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We analyze the connectivity structure of weighted brain networks extracted from spontaneous

magnetoencephalographic signals of healthy subjects and epileptic patients (suffering from absence

seizures) recorded at rest. We find that, for the activities in the 5–14 Hz range, healthy brains exhibit a

sparse connectivity, whereas the brain networks of patients display a rich connectivity with a clear

modular structure. Our results suggest that modularity plays a key role in the functional organization of

brain areas during normal and pathological neural activities at rest.
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From the brain to the Internet and to social groups, the
characterization of the connectivity patterns of complex
systems has revealed a wiring organization that can be
captured neither by regular lattices, nor by random graphs
[1]. In neurosciences, it is widely acknowledged that the
emergence of several pathological states is accompanied
by changes in brain connectivity patterns [2]. Recently, it
has been found that functional connectivity patterns ob-
tained from magnetoencephalography (MEG) and electro-
encephalography (EEG) signals during different pathologi-
cal and cognitive brain states (including epilepsy) display
small-world (SW) properties [3]. Empirical studies have
also lead to the hypothesis that brain functions rely on the
coordination of a scattered mosaic of functionally speci-
alized brain regions (modules), forming a weblike structure
of neural assemblies [2]. Modularity is a key concept in
complex networks from RNA structures to social networks
[4,5]. A module is usually defined as a subset of units
within a network, such that connections between them
are denser than connections with the rest of the network.
In biological systems, it is generally acknowledged that
modularity results from evolutionary constraints and plays
a key role in robustness, flexibility, and stability [6].

Absence seizures are the most characteristic expression
of nonconvulsive generalized epilepsy. Their main charac-
teristic in brain signals is the occurrence of high amplitude,
rhythmic spikewave discharges synchronized over wide
cortical areas, which manifests suddenly from a normal
background. Current studies of brain connectivity mainly
focus on the onset and evolution of epileptic discharges.
Nevertheless, little is known about the organization of
brain networks during spontaneous background activities
of patients, and the role of these connectivity patterns on
the emergence of absence seizures. In this Letter we study
the modular organization of brain networks extracted from
spontaneous MEG signals of epileptic patients and healthy
subjects. The results of our analysis reveal a nonrandom
structural organization in both normal and pathological

brain networks. In particular, the functional networks of
control subjects are characterized by a sparse connectivity
between the modules. In contrast, brain connectivity of
epileptic patients (recorded out of seizures) displays a
configuration where nodes in a functional module are
connected to different functional modules. This modular
configuration might play a key role in the integration of
large scale brain activities, facilitating the emergence of
epileptic discharges.
The data used in this study were acquired from 5 healthy

subjects and 5 epileptic patients suffering from absence
seizures. The study was performed with written consent of
the subjects and with the approval of the local ethics
committee. During the recordings, subjects and patients
were instructed to rest quietly, but alert, and keep their eyes
closed. The brain signals were acquired with a wholehead
MEG system (151 sensors; VSM MedTech, Coquitlam,
BC, Canada), digitized at 1.25 kHz with a bandpass of
0–200 Hz. All the analyses were performed on 338 non-
overlapping quasistationary segments (206 for all the pa-
tients and 132 for the healthy group) of 5 s without eyes or
muscular artifacts, nor epileptic activities (as, e.g., seizures
or epilepticlike activity) and far (at least 10 s) from recent
epileptic discharge. In agreement with previous findings,
surrogate data tests revealed that less than 4% of interde-
pendencies between the spontaneous brain activities were
nonlinear [7]. Thus, weighted brain networks were con-
structed by means of a definition of functional links based
on linear coherence. The squared modulus of the coherence
between two time series xiðtÞ and xjðtÞ (normalized to zero

mean and unit variance) was defined as j�ijðfÞj2 ¼
jSijðfÞj2

SiiðfÞSjjðfÞ , where Sii and Sij (the spectral and cross-spectral

densities) were estimated using the Welch’s averaged pe-
riodogram method [8].
Recent results show that correlations between magnetic

