
CHAOS 16, 015113 �2006�

D

Centrality in networks of urban streets
Paolo Crucitti, Vito Latora, and Sergio Porta
Scuola Superiore di Catania, Italy Dipartimento di Fisica e Astronomia, Università di Catania,
and INFN Sezione di Catania, Italy and Dipartimento di Progettazione dell’Architettura,
Politecnico di Milano, Italy

�Received 6 September 2005; accepted 11 November 2005; published online 31 March 2006�

Centrality has revealed crucial for understanding the structural properties of complex relational
networks. Centrality is also relevant for various spatial factors affecting human life and behaviors
in cities. Here, we present a comprehensive study of centrality distributions over geographic net-
works of urban streets. Five different measures of centrality, namely degree, closeness, between-
ness, straightness and information, are compared over 18 1-square-mile samples of different world
cities. Samples are represented by primal geographic graphs, i.e., valued graphs defined by metric
rather than topologic distance where intersections are turned into nodes and streets into edges. The
spatial behavior of centrality indices over the networks is investigated graphically by means of
color-coded maps. The results indicate that a spatial analysis, that we term multiple centrality
assessment, grounded not on a single but on a set of different centrality indices, allows an extended
comprehension of the city structure, nicely capturing the skeleton of most central routes and sub-
areas that so much impacts on spatial cognition and on collective dynamical behaviors. Statistically,
closeness, straightness and betweenness turn out to follow similar functional distribution in all
cases, despite the extreme diversity of the considered cities. Conversely, information is found to be
exponential in planned cities and to follow a power-law scaling in self-organized cities. Hierarchi-
cal clustering analysis, based either on the Gini coefficients of the centrality distributions, or on the
correlation between different centrality measures, is able to characterize classes of cities.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2150162�
Centrality measures serve to quantify that in a network
some nodes are more important (central) than others.
The idea of centrality was first introduced in the context
of social systems, where it was assumed a relation be-
tween the location of an individual in the network and its
influence and/or power in group processes. Since then,
various centrality measures have been proposed over the
years to quantify the structural centrality of an indi-
vidual in a social network, and the issue of centrality has
found many applications also in biology and technology.
When dealing with urban street patterns, centrality has
been investigated in relational (topological) networks
only, neglecting a fundamental aspect of the system as the
geography. Here, we consider urban street patterns as
spatial networks, i.e., networks embedded in the real
space (whose nodes occupy a precise position in a two-
dimensional Euclidean space, and whose edges are real
physical connections). In such an approach, a city is
transformed into a spatial graph by mapping the inter-
sections into the graph nodes and the roads into links
between nodes. By using a set of different centrality indi-
ces (multiple centrality assessment), extended or defined
on purpose for spatial graphs, it is possible to spot the
relevant places of a city. Relevant places means, places
closer to other places (closeness centrality), places that
are structurally made to be traversed (betweenness cen-
trality), places whose route to other places deviates less
from the virtual straight route (straightness centrality),
and places whose deactivation affects the structural prop-

erties of the system (information centrality). Moreover,
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by investigating how centrality is distributed among the
nodes of the graph, and how the different centrality indi-
ces are correlated, it is possible to characterize classes of
cities. In particular, we have found large differences be-
tween self-organized and single-planned cities in the dis-
tribution of information centrality. The centrality analy-
sis hereby presented opens up to the in depth
investigation of the correlation between the structural
properties of the network and the relevant dynamics on
the network like pedestrian and/or vehicular flows, retail
commerce vitality, land-use separation or urban crime.
We expect that some of these factors are more strictly
correlated to some centrality indices than to others, thus
giving informed indications on the actions that can be
performed in order to increase the desired factors, as eco-
nomic development, and to hinder the undesired ones, as
crime rate.

