connection it was possible to observe their ‘persistence’ during the entire period of interest.
Interestingly, the permanence of stable mutual links seems a peculiar characteristic of the
functional networks estimated, which instead cannot be observed in any sequence of random
graphs. In particular, the persistent bilateral links between the cingulate motor areas (CM
left and right) and the supplementary motor areas (SM left and right) in the Beta band reveal
a novel aspect of such a connection that anyway was expected in a self-paced modality of
movement generation, as under our experimental condition (Gerloff et al 1998).

In brain networks, motifs are those basic building blocks consisting of a set of cortical areas
and pathways that can potentially engage in different patterns of interactions depending on
their degree of activation, the surrounding neural context (Sporns and Kötter 2004). In general,
motifs occur in distinct motif classes that can be distinguished according to the size (N) of the
motif, equal to the number of nodes, and the number and pattern of interconnections. In this
study we considered the simpler case of N = 3 (i.e. 3-motifs), as the ROIs involved are not so
numerous. The analysis of the average time-varying spectra of the 3-motifs revealed the basic
rules governing the structure of the complex networks estimated during the task performance
in the Beta frequency band. We compared the 3-motif properties of real brain networks with
those of random networks, and we identified some motif classes that occurred more frequently
during particular stages of the movement. Of particular interest is the involvement of the feed-
forward-loop motif that tends to significantly (p < 0.01) increase during the proper movement
execution (from about 0 to +1 s). This type of building block is known to play an important
functional role in information processing. In fact, one possible function of this circuit is to
activate output only if the input signal is persistent and to allow a rapid deactivation when
the input goes off (Shen-Orr et al 2002). In the cortical context, a possible interpretation of
such a motif would make a particular ROI act as a ‘switch’ for the communication between
the others two ROIs composing the triad. Another interesting aspect was revealed by the
significant (p � 0.01) ‘persistence’ of the single-input motif that represented the highest
recurrent pattern of interconnections within the cortical network during the entire evolution
of the foot movement. The main function of this motif is known to involve the ‘activation’ of
several parallel pathways by a single activator (Shen-Orr et al 2002). Thus, since the single
input only differs from the feed-forward-loop motif for the lack of a functional link between
the two areas activated, we can claim that the privileged scheme of communication within
the functional networks estimated consists in a parallel activation from a particular ROI of
two other distinct areas, whose communication seems to increase significantly only during the
proper movement execution.

On the base of these experimental results obtained from the application of theoretical
graph indices to the time-varying connectivity networks estimated by using advanced
high-resolution EEG, we have possible answers to the experimental questions posed in
section 1.

In particular,

(1) The global level of mutual interaction in the cortical networks of healthy subjects changes
from a high reciprocal state during the early preparation of the foot movement to a
lower level of reciprocity persisting until the end of the period considered. This aspect
emphasizes the role of the early preparation in which a high level of mutual exchange of
information is required to speed up the cortical process in expectation of the movement
execution.

(2) Among the several building blocks that significantly occurred, of particular interest is
the involvement of the feed-forward-loop motif that tends to increase significantly during
the proper movement execution. In the cortical context, this type of 3-motif plays an
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important functional role in information processing making a particular ROI act as a
‘switch’ for the communication between the others two ROIs composing the triad.

(3) The permanence of particular schemes of interconnections seems a peculiar characteristic
of the cortical networks estimated that cannot be observed in any sequence of random
graphs. The persistent bilateral links between the cingulate motor areas and the
supplementary motor areas in the Beta band reveal a novel aspect of the dynamics of
such connections in a self-paced task. Moreover, the single-input 3-motif is significantly
present during the entire temporal period assuring a persistent functional substrate that
characterizes the preparation and the execution of the foot movement.
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Appendix

In order to consider only the task-related connections, we adopted a filtering procedure based
on a statistical contrast with a rest period. In each trial, a rest period of 2 s preceding the
movement was considered as a means of contrast (from −4 to −2 s before the onset). For
each time sample, the different connections’ intensities were collected in order to build for
each pair of ROIs a distribution of values characterizing such a rest period. In order to test
the significance of the connections estimated within the period of interest, a threshold range
was then extracted from the values of the rest distribution by considering a percentile of 0.01
and 0.99, respectively, for the lowest and highest edges. Significant functional links are those
whose intensity falls outside such a range.

Then, in order to analyse the topology of the cortical networks estimated we moved to the
respective unweighted networks by just considering the presence (1) or the absence (0) of the
significant functional links. In particular, since we are comparing cortical networks that belong
to different subjects, frequency bands and time samples, a common number of connections
(or density) has been considered in each unweighted graph. In fact, when seeking a common
behaviour among different networks, the graph indices that evaluate their architecture could
suffer in robustness when they apply to graphs with different densities. Moreover, it can be
proved that, in a graph with 16 nodes, a density of 0.2 is able to emphasize its global and local
characteristics (De Vico Fallani, data not shown here). Hence, in this study we considered
48 connections (i.e. density = 0.2) for each network obtained by removing the weakest links
from each weighted graph.
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