fields sensors located at a distance less than 4 cm cannot
distinguish between spontaneous activities of epileptic
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patients and control subjects [9]. To reduce the influence of
these spurious correlations between MEG signals, we have
excluded the nearest sensors (separated less than 5 cm)
from the computation of coherence values. To perform the
statistical analysis of coherence values, we used Fisher’s Z

transform of �ij: Zij ¼ 0:5 lnð1þ�ij

1��ij
Þ. Under the hypothesis

of independence, Zij has a normal distribution with ex-

pected value 0 and variance 1=2Nb, where Nb is the
number of nonoverlapping blocks used in the estimation
of spectral densities [8]. To correct for multiple testing, the
false discovery rate (FDR) method was applied to each
matrix of �ij values [10]. With this approach, the threshold

of significance �th was set such that the expected fraction
of false positives is restricted to q � 0:01. Finally, in the
network construction, a functional connection between two
of the N ¼ 151 nodes (brain sites) was assumed as an
undirected weighted link; i.e., we set the weight of the
link between i and j as wij ¼ wji ¼ �ij when �ij > �th,

and wij ¼ 0 otherwise.

To characterize the network structure of healthy subjects
and epileptic patients, we evaluated a list of measures for
weighted graphs [1]. Namely, the node strength si ¼P

kwik, the weighted clustering coefficient ci [1], the effi-
ciency Ei of a node i [11], as well as the respective
averages over the graph nodes S ¼ 1=N

P
isi, Cw ¼

1=N
P

ici and the global efficiency of the graph E. As
null model, brain networks were compared to equivalent
random graphs, obtained by randomly rewiring the links of
the original networks while keeping the same degree dis-
tribution [12]. The statistical significance of a given metric
� is assessed by quantifying its statistical deviation from
values obtained in the ensemble of randomized networks.
Let � and � be the mean and SD of the parameter �
computed from such an ensemble. The significance is
given by the ratio �� ¼ j���j=�whose p value is given
by the Chebyshev’s inequality [13]. To assess significant
differences between topological features of the two groups,
we used standard nonparametric permutation methods,
which account for spatial dependences in the data [14].
We used exhaustive permutations (105) to estimate the
empirical distribution under the null hypothesis of no
difference between the two groups.

Although we applied our approach to connectivity
graphs obtained from brain oscillations at the conventional
frequency bands (f < 5 Hz, 5< f < 15 Hz, 15< f <
24 Hz, 24< f < 35, and f > 35 Hz), statistically signifi-
cant differences between normal and epileptic brain net-
works were observed only for the brain activities in the
extended alpha range (5–14 Hz). Henceforth, all results
presented here refer to functional networks obtained at this
frequency band. The basic network properties (averaged
over subjects) are summarized in Table I. The structure of
functional brain networks was found to be significantly
different from that of randomized counterparts. Namely,
brain networks of both patients and healthy subjects
yielded a clustering coefficient Cw larger than that of

randomized graphs (p < 10�3), and values of efficiency
as large as those of random graphs, indicating a small-
world behavior. These results agree with previous findings
suggesting that brain sites have an optimal interaction with
most other brain regions [3]. Furthermore, average network
properties (S, Cw, and E) of epileptic patients were found
to be different (p < 10�3) from those of control subjects,
supporting the hypothesis that neural disturbances are
correlated with changes in functional network architectural
features [2].
More detailed information on the differences between

patients and control subjects can be acquired by the analy-
sis of the network at the level of node properties. In Fig. 1
we report the spatial distribution of node measures si, ci,
and Ei (averaged over all control subjects and over all
patients) for each sensor of the network. Results indicate
that epileptic patients have a richer node connectivity than
control subjects. Difference maps clearly identify the cen-
troparietal regions as those brain areas with the highest
contrast between patients and control group. Although the
node strength of epileptic patients is twice as large as that
of healthy subjects, if links of real networks are randomly
rewired by keeping the same degree distribution, no sig-

TABLE I. Network properties in control subjects (CTL) and
patients (PAT): mean node strength S, average weighted cluster-
ing coefficient Cw, global efficiency E, maximal modularity Q,
and number of modules Nm. �� denotes the average of metric �
obtained from 20 random graphs.

