Eur. Phys. J. B 50, 243-247 (2006)
DOT: 10.1140/epjb/e2006-00110-5

THE EUROPEAN
PHYSICAL JOURNAL B

Olami-Feder-Christensen model on different networks

F. Caruso!®, V. Latora?, A. Pluchino?, A. Rapisarda?, and B. Tadi¢?

! Scuola Superiore di Catania, via S. Paolo 73, 95123 Catania, Italy
2 Dipartimento di Fisica e Astronomia, Universita di Catania, and INFN sezione di Catania, via S. Sofia 64,

95123 Catania, Italy

3 Department for Theoretical Physics, Jozef Stefan Institute, PO Box 3000; SI-1001 Ljubljana, Slovenia

Received 2 October 2005 / Received in final form 22 November 2005
Published online 12 April 2006 — © EDP Sciences, Societa Italiana di Fisica, Springer-Verlag 2006

Abstract. We investigate numerically the Self Organized Criticality (SOC) properties of the dissipative
Olami-Feder-Christensen model on small-world and scale-free networks. We find that the small-world OFC
model exhibits self-organized criticality. Indeed, in this case we observe power law behavior of earthquakes
size distribution with finite size scaling for the cut-off region. In the scale-free OFC model, instead, the
strength of disorder hinders synchronization and does not allow to reach a critical state.

PACS. 05.65.+b Self-organized systems — 45.70.Ht Avalanches — 89.75.Da Systems obeying scaling laws
—91.30.Bi Seismic sources (mechanisms, magnitude, moment frequency spectrum)

1 Introduction

The idea of the seismogenic crust as a self-organized com-
plex system was introduced over the years as a possible
explanation for the widespread occurrence of space-time
long-range correlations in earthquakes dynamics, similar
to those observed in critical phase transitions [1]. In gen-
eral, the term self-organized criticality (SOC) [2] refers to
the intrinsic tendency of a large class of spatially extended
dynamical systems to spontaneously organize into a dy-
namical critical state. One signature of SOC is the pres-
ence of both a power law behavior in earthquakes size dis-
tributions and a finite size scaling for their cutoffs. Among
the great number of different SOC models [3,4] developed
in the last years, the OFC model [5], introduced by Olami,
Feder and Christensen in 1992, has played a key role in
modelling earthquakes phenomenology. However the pres-
ence of criticality in the non-conservative version of this
model has been controversial since its introduction [6] and
it is still debated [7,8], also in relation with the influence of
topology. In literature, OFC models on different topologies
have been investigated, in particular the 2D nearest neigh-
bor lattice (NNL) model [9], annealed random neighbor
(ARN) graph model and the OFC model on a quenched
random (QR) graph [10]. The purpose of our work is to
study the effects of small-world (SW) and scale-free (SF)
topologies on the criticality of the non-conservative OFC
model. These results represent a further step ahead of
a project still in progress, which extends a previous pa-
per [11]. Recent studies of earthquakes networks extracted
from real data can be found in references [12-14]. In our
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case for the moment we do not compare with real data
and we leave it for a future study.

The paper is organized in the following way. In Sec-
tion 2 we review the OFC model and we point out the
main reasons that have induced us to study the non-
conservative OFC model on SW and SF topologies. In Sec-
tion 3 we investigate the SW OFC model: in Section 3.1
we show the earthquakes size distributions for the non-
conservative SW OFC model and in Section 3.2 we char-
acterize the critical behavior of the model through the
finite size scaling ansatz. Finally, in Section 4 we inves-
tigate the OFC model on a scale-free network, obtained
by preferential attachment procedure [15]. Conclusions are
drawn in Section 5.

2 The Olami-Feder-Christensen model

The Olami-Feder-Christensen (OFC) model [5] is defined
on a discrete system of N sites (blocks or fault elements)
on a square lattice, each carrying a seismogenic force (see
Fig. 1). Such a force is simulated by associating to each
site a real variable F;, which initially takes a random value
in the interval (0, Fyp,). All the forces are increased simul-
taneously and uniformly (mimicking a uniform tectonic
loading), until one of them reaches the threshold value
Fyn, and becomes unstable (F; > Fip,). The uniform driv-
ing is then stopped and an “earthquake” (or avalanche)
starts:

(1)

FiZFth=>{

where “nn” denotes the set of nearest-neighbor sites of i.
The parameter « controls the level of conservation of the
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Fig. 1. Critical stress field of a 64 x 64 lattice (NNL OFC
model) in the critical state.

dynamics and, in the case of a graph with fixed connec-
tivity g, it takes values between 0 and 1/¢ (o« = 1/g corre-
sponding to the conservative case). The toppling rule (1)
can possibly create new unstable sites, producing a chain
reaction. All sites that are above threshold at a given time
step in the avalanche relax simultaneously according to (1)
and the earthquake is over when there are no more un-
stable sites in the system (F; < Fyp, Vi). The uniform
growth then starts again. The number of topplings during
an earthquake defines its size, s, and we will be interested
in the probability distribution Py (s). In the following the
boundary conditions of the model will be “open”, imply-
ing that F' = 0 on the boundary sites.