I. INTRODUCTION

The science of networks has been witnessing a rapid
development in recent years: the metaphor of the network,
with all the power of its mathematical devices, has been
applied to complex, self-organized systems as diverse as so-
cial, biological, technological and economic, leading to the
achievement of several unexpected results.1–3 In particular,
the issue of centrality in networks has remained pivotal,
since its introduction in a part of the studies of humanities
named structural sociology.4 The idea of centrality was first

5
applied to human communication by Bavelas who was in-
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terested in the characterization of the communication in
small groups of people and assumed a relation between
structural centrality and influence and/or power in group pro-
cesses. Since then, various measures of structural centrality
have been proposed over the years to quantify the impor-
tance of an individual in a social network.4 Currently, cen-
trality is a fundamental concept in network analysis though
with a different purpose: while in the past the role and iden-
tity of central nodes were investigated, now the emphasis is
more shifted to the distribution of centrality values through
all nodes. Centrality, as such, is treated like a shared resource
of the network community, like wealth in nations, with the
focus being on the homogeneity and/or heterogeneity of
distributions.1 In urban planning and design, as well as in
economic geography, centrality, though under different terms
like accessibility, transport cost or effort, has entered the
scene stressing the idea that some places are more important
than others because they are more central;6 all these ap-
proaches have been following a primal representation of spa-
tial systems, where punctual geographic entities �street inter-
sections, settlements� are turned into nodes and their linear
connections �streets, infrastructures� into edges. A pioneering
discussion of centrality as inherent to urban design in the
analysis of spatial systems has been successfully operated
after Hillier and Hanson seminal work on cities7 since the
mid-1980s. Space Syntax, the related methodology of urban
analysis, has been raising growing evidence of the correla-
tion between the so-called integration of urban spaces, a
closeness centrality in all respects, and phenomena as diverse
as crime rates, pedestrian and vehicular flows, retail com-
merce vitality and human way-finding capacity.8 The Space
Syntax approach follows a dual representation of street net-
works where streets are turned into nodes and intersections
into edges. An outcome of the dual nature of Space Syntax is
that the node degree is not limited by physical constraints,
since one street has a conceptually unlimited number of in-
tersections; this property makes it possible to witness the
emerging of power laws in degree distributions9–11 that have
been found to be a distinct feature of other nongeographic
systems.1–3,12 On the other hand, the dual character leads
Space Syntax to the abandonment of metric distance, a street
is one node no matter its real length. Metric distance, con-
versely, was the core of most if not all territorial studies13

and is a key ingredient of spatial networks.14 In this paper we
propose a primal network analysis of urban street systems
within a properly geographic framework based on metric dis-
tances. In the primal representation urban street patterns are
turned into undirected, valued, primal graphs, where inter-
sections are nodes and streets are edges. We show that by
using a set of various centrality measures, it is possible to
characterize and discuss urban networks within the same
framework of all other complex systems of a nongeographic
nature.

II. THE NETWORK APPROACH: SPACE SYNTAX „SS…

The network approach has been broadly used in urban
studies. Since the early 1960s, a lot of research has been
spent trying to link the allocation of land uses to population

6
growth through lines of transportation, or seeking the pre-
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diction of transportation flows given several topological and
geometric characteristics of traffic channels15 or eventually
investigating the exchanges of goods and habits between
settlements in the geographic space even in historical eras.16

Urban design as a discipline, beside some few theoreti-
cal efforts17–19 has not contributed that much to the picture in
direct operational terms, with one quite relevant exception.
In fact, after the seminal work of Hillier and Hanson,7 a
rather consistent application of the network approach to cit-
ies, neighborhoods, streets and even single buildings, has
been developed under the notion of Space Syntax �SS�.

The network analysis, when applied to territorial cases,
has mostly followed a primal graph representation, where
intersections �or settlements� are turned into the nodes of a
graph and streets �or relationships� into edges. That represen-
tation seems to be the most intuitive for networks character-
ized by a strong connection to the geographic dimensions,
which is to say networks where distance must be measured
not just in topological terms �steps�, like, for instance in
social systems, but rather in properly spatial terms �meters,
miles�, like in urban street systems. It might appear paradoxi-
cal, though, that Space Syntax, the flagship application of
urban design to the network analysis of city spaces, did fol-
low the opposite direction, being based on a dual graph rep-
resentation of urban street patterns. In this representation,
axial lines that represent generalized streets �more exactly,
“lines of sight” or “lines of unobstructed movement” along
mapped streets� are turned into nodes, and intersections be-
tween each pair of axial lines into edges. More precisely,
Space Syntax is based on the four steps illustrated in Fig. 1,
top panel.

�i� Based on the idea that the basic spatial unit is the line
of sight �or unobstructed movement�,11 the street pat-
tern �1� is transformed into an axial map �2�, still a
primal representation though not properly a graph.

�ii� The axial map �2� is transformed into a dual graph �3�,
called the connectivity graph. This is an undirected
graph made by N nodes, the number of axial lines,
and K links representing the intersections between
couples of axial lines.