S Cwð�CÞ Eð�EÞ Qð�QÞ Nm

CTL 4.04 0.233 (0.096) 0.649 (0.892) 0.538 (0.001) 13.7

PAT 7.34 0.300 (0.160) 0.893 (1.101) 0.503 (0.006) 8.30

FIG. 1 (color). Topographic distribution of node strength si
(a), weighted clustering coefficient ci (b), and efficiency Ei (c).
Control subjects (CTL), patients (PAT), and difference maps
(p values) of their comparison are reported for real and equiva-
lent random configurations.
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nificant differences are observed between the two groups.
This rules out the possibility that the difference in the
number of connections alone could account for differences
in Cw and E. No significant difference between healthy
subjects and patients was observed by direct comparison of
the spatial maps of the �–activity power [15].

A potential modularity of brain networks is suggested by
the fact that the networks display a clustering coefficient
larger than that obtained in random graphs [16]. Previous
studies over brain networks have used clustering methods
to identify similar groups of brain activities. However,
classical approaches such as those based on principal
components analysis (PCA) and independent components
analysis (ICA), make very strong statistical assumptions
(orthogonality and statistical independence of the retrieved
components, respectively) with no physiological justifica-
tion [17]. To find the network modules we have instead
used an algorithm based on a spectral embedding of graphs
[18] (similar theoretical frameworks have been recently
proposed [19]). The algorithm is based on the definition of
a Markov chain with a transition probability matrix P with
entries pij ¼ wij

si
. If Pt is the tth iterate of matrix P, the

element pijðtÞ encodes the probability of moving from

node i to node j through a random walk of length t. For
an undirected and connected graph, the Perron Frobenius
theorem assures that ��

i ¼ siP
k
sk

is the unique stationary

distribution of the Markov chain, such that
limt!1

P
i pijðtÞ�ið0Þ ¼ ��

j . For directed networks, recent

approaches are proposed to ensure this convergence [20].
The random walk gives rise to a geometric diffusion

with an associated distance between nodes i and j defined

as [18]: d2ijðtÞ ¼
P

k�0
pikðtÞ�pjkðtÞ

��
k

, where the term ��
k is

supposed to compensate for discrepancies in local den-
sities. By construction, distance between nodes is strongly
ruled by the connectivity of the graph, and it takes
small values if nodes are connected by many paths.
Considering the spectral representations of matrix P, one
has a set of eigenvalues j�0j � j�1j � . . . � j�N�1j and
eigenvectors ’k and c k such that ’T

kP ¼ �k’
T
k and

Pc k ¼ �kc k. The diffusion distance can be written as
d2ijðtÞ ¼

P
k�1�

2t
k ½c kðiÞ � c kðjÞ�2, where c kðjÞ denotes

the component j of eigenvector k. The diffusion distance
can be approximated (note that ’0 ¼ �� and c 0 is a
constant vector) to a relative precision using the first �

nontrivial eigenvectors and eigenvalues: d2ijðtÞ ’P�
n¼1 �

2t
n ½c nðiÞ � c nðjÞ�2. This is equivalent to embed-

ding the graph in a low dimensional space R�, converting
the diffusion distance between nodes of the graph into
Euclidean distance in R� [18]. This approach has the
main advantage that it defines a meaningful representation
of the graph and it leads to explicitly define a distance
metric on the space R� that reflects the connectivity of the
network. Graph modules are then extracted by a k-means
clustering algorithm in the embedding space. The algo-
rithm starts with a random assignment ofNm cluster center.