At this point it is important to emphasize that the
OFC model behavior strongly depends on the chosen
topology. For instance, in the dissipative NNL OFC model
with open boundary conditions the earthquakes size dis-
tribution is described by a power law [9,16], characterized
by a universal exponent 7 ~ 1.8 independent of the dissi-
pation parameter. However, at variance with the conser-
vative case where a full SOC behavior is observed, finite
size scaling appears to be violated in the pdf cutoff-region
(see Tab. 1).

In ARN OFC models [17-20], where each site inter-
acts with randomly chosen sites instead of its nearest
neighbors on the lattice, there is criticality only in the
conservative case, where it becomes equivalent to a criti-
cal branching process. As soon as some dissipation is in-
troduced, the earthquakes become localized although the
mean earthquakes size diverges exponentially as dissipa-
tion tends to zero and there is no power law distribution
(see Tab. 1). Actually it is interesting to point out that
criticality in the OFC model on a lattice has been ascribed
to a mechanism of partial synchronization [21]. In general
the system shows a tendency to self-organize into a peri-
odic state [21-23] which is frustrated by the presence of
inhomogeneities such as the boundaries. In addition, inho-
mogeneities induce partial synchronization of the elements
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Table 1. In this table we list the SOC properties for OFC mod-
els on different topologies: a two dimensional nearest neighbor
lattice (2D NN lattice), an annealed random neighbor (ARN)
graph, a quenched random (QR) graph, a quenched random
(QR+2) graph with two sites with coordination 3, a small-
world (SW) network and a scale-free (SF) network. We always
consider these models in the case o = 0.21 (dissipative regime)
and with open boundary conditions. In particular, we report
when there is power law and finite size scaling in earthquakes
size distribution, according to each kind of topology.

Topology Power law  Finite size scaling
2D NN lattice Yes No
ARN graph No No
QR graph No No
QR graph+2 Yes Yes
SW network Yes Yes
SF network No No

of the system building up long range spatial correlations
and a critical state is obtained. The mechanism of syn-
chronization requires an underlying spatial structure and
therefore cannot operate in an ARN model, where each
site is assigned new random neighbors at each update.

In the OFC model on a QR graph, where the choice of
neighbors is not annealed but quenched and all the sites
have exactly the same number of nearest neighbors ¢ (both
for ¢ = 4 and ¢ = 6), the dynamics organizes into a sub-
critical state. This is analogous to what happens in the
OFC model on a NN lattice with periodic boundary con-
ditions, where no critical behavior is observed at all [21—
23]. In the QR case, in order to observe scaling in the
earthquakes distribution, one has to introduce some in-
homogeneities. In particular, it has been found that it is
enough to consider just two sites in the system with co-
ordination ¢ — 1 [10]. When either of these sites topple
according to rule (1), an extra amount «F; is simply lost
by the system. In such a way spatial correlations can de-
velop, because the topology is quenched, there is power
law in earthquakes size distribution and also finite size
scaling is observed (see Tab. 1).

In this work we study the non-conservative OFC model
on both a small-world and a scale-free topology.

First of all we expect that the inclusion of some inho-
mogeneities in the sites degree is not the unique way to
obtain SOC. Indeed, as we are going to show, an alterna-
tive way is to keep fixed the sites degree and to change
the topology of the underlying network, for instance by
considering a small-world graph obtained by randomizing
a fraction p of the links of the regular NN lattice. Here we
will use the term “small-world” to refer to a rewired lat-
tice (with fixed connectivity) with the minimum number
of rewired links such that the characteristic path length
L is almost as small as that one for the corresponding
random graph [24,25]. As shown in the right panel of Fig-
ure 2, this is obtained already for very small values of p
(p ~ 0.01), much before the random graph limit (p = 1).
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Fig. 2. On the left, a schematic picture of the rewiring procedure to interpolate between a regular and a random topology by
keeping fixed and equal to 4 the degree of each site. On the right, we report the characteristic path length L vs. the rewiring

probability p.