�iii� Though not limited to just one index, the core of the
Space Syntax methodology, when applied to street
networks, is the index of integration, which is stated
to be “so fundamental that it is probably in itself the
key to most aspects of human spatial organization.”8

The global integration INTi of street �axial line� i is
defined as20,21

INTi =
DN

RAi
, �1�

where DN is a normalizion factor depending solely on
N, and RAi is the so-called relative asymmetry. This
latter quantity is defined as

RAi =
2�MDi − 1�

N − 2
, MDi =

1

N − 1�
j=1

N

sij , �2�

where sij represents the length of the shortest journey

route between two streets in the city, and is given by
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the smallest number of steps �i.e., the fewest changes
in direction� between the correspective nodes of the
dual graph �3�. In practice, the integration index, as
defined in Eq. �1�, turns out to be nothing else than a
differently normalized version of the closeness cen-
trality �Eq. �4�� that we will discuss in the next section
in the context of the multiple centrality assessment
�MCA�.

�iv� The integration of each node in the connectivity graph
�3� is calculated, and color/coded values are reported
back on the axial map �4�, giving rise to the final
primal-like color/coded representation.

An example of the axial map for the city of Cairo is
reported in Fig. 2. Here, the streets in red represent the most
central nodes of the dual graph in terms of the global inte-
gration defined in Eq. �1�, while those in blue are the less
central.

In the past 20 years, Space Syntax has been applied to
many urban cases establishing a significant correlation be-
tween the topological centrality of streets and phenomena as
diverse as their popularity �pedestrian and vehicular flows�,
human way-finding, safety against microcriminality, retail
commerce vitality, activity separation and pollution.22 Short-
comings as well as benefits of this approach have been often
remarked.11,20,23–27 The main problem with SS is that it does
not account for metric distances. One street is turned in one
node �a dimensionless entity�. Only the topology of the sys-
tem is considered, relations between nodes are just step dis-
tances, which leads to a substantial underestimation of the
performative motivations of collective behaviors �deeply af-
fected by the metric factor� in favor of their sole cognitive
motivations �more affected by the pure relational factor�.26

Another problem with the SS is that the outcomes are mostly
based on a single index, that of integration-closeness central-

FIG. 1. �Color� Sketch of the basic steps in the space syntax �SS� approach
panel�. In this latter approach, node centrality values are calculated directly
values are reported on the nodes of the primal graph �3�. Centrality values
ity; this index turns out to be so vulnerable to the edge
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effect—the distortion that gathers higher centrality values
around the geometrical center of the image—that it would
make the whole analysis meaningless without the implemen-
tation of a generalization process, which is what axial map-
ping does. On the other hand, having implemented the axial
mapping process, the emergence of central routes in SS is
not the outcome of the natural flow of centrality; rather it is
heavily affected by the axial mapping rationale, in particular,
it is impossible to account for variations along the same line,

panel� and in the proposed multiple centrality assessment �MCA� �bottom
he primal graph representation �2�, avoiding the dual passage. Color/coded
en be reported on nodes �3� or on edges �4�. See text for details.

FIG. 2. �Color� An application of the SS. The axial map for the city of
Cairo. Streets in red represent central nodes in the dual graph according to
the integration index of Eq. �1�. Space Syntax measures have been calcu-
lated using the Axwoman 1.0 extension of Arcview 3.1 over a handmade
axial map of the 1-square-mile map of central Cairo. Axwoman is a software
developed in the Center for Advanced Spatial Analysis �CASA�, University
�top
on t
College, London.
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while the line does intersect other lines. A clear example is
the axial line number 4 in the top panel of Fig. 1, this route
to be a single unit, it is an outcome of axial mapping, and not
of the centrality flow over the system.

Finally, the SS dual approach is fundamentally different
from the traditional network representation of geographic
systems, which is primal: an immense amount of information
is currently available in this format which can directly sup-
port the MCA analysis.

III. THE MULTIPLE CENTRALITY ASSESSMENT

The multiple centrality assessment relies on three basic
principles26,27 as follows:

�1� primal graphs, rather than dual;
�2� metric distance, rather than topologic;
�3� many centrality indices, rather than mainly closeness.

The method is based on the four steps illustrated in Fig.
1, bottom panel.