Then, the partition is updated by repeating the following
steps: (i) each point is assigned to the nearest center; (ii) the
new geometric center of each cluster are recomputed. The
algorithm stops when the assignments of nodes are no
longer changed. The algorithm reaches convergence in
very few iterations after the initial generations, but it
only guarantees a convergence towards a local optimum.
In fact, the k means is sensitive to the initial choice of
centroids. To overcome this drawback, we run the algo-
rithm several times (500) for different number of modules
(Nm ¼ 2; . . . ; 15) and return the partition yielding the larg-
est modularity Q. The modularity QðSÞ for a given parti-
tion S of a weighted network is defined as [4]

QðSÞ ¼ PNm

s¼1½lsL � ðds2LÞ2�, where L is the total weight of

all connections in the network, ls is the weight of links
between vertices in module s, and ds is the total weight of
links in module s. To select the optimal number of diffu-
sion coordinates, we have repeated the clustering algorithm
for all possible values of�, and looked for the largest value
of Q.
The method has been tested on synthetic networks [21],

and used to find modules in brain networks. The presence
of modules is actually confirmed by the high values of Q
obtained for the optimal partition of the brain networks of
both control subjects and patients. The main result is that
brain networks of epileptic patients have a structure con-
sisting in a smaller number of modules (Nm ¼ 8:30) with
respect to that of control subjects (Nm ¼ 13:7). To assess
the stability of the partition structure across healthy sub-
jects and patients we used the adjusted Rand index J [22],
which yields a normalized value between 0 (if the two
partitions are randomly drawn) and 1 (for an identical
partition structure). The values of J indicate a high stability
of the partition structure across all the epileptic patients
(J ¼ 0:733) and certain variability in the modular structure
of control subjects (J ¼ 0:479).
Figure 2(a) illustrates the spatial distribution of the

modules obtained for healthy subjects and patients.
Despite the differences, somemodules fit well some known
brain regions including occipital, parietal, and frontal
areas. Although a one-to-one assignment of anatomical
brain areas to the retrieved modules is difficult to define,
modules assignment provides the basis for the analysis of
nodes according to their patterns of intra- and intermodules
connections [5]. The within-module degree z score mea-
sures how well connected the node i is to other nodes in the

same module, and is defined as zi ¼ kis� �ks
�ks

, where kis is

total weight of links of node i to other nodes in its module
s, while �ks and �ks are average node strength and standard

deviation of nodes in s. Thus node i will display a large
value of zi if it has a large number of intramodular con-
nections relative to other nodes in the same module.

The participation coefficient pci ¼ 1�PNm

s¼1ðkiski Þ2 quanti-
fies instead to which extent a node i is connected to differ-
ent modules. This coefficient takes values of zero if a
node has most of its links exclusively with other nodes of
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its module, and 1 if they are distributed among different
modules.

In Figs. 2(b) and 2(c) we report, respectively, the spatial
distribution of the node participation coefficient pc and of
the z score for control subjects and patients. The difference
map for the z score reveals very small differences in the
way the nodes are connected to other nodes in the same
module. Conversely, the distribution of the participation
coefficient pc in control subjects strongly differ from that
obtained for epileptic patients where nodes (specially those
of the right centroparietal areas) participate with their links
in several modules. The same modular partition did not
reveal significant differences between the equivalent ran-
dom configurations of both groups [15]. This is a remark-
able result as it supports the hypothesis that normal and
pathological brain dynamics are characterized by different
functional connectivity patterns [23].

In conclusion, in this Letter we have addressed a funda-
mental problem in neuroscience: characterizing the con-
nectivity structure of functional networks associated to
normal and pathological neural dynamics. From the analy-
sis of spontaneous brain activities at rest, we found that
the architecture of functional networks extracted from
epileptic patients differs from that of healthy subjects.
Interestingly, we identified a nonrandom modular structure
of brain networks. Modularity analysis revealed that nodes
of epileptic brain networks abnormally link different func-
tional modules in the network. The connectivity of brain
activities at the extended� band of epileptic patients might
play a putative role in the emergence of absence seizures.
This leads up to the need of more refined studies, as in
Ref [24], to address the role of this architecture in the
absences seizures.

A modular description of brain networks might provide,
more in general, meaningful insights into the functional
organization of brain activities recorded with others neuro-
imaging techniques (EEG, MEG, or functional magnetic
resonance imaging) during diverse cognitive or pathologi-
cal states. Applied to other multivariate data (e.g., financial
or epidemiological time series), our approach could pro-
vide new insights into the network structure of spatially
extended systems.
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