A small-world topology is expected to be a more ac-
curate description of a real system according to the most
recent geophysical observations that indicate that earth-
quakes correlation might extend to the long range in both
time and space [26,27]. In fact, if a main fracture episode
occurs, it may induce slow strain redistribution through
the earth crust, thus triggering long-range as well as short-
range seismic effects [28-32]. The presence of a certain
percentage of long-range connections in the network takes
into account the possibility that an earthquake can trig-
ger other earthquakes not only locally but also at long
distances.

On the other hand, one can consider a different kind
of networks with a small L, the so called “scale-free” net-
works, which differ from the small-world graphs for hav-
ing a power law distribution of the site degree. Scale-free
networks are very common in nature and have also been
used for SOC models (see Ref. [33] for sandpile dynamics
on SF network) but they have not been investigated, as
far as we know, in the context of OFC models. It is known
that, when the connectivity is not fixed at all but only in
average (as for a random graph in Ref. [10]), the strength
of disorder is enough to destroy critical behavior. Thus we
expect that for SF networks, where the connectivity has a
power law distribution, synchronization will not take place
and it will be not possible for the OFC model to reach a
critical state. In the last part of the paper we will show
that this is exactly what happens.

3 The OFC model on a small-world network

To investigate the effects of the small-world topology on
the criticality of the non-conservative OFC model, we
follow the method proposed by Watts and Strogatz to
construct a network which interpolates between a square
NN lattice and a quenched random graph [24,34]. We start
with a two-dimensional NN square lattice in which each
site is connected to its 4 nearest neighbors. The links of
the lattice are rewired at random with a probability p as
in the one-dimensional model of reference [24]. The main
difference with respect to the original model is that for
any value of p we want to keep fixed the connectivity
of each site. For such a reason we have implemented a
rewiring procedure as in Figure 2 in which the connec-
tions are rewired in couples. We choose a site i; and the

edge i1 — 19 that connects site i1 to its nearest neighbor is
in a clockwise sense. With probability p we decide whether
to rewire this edge or to leave it in place. If the edge has to
be rewired we (a) choose at random a second site j; and
one of its edges, for instance the edge j; — jo connecting
site j1 to site j2, and (b) we substitute the couple of edges
i1 — 12 and j; — jo with the couple i; — jo and j; — io.

We repeat this process by moving over the entire
square lattice considering each site in turn until one lap
is completed. In such a way the limit case p = 1 is a
QR graph with fixed connectivity (q) equal to 4. In the
intermediate cases 0 < p < 1 we can investigate the ef-
fects of an increasing number of long-range connections
on the criticality of the model. Indeed, at a critical region
of the parameter p between the regular (p = 0) and ran-
dom (p = 1) networks, the topology produced by such a
method exhibits a small-world behavior, characterized by
the fact that the distance between any two sites on the
graph is of the order of that for a random network and, at
the same time, the concept of neighborhood is preserved,
as for regular lattices. For this reason, we expect to obtain
SOC in a small-world topology; the introduction of a few
long-range edges create short-cuts that connect sites that
otherwise would be much further apart.

3.1 Earthquakes size distributions

In our simulations the starting point for the construction
of the SW network is a two-dimensional square lattice
L x L with three different sizes: L = 32,64 and 128; the
corresponding number of sites is N = L2. We have consid-
ered up to 10? earthquakes to obtain a good statistics for
the earthquakes size distribution Py(s). In Figure 3 we
report the power law distributions resulting for N = 642,
a = 0.21 (non-conservative OFC model) and for two rap-
presentative values of the rewiring probability p (actually
we made the simulations also for many other values of p
in the range [0,0.1]). In the same figure we report also the
comparison with the earthquakes size distribution for the
dissipative OFC model on a scale-free network (that will
be discussed in Sect. 4).

All the curves can be fitted by a stretched-exponential
function Py(s) = As 7e~ (/97 where s is the size of
earthquakes, ¢ is the characteristic length and 7 and o
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Fig. 3. Earthquakes size distributions for the non-conservative
OFC model (with ov = 0.21) on rewired 64 x 64 lattice with two
rappresentative values of rewiring probability p in the range
[0,0.1]. A stretched-exponential function is used to fit the pdf’s
cutoffs. In the inset we plot the two exponents 7 and o as a
function of the rewiring probability p. Here we report also the
pdf for SF OFC model (see Sect. 4).

are two exponents. We notice that, increasing more and
more the rewiring probability, the power law is practically
lost. This can be better exploited by plotting the value of
the two exponents 7 and o as a function of p in the inset
in Figure 3. Indeed one can expect stretching-exponential
in various cases of stochastic processes where many length
scales appear. We note also that, above the value p ~ 0.01
for which ¢ suddenly approaches 1, the power law for the
pdfs progressively disappears. In the next subsection we
will show that the cut-off in the earthquakes probability
distribution scales with the system size (the so called finite
size scaling ansatz) only around this rewiring threshold.