�i� The urban street pattern �1� is trasformed into an un-
directed valued primal graph �2�: the intersections are
turned into graph nodes, and streets are the edges.
Edges follow the footprints of real streets. The length
of each street is associated to the corresponding edge.
In this way both the topology and the geography �met-
ric distances� of the system are considered.

�ii� The evaluation of the importance of a node is based
on different node centrality measures, namely close-
ness CC, betweenness CB, straightness CS and infor-
mation CI, discussed below. The four centrality mea-
sures are calculated for each node of the primal graph
�2�.

�iii� Color/coded values are reported on the nodes of the
primal graph �2�, giving rise to four figures as that
reported in �3�, one for each of the four centrality
measures. Of these nature are, for instance, Fig. 4 and
Fig. 5.

�iv� The final layout can either map node �3�, as well as
edge centrality �4�. In this latter case, the centrality of
an edge is calculated as the average of its couple of
endnodes; this simple procedure highlights a deep
character of spatial networks when represented in
such a primal way: one edge exchanges with the sys-
tem only at nodes, so its relational properties as a
system’s component entirely depends on its endnodes’
importance.

The following is a list of the centrality measures we have
adopted. The definitions are given in terms of an undirected,
valued �weighted� graph G, of N nodes and K edges. The
graph is described by the adjacency N�N matrix A, whose
entry aij is equal to 1 when there is an edge between i and j
and 0 otherwise, and by a N�N matrix L, whose entry lij is
the value associated to the edge, in our case the metric length
of the street connecting i and j.

Degree centrality, CD, is the simplest definition of node

centrality. It is based on the idea that important nodes have
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the largest number of ties to other nodes in the graph. The
degree centrality of i is defined as:4,28,29

Ci
D =

� j=1,N
aij

N − 1
=

ki

N − 1
, �3�

where ki is the degree of node i, i.e., the number of nodes
adjacent to i. Degree centrality is not particularly relevant in
primal urban networks where node degrees are limited by
geographic constraints.

Closeness centrality, CC, measures to which extent a
node i is near to all the other nodes along the shortest paths,
and is defined as4,30

Ci
C =

N − 1

� j�G,j�i
dij

, �4�

where dij is the shortest path length between i and j, defined,
in a valued graph, as the smallest sum of the edges length
throughout all the possible paths in the graph between i and
j.

Betweenness centrality, CB, is based on the idea that a
node is central if it lies between many other nodes, in the
sense that it is traversed by many of the shortest paths con-
necting couples of nodes. The betweenness centrality of node
i is29

Ci
B =

1

�N − 1��N − 2� �
j,k�G,j�k�i

njk�i�/njk, �5�

where njk is the number of shortest paths between j and k,
and njk�i� is the number of shortest paths between j and k
that contain node i.

Straightness centrality, CS, originates from the idea that
the efficiency in the communication between two nodes i and
j is equal to the inverse of the shortest path length dij.

31 The
straightness centrality of node i is defined as

Ci
S =

1

N − 1 �
j�G,j�i

dij
Eucl/dij , �6�

where dij
Eucl is the Euclidean distance between nodes i and j

along a straight line, and we have adopted a normalization
recently proposed for geographic networks.32 This measure
captures to which extent the connecting route between nodes
i and j deviates from the virtual straight route.

Information centrality, CI, is a measure introduced in
Ref. 33, and relating a node importance to the ability of the
network to respond to the deactivation of the node. The net-
work performance, before and after a certain node is deacti-
vated, is measured by the efficiency of the graph G.31,34 The
information centrality of node i is defined as the relative drop
in the network efficiency caused by the removal from G of
the edges incident in i,

Ci
I =

�E

E
=

E�G� − E�G��
E�G�

, �7�
where the efficiency of a graph G is defined as
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E�G� =
1

N�N − 1� �
i,j�G,i�j

dij
Eucl/dij �8�

and where G� is the graph with N nodes and K−ki edges
obtained by removing from the original graph G the edges
incident in node i. An advantange of using the efficiency to
measure the performance of a graph is that E�G� is finite
even for disconnected graphs.

