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Recent theoretical and empirical studies have focused on the structural properties of complex relational
networks in social, biological, and technological systems. Here we study the basic properties of twenty
1-square-mile samples of street patterns of different world cities. Samples are turned into spatial valued graphs.
In such graphs, the nodes are embedded in the two-dimensional plane and represent street intersections, the
edges represent streets, and the edge values are equal to the street lengths. We evaluate the local properties of
the graphs by measuring the meshedness coefficient and counting short cycles �of three, four, and five edges�,
and the global properties by measuring global efficiency and cost. We also consider, as extreme cases, minimal
spanning trees �MST� and greedy triangulations �GT� induced by the same spatial distribution of nodes. The
measures found in the real and the artificial networks are then compared. Surprisingly, cities of the same class,
e.g., grid-iron or medieval, exhibit roughly similar properties. The correlation between a priori known classes
and statistical properties is illustrated in a plot of relative efficiency vs cost.
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I. INTRODUCTION

During the last decade, the growing availability of large
databases, the increasing computing powers, as well as the
development of reliable data analysis tools, have constituted
a better machinery to explore the topological properties of
several complex networks from the real world �1–4�. This
has allowed us to study a large variety of systems as diverse
as social, biological, and technological. The main outcome of
this activity has been to reveal that, despite the inherent dif-
ferences, most of the real networks are characterized by the
same topological properties, as for instance relatively small
characteristic path lengths and high clustering coefficients
�the so called small-world property� �5,6�, scale-free degree
distributions �7�, degree correlations �8�, and the presence of
motifs �9�, and community structures �10�. All such features
make real networks radically different from regular lattices
and random graphs, the standard topologies usually used in
modeling and computer simulations. This has led to large
attention towards the comprehension of the evolution mecha-
nisms that have shaped the topology of a real network, and to
the design of new models retaining the most significant prop-
erties observed empirically.

Spatial networks are a special class of complex networks
whose nodes are embedded in a two- or three-dimensional
Euclidean space and whose edges do not define relations in
an abstract space �such as in networks of acquaintances or
collaborations between individuals�, but are real physical
connections �4�. Typical examples include neural networks
�11�, information/communication networks �12,13�, electric
power grids �14�, and transportation systems ranging from
river �15�, to airport �16,17�, and street �18� networks. Most
of the works in the literature, with a few relevant exceptions
�12,19,20�, have focused on the characterization of the topo-
logical properties of spatial networks, while the spatial as-
pect has received less attention, when not neglected at all.
However, it is not surprising that the topology of such sys-

tems is strongly constrained by their spatial embedding. For
instance, there is a cost to pay for the existence of long-range
connections in a spatial network, this having important con-
sequences on the possibility to observe a small-world behav-
ior. Moreover, the number of edges that can be connected to
a single node is often limited by the scarce availability of
physical space, this imposing some constraints on the degree
distributions. In a few words, spatial networks are different
from other complex networks and as such they need to be
studied in a different way.