3.2 Finite size scaling

In order to characterize the critical behavior of the dissi-
pative SW OFC model, a finite size scaling (F'SS) ansatz
is applied, i.e. Px(s) =~ N8 f(s/NP) where f is a suit-
able scaling function and 8 and D are critical exponents
describing the scaling of the distribution function. In Fig-
ure 4 we consider a« = 0.21 and a rewiring probability
p ~ 0.006. We show the collapse of Py(s) for three dif-
ferent values of N, namely N = 322,642,1282. The dis-
tribution Py (s) satisfies the FSS hypothesis reasonably
well with universal critical coefficients with small rewiring
probability, but, increasing p, as shown in the previous
subsection, there is no power law at all. The critical ex-
ponents derived from the fit of Figure 4 are § ~ 3.6 and
D = 2. This result is in agreement with the FSS hypothe-
sis implying that, for asymptotically large N, Py (s) ~ s~ 7
with 7= 3/D ~ 1.8.

Therefore, showing both power law behavior and FSS,
the dissipative SW OFC model (in a restricted range of
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Fig. 4. Finite Size Scaling for dissipative OFC model (with
a = 0.21) on a small-world topology for three different values
of N, namely N = 322,642, 1282. The critical exponent derived
from the fit are D = 2 and 8 ~ 3.6 and the rewiring probability
is equal to 0.00586.

rewiring probability) clearly exhibits self-organized crit-
icality (see Tab. 1). Let us point out that on the SW
rewired topology the system behaves as in the compact
square lattice, but the occurrence of a small amount of
long-range links disseminates the earthquakes over the
network and the biggest earthquake size scales with the
lattice. On the other hand, if we increase the amount of
long-range links above a certain threshold (p ~ 0.006), the
mechanism of synchronization is corrupted and the scaling
behavior disappears.

4 The OFC model on a scale-free network

Finally we investigate criticality of the non-conservative
OFC model on a scale-free network. It is an example
of network displaying a small characteristic path length
and a power-law distribution p(k) ~ k=7 in the node
connectivity k (degree). By using the preferential at-
tachment growing procedure introduced by Barabasi and
Albert [15], we start from m + 1 all to all connected
nodes and at each time step we add a new node with
m links. These m links point to old nodes with proba-

bility p; = Z?qy" where ¢; is the degree of the node i.

This procedure allows a selection of the v exponent of the
power law scaling in the degree distribution with v = 3 in
the thermodynamic limit (N — oo). Here we consider a
scale-free network with v =3 and N = 1000.

In this case, the toppling rule in equation (1) must be
modified to take into account that different sites have a
different coordination number ¢;. Each site consequently
has a different «;, which we determined by requiring that
the total fraction & of the force transferred from the un-
stable site to the nearest-neighbor sites is constant in the
system, i.e., a; = &/q;; here we consider the case & = 0.84.
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We have found that there is no criticality in the sys-
tem since there is no power law in the earthquakes size
distribution, as shown in Figure 3. As previously observed
and in agreement with previous investigations [9,35,36],
this result indicates that if the disorder is too strong the
critical signatures disappear and the SOC behavior is de-
stroyed (see Tab. 1).

5 Conclusions

In conclusion, in this paper we have investigated the dissi-
pative OFC model on small-world and scale-free networks.
We have shown that, at variance with OFC models on
other topologies which are critical only in the conserva-
tive case, the dissipative small-world OFC model clearly
reaches a critical state characterized by power law behav-
ior of earthquakes size distribution with finite size scaling
of cut-offs. Indeed, in a lattice with a small number of
rewired links the underlying spatial structure allows par-
tial synchronization of distant blocks of the system. We
think that this process could reproduce the long-range
earthquakes dynamical correlations in the earth crust, ac-
cording to the most recent geophysical observations.

On the other hand, on a scale-free topology we do not
observe SOC properties. We expected this behavior be-
cause the connectivity is not fixed; so the dynamics is not
synchronized, the disorder is too strong and the critical
state is destroyed. As future directions, it seems interest-
ing to better investigate the influence of topology and the
role of disorder on the self-organized criticality properties
of the OFC models.
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