IV. APPLICATION TO 1-SQUARE MILE MAPS

We have selected 18 1-square-mile samples of different
world cities from the book by Jacobs,35 imported them in a
GIS �Geographic Information System� environment and con-
structed primal graphs of street networks using a road-
centerline-between-nodes format.36 The studied cities are
listed in Table I together with the basic properties of the
derived graphs, number of nodes N, links K, average edge
�street� length �l�, and standard deviation �l. The cases con-
sidered exhibit striking differences in terms of cultural, so-
cial, economic, religious, and geographic context. In particu-
lar, they can be roughly divided into two large classes, �1�
patterns grown throughout a largely self-organized, fine-
grained historical process, out of the control of any central
agency; �2� patterns realized over a short period of time as
the result of a single plan, and usually exhibiting a regular
gridlike, structure. Ahmedabad, Cairo, and Venice are the
most representative examples of self-organized patterns,
while Los Angeles, Richmond, and San Francisco are typical
examples of mostly planned patterns. The basic characteris-
tics of the derived graphs, N, K, �l�, �l assume widely dif-
ferent values, notwithstanding the fact we have considered
the same amount of land. In Fig. 3 we report the edges length
distribution P�l� for the two different classes of cities. In

TABLE I. Basic properties of the primal graphs obtained from the 18 1
-square-mile samples of the different world cities considered. N is the num-
ber of nodes, K is the number of edges, �l and �l are, respectively, average
edge length and standard deviation.

Case N K �l� �l

1 Ahmedabad 2870 4387 27.59 17.03
2 Barcelona 210 323 112.01 50.16
3 Bologna 541 773 66.26 39.12
4 Brasilia 179 230 134.39 90.02
5 Cairo 1496 2255 37.47 25.42
6 Los Angeles 240 340 113.87 64.86
7 London 488 730 72.33 39.52
8 New Delhi 252 334 96.56 75.73
9 New York 248 419 86.33 104.11
10 Paris 335 494 89.29 56.06
11 Richmond 697 1086 57.65 45.49
12 Savannah 584 958 64.77 39.49
13 Seoul 869 1307 52.12 29.57
14 San Francisco 169 271 140.91 119.93
15 Venice 1840 2407 31.25 23.58
16 Vienna 467 692 72.16 39.71
17 Washington 192 303 119.94 53.75
18 Walnut Creek 169 197 127.57 86.01
particular we show the cases of Ahmedabad and Cairo as
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self-organized cities, and Los Angeles and Richmond as
mostly planned cities. Cities of the first class show single
peak distributions, while cities of the second one show a
multimodal distribution, due to their grid pattern. Other de-
tails on the structural properties of such networks can be
found in Refs. 37 and 38. Finally, for each of the 18 cities,
we have evaluated five node centrality indices, namely CD,
CC, CB, CS, and CI. As already mentioned, degree centrality
turns out to be not particularly relevant in primal urban net-
works where node degrees are limited by geographic con-
straints. For this reason, in the following we will mainly
focus on four indices, CC, CB, CS, and CI.

A. The spatial distribution of centralities

The spatial distributions of node centralities can be
graphically illustrated by means of GIS supported color-
coded maps, in which one of eight different colors is plotted
on each node of the graph. In Figs. 4 and 5 are shown,
respectively, the case of Cairo and Richmond. The figures for
the remaining cities can be downloaded from our website.39

The colors represent eight classes of nodes with different
values of the centrality index C. The classes, defined in terms
of multiples of the standard deviations � from the average,
are �−� ,−3��, �−3� ,−2��, �−2� ,−��, �−� ,0�, �0,��,
�� ,2��, �2� ,3��, �3� ,��, and the corresponding colors are
reported in the figure legends. In both cases, CC exhibits a
strong trend to group higher scores at the center of the image
�Fig. 4 panel �a� and Fig. 5 panel �a��. This is due to the
artificial boundaries imposed by the 1-square-mile maps rep-
resentation and to the same nature of the closeness centrality.
Edge effects are also present, although less relevant, in the
other centrality measures �see for instance the contour nodes
in Fig. 5, panel �b�, �c�, and �d�.� The spatial distribution of
CB nicely captures the continuity of prominent urban routes
across a number of intersections, changes in direction and
focal urban spots. This is visible both in Cairo, Fig. 4�b�, and
in Richmond, Fig. 5�b�. In particular, in Richmond CB

clearly identifies the primary structure of movement channels
as different to that of secondary, local routes. The same hap-
pens in Ahmedabad and Seoul. Among the other cities not
shown, CB is particularly effective in Venice, where most