In this paper we focus on a particular class of spatial
networks: networks of urban street patterns. We consider a
database of 1-square mile samples of different world cities
and for each city we construct a spatial graph by associating
nodes to street intersections and edges to streets. In this way,
each of the nodes of the graph is given a location in a two-
dimensional square, and a real number, representing the
length of the corresponding street, is associated to each edge.
By construction, the resulting graphs are planar graphs, i.e.,
graphs forming nodes whenever two edges cross. After a
previous work on the distribution of centrality measures �21�,
here we present a comparative study of the basic properties
of spatial networks of different city street patterns. In par-
ticular we evaluate the characteristics of the graphs both at a
global and at a local scale. The main problem with spatial
graphs is that, in most of the cases, the random graph or the
complete graph are no more a good way to normalize the
results. In fact, the common procedure in relational �nonspa-
tial� complex networks is to compare the properties of the
original graph derived from the real system with those of
some randomized versions of the graph, i.e., of graphs with
the same number of nodes and edges as the original one, but
where the edges are distributed at random. This is, for in-
stance, the standard way proposed by Watts and Strogatz in
Ref. �5� to assess whether a real system is a small world. One
quantifies the structural properties of the original graph by
computing its characteristic path length L and clustering co-
efficient C, where L measures the typical separation between
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two vertices in the graph �a global property�, whereas C mea-
sures the cliquishness of a typical neighborhood �a local
property�. Then, the graph is a small world if L assumes a
value close to that obtained for the randomized version of the
graph, Lrand, while the value of C is much larger than Crand.
Similarly, in the efficiency-based formalism proposed in
Refs. �22,23�, a small-world network is defined as a system
being extremely efficient in exchanging information both at a
global and at a local scale. Again, the values of global and
local efficiency are compared with those obtained for a ran-
domized version of the graph. A similar method is used in
the counting of short cycles or specific motifs in a graph
representing a real system �9�. The research of the motifs and
cycles is based on matching algorithms counting the total
number of occurrences of each motif and each cycle in the
original graph and in the randomized ones. Then, a motif or
a cycle is statistically significant if it appears in the original
graph at a number much higher than in the randomized ver-
sions of the graph. In a planar graph, as those describing
urban street patterns, the randomized version of the graph is
not significative because it is almost surely a nonplanar
graph due to the edge crossings induced by the random re-
wiring of the edges. Moreover, because of the presence of
long-range edges, a random graph corresponds to an ex-
tremely costly street pattern configuration, where the cost is
defined as the sum of street lengths �23�. The alternative is to
compare urban street patterns with gridlike structures. Fol-
lowing Ref. �19�, we shall consider both minimum spanning
trees and greedy triangulations induced by the real distribu-
tion of nodes in the square. Spanning trees are the planar
graphs with the minimum number of edges in order to assure
connectedness, while greedy triangulations are graphs with
the maximum number of edges compatible with the planar-
ity. Spanning trees and greedy triangulations will serve as the

two extreme cases to normalize the structural measures we
are going to compute.

The paper is organized as follows: In Sec. II we describe
how the graphs are constructed from street patterns of differ-
ent world cities, and we discuss some basic properties, such
as graph size and cost. In Sec. III we introduce minimum
spanning trees and greedy triangulations, two artificial
classes of graphs induced by the same distribution of nodes
in the unit square. Global and local measures found in the
real and the artificial graphs are then compared in Sec. IV.
Results are then discussed with particular attention to the
correlation between the statistical properties investigated and
the a priori known city classes �e.g., grid-iron or medieval�.

II. NETWORKS OF URBAN STREET PATTERNS

The database we have studied consists of twenty
1-square-mile samples of different world cities, selected
from the book by Jacobs �24�. We have imported the twenty
maps into a GIS �Geographic Information System� environ-
ment and constructed the correspondent spatial graphs of
street networks by using a road-centerline-between-nodes
format �25�. Namely, each urban street pattern is transformed
into an undirected, valued �weighted� graph G= �N ,L�, em-
bedded in the two-dimensional unit square. In Fig. 1 we
show the case for the city of Savannah: in the upper-left
panel we report the original map, and in upper-right panel
the obtained graph. N is the set of N nodes representing
street intersections and characterized by their positions
�xi ,yi�i=1,. . .,N in the square. L is the set of K edges represent-
ing streets. The edges follow the footprints of real streets and
are associated a set of real positive numbers representing the
street lengths, �lk�k=1,. . .,K. The graph is then described by the

FIG. 1. �Color online� The urban pattern of
Savannah as it appears in the original map �top
left�, and reduced into a spatial graph �top right�.
We also report the corresponding MST �bottom
left� and GT �bottom right� �32�.
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adjacency N�N matrix A, whose entry aij is equal to 1 when
there is an edge between i and j and 0 otherwise, and by a
N�N matrix L, whose entry lij is equal to the length of the
street connecting node i and node j. In this way both the
topology and the geography �metric distances� of the system
will be taken into account. A list of the considered cities is
reported in Table I, together with the basic properties of the
derived graphs. The considered cases exhibit striking differ-
ences in terms of cultural, social, economic, religious, and
geographic contexts. In particular, they can