FIG. 3. Length distributions for �a� two self-organized cities �Ahmedabad
and Cairo�, and �b� two planned cities �Los Angeles and Richmond�. Length
distributions P�l� are defined by N�l� /N, where N�l� is the number of edges
whose length is in the range �l−5 meters; l+5 meters�.
popular walking paths and squares �“campi”�, and the Rialto
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bridge over the Canal Grande, emerge along the red nodes
routes. The spatial distribution of CS depicts both linear
routes and focal areas in the urban system �Figs. 4�c� and
5�c��, CS takes high values along the main axes, even higher
at their intersections. Finally CI, although based on a differ-

FIG. 4. �Color� Thematic color map representing the spatial distributions of
centrality in Cairo, an example of a largely self-organized city. The four
indices of node centrality, �a� closeness CC, �b� betweenness CB, �c� straight-
ness CS, and �d� information CI, used in the MCA, are visually compared
over the primal graph. Different colors represent classes of nodes with dif-
ferent values of the centrality index. The classes are defined in terms of
multiples of standard deviations from the average, as reported in the color
legend.

FIG. 5. �Color� Thematic color map representing the spatial distributions of
the same four centrality indices of Fig. 4 in Richmond, an example of a

mostly planned city.
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ent concept of centrality, exhibits a spatial distribution that is
in many cases similar to that of CB. This is especially evident
in Cairo Fig. 4�d�, as well as in Ahmedabad and Venice.
Notwithstanding the similarities in the color maps, the two
measures exhibit radically different statistical distributions.

B. The statistical distribution of centralities

In Figs. 6 and 7 we report an example of the cumulative
distributions of centrality obtained for the two categories of
cities, self-organized cities �Ahmedabad, Cairo, and Bolo-

FIG. 6. Cumulative distributions of �a� closeness CC, �b� betweenness CB,
�c� straightness CS, and �d� information CI for three planned cities, Ahmeda-
bad, Cairo, and Bologna. The dashed lines in panels �b� are exponential fits
to the betweenness distributions, while the dashed lines in panel �d� are
power law fits to the information centrality.

FIG. 7. Cumulative distributions of �a� closeness CC, �b� betweenness CB,
�c� straightness CS, and �d� information CI for three planned cities, Los
Angeles, Richmond, and San Francisco. The dashed lines in panels �b� are
Gaussian fits to the betweenness distributions, while the dashed lines in

panel �d� are exponential fits to the information centrality.
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gna� and single-planned cities �Los Angeles, Richmond, and
San Francisco�. The cumulative distribution P�C� is defined
as

P�C� = �
C

+� N�C��
N

dC�, �9�

where N�C� is the number of nodes with centrality equal to
C. Closeness, straightness, and betweenness distributions are
quite similar in both self-organized and planned cities, de-
spite the diversity of the two cases in sociocultural and eco-
nomic terms could not be deeper. In particular, CB exhibits a
single scale distribution40 both in self-organized and planned
cities, the former having an exponential distribution, the lat-
ter having a Gaussian distribution. The dashed lines in
Fig. 6 panel �b� are exponential fits to the empirical distribu-
tions of the form P�C�	exp�−C /s�, with coefficient s,
respectively, equal to sAhm=0.016, sCai=0.022, sBol=0.028.
The dashed lines in Fig. 7 panel �b� are Gaussian fits,
P�C�	exp�−1/2x2 /�2�, with �LA=0.078, �Rich=0.049,
�SF=0.068. On the other hand, the information centrality dis-
tributions notably differentiate self-organized cities from
planned ones, being broad-scale �power law� in the first case,
and single-scale �exponential� in the second case. The dashed
lines in the log-log plot of Fig. 6 panel �d� are power law fits
P�C�	C−� to the empirical distributions of self-organized
cities with exponents: �Ahm=2.74, �Cai=2.63, �Bol=2.49,
whereas the dashed lines in Fig. 7 panel �d� are exponential
fits of of the form P�C�	exp�−C /s� with coefficients,
sLA=0.007, sRich=0.002, sSF=0.008. Interestingly enough the
results we have found are also valid for a self-organized city
with strong environmental and physical contraints as Venice.
In fact, notwithstanding the peculiar historic process by
which the city grew up by the colonization of hundreds of
small islands around a major canal, the distribution of be-
tweenness in Venice is exponential, while P�CI� is a power
law with the smallest value of the exponent found, namely
�Ven=1.49. The results of the fittings are reported in Table II.

Similar results have been obtained by modelling planned
cities as regular triangular, square or rectangular lattices,
and self-organized cities as disordered27 or growing
networks.17,41,42 The identified power laws in the information

1,12

TABLE II. Results of the fitting to the betweenness and information cen-
trality distributions for the most representative examples of self-organized
�Ahmedabad, Bologna, Cairo, Venice� and single-planned patterns �Los An-
geles, Richmond, New York, and San Francisco�. See discussion in the text.

Case CB CI

Ahmedabad s=0.016 �=2.74
Bologna s=0.028 �=2.49
Cairo s=0.022 �=2.63
Venice s=0.044 �=1.49

Los Angeles �=0.078 s=0.007
Richmond �=0.049 s=0.002
New York �=0.052 s=0.003
San Francisco �=0.068 s=0.008
centrality, similar to those found in the degree and in the
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betweenness43 distributions of some nonspatial graphs, indi-
cate a highly uneven distribution of the centrality over self-
organized networks: most nodes have low centrality scores
and coexist with a few nodes with high values of CI.

Inequalities in the distribution of the four centrality in-
dices among the nodes of the network can be quantified con-
sistently by evaluating the Gini coefficients of the
distributions.44 The Gini coefficient, g, is an index com-
monly adopted to measure inequalities of a given resource
among the individuals of a population. It can be calculated
by comparing the Lorenz curve of a ranked empirical distri-
bution, i.e., a curve that shows, for the bottom x% of indi-
viduals, the percentage y% of the total resource which they
have, with the line of perfect equality.44 The coefficient g
ranges from a minimum value of zero, when all individuals
are equal, to a maximum value of 1, in a population in which
every individual except one has a size of zero. For each city
we have calculated four Gini coefficients, gC, gB, gS, gI, one
for each of the centrality distributions.

For example, in the case of the information centrality, we
have obtained a Gini coefficient gI equal to 0.12 for New
York, 0.19 for Richmond, and 0.23 for Cairo, thus indicating
that Cairo shows a distribution more heterogeneous than
those of Richmond and New York. In Fig. 8 we show the
results of a hierarchical clustering analysis in which the dis-
tance between two cities m and n, Dmn, is defined in terms of
the four Gini coefficients as

Dmn =
�
i=1

4
�gm

i − gn
i �2

�i
. �10�

where gm
i , i=1,2 ,3 ,4 are, respectively, the four Gini coeffi-

cients gm
C ,gm

B ,gm
S ,gm

I for the city mth, and �i, i=1,2 ,3 ,4 are
four normalization constants. The results reported in Fig. 8
have been obtained by setting the four constants all equal to
1. We have also investigated a different normalization in
which each �i is equal to the maximum �with respect to m

i i 2

FIG. 8. Hierarchical tree �dendrogram� based on the four Gini coefficients
of the centrality distributions. The complete linkage method, based on the
largest distance between objects in different clusters, has been applied.
Choosing a maximum distance equal to 0.15 for two cities to belong to the
same cluster one obtains five different clusters. See discussion in the text.
and n� of �gm−gn� . We have used a complete linkage
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method, in which the distance between two clusters is de-
fined as the longest distance from any member of one cluster
to any member of the other cluster. The results obtained with
single and average linkage methods are similar. The iterative
pairing of cities in the dendrogram seems to capture some
basic classes of urban patterns, this is the case of the early
association of Barcelona and Washington or New York
and Savannah, all grid-iron planned cities as well as that of
Bologna, Wien, and Paris, all mostly medieval organic pat-
terns. Brasilia, Walnut Creek, and New Delhi, to this respect,
share a planned, large scale modern formation. Venice is the
last association, which tells of the unique mix of fine grained
pattern and natural constraints that have shaped the historical
structure of the city. Choosing a maximum distance equal to
0.15 for two cities to belong to the same cluster, we find a
first cluster �in red� from Barcelona to Los Angeles including
medieval organic patterns and most grid-iron planned cities;
a second cluster �in cyan� from Ahmedabad to Seoul includ-
ing self-organized cities; a third cluster �in blue� made up by
New York and Savannah, both grid-iron, but different from
cities of the first cluster for peculiarities in the geometric
patterns; a fourth cluster �in green� from Brasilia to New
Delhi, including cities with a sizeable number of cul-de-sacs
and a large scale modernist formation; a fifth cluster �in grey�
constituted only by Venice, atypical for its strong natural
constraints.

C. Correlations between centrality measures

Some interesting information can be extracted from the
correlation between the various centrality indices. In Figs. 9
and 10 we report the scatter plots obtained for Ahmedabad,
the city with the largest number of nodes, namely N=2870.
Each point of the scatter plot represents a node of the graph.
Figure 9 shows the correlation between the four measures of
centrality used in the MCA, and the degree centrality, CD

FIG. 9. Scatter plots representing the correlations between degree centrality,
CD, and the four other measures of centrality used in the MCA, namely CC,
CB, CS, CI. The results reported are for the city of Ahmedabad. The squares
are averages over nodes with the same degree.
�reported on the x axis�. The five vertical lines corresponds to
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nodes, respectively, with degree k equal to 1, 2, 3, 4, and 5.
Notice that in Ahmedabad there are 142 nodes with k=1, 11
nodes with k=2, 2270 with k=3, 435 with k=4, and 12 with
k=5. The results indicate a small positive correlation be-
tween degree and betweenness, and between degree and in-
formation. Conversely, closeness and straightness are not
correlated with the degree of a node. Similar results have
been found for the remaining cities. In Fig. 10 we report the
six scatter plots representing the correlation between all
couples of indices used in the MCA. The straightness shows
no significative correlation with the other three measures, in
particular with closeness and betweenness. A weak positive
correlation has been found between closeness and between-
ness. This is true in particular for the nodes with high cen-
trality. As already indicated in Figs. 4 and 5, information and
betweenness are strongly positively correlated. A common
feature of the information centrality is that the nodes with the
highest value of CI have instead a small centrality with re-
spect to CC, CB, and CS. This is a characteristic also found in
the other cities.

The correlation between different centrality measures
has been numerically quantified, for each of the 18
1-square-mile samples, by calculating the Pearson correla-
tion coefficient for each couple of indices. In particular, we
have investigated clustering analyses based on such correla-
tions. For example by using the six Pearson correlation co-
efficients between the couples shown in Fig. 10, one obtains
a hierarchical tree whose cut into five different classes gives
the following clustering: Ahmenabad and Cairo in cluster 1;
Bologna, Brasilia, and Savannah in cluster 2; Barcelona,
Los Angeles, New Delhi, Paris, Washington, and Walnut
Creek in cluster 3; London, New York, Richmond, Seoul,
San Francisco, and Vienna in cluster 4; and finally Venice in
cluster 5.

V. CONCLUSIONS

Analysis performed on undirected, valued, primal graphs
has shown that CC, CB, CS, CI, consistently capture different
natures of centrality. Despite the striking differences in terms
of historical, cultural, economic, climatic, and geographic

C B S

FIG. 10. Scatter plots representing all the possible correlations between CC,
CB, CS, and CI. The results reported are for the city of Ahmedabad as in the
preceding figure.
characters of selected cases, C , C , and C , show always
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the same kind of distribution. CI, instead, is differently dis-
tributed in planned and self-organized cities, exponential for
planned cities and power law for self-organized ones. The
inequality of centrality indices distribution over the “popula-
tion” of nodes has been investigated: A certain level of struc-
tural similarities across cities are well captured through the
cluster analysis operated on the Gini coefficient. The mul-
tiple centrality assessment method, hereby presented opens
up to the in depth investigation of the correlation between
the structural properties of the system, and the relevant dy-
namics on the system,45 like pedestrian and/or vehicular
flows and other collective behaviors,46,47 retail commerce vi-
tality, land-use separation or urban crime, all information tra-
ditionally associated to primal graphs. We expect that some
of these factors are more strictly correlated to some centrality
indices than to others, thus giving informed indications on
the actions that can be performed in order to increase the
desired factors, as economic development, and to hinder the
undesired ones, as crime rate.

An example of the possible professional applications of
the method and of its relevance in the context of a problem
of urban design can be found in Ref. 48. There, the MCA has
been used in the problem setting phase of the program of
renovation and revitalization of the open spaces of the Uni-
versity Campus “Area of the Sciences” in Parma, northern
Italy. The method has been implemented in order to under-
stand why the existent networks of open spaces and pedes-
trian paths in the Campus are scarcely experienced by stu-
dents as well as faculty and staff members, and appear so
poorly integrated with the life on Campus. MCA has also
given a relevant contribution to the comparative evaluation
of two proposed scenarios, leading to the identification of
one final solution of urban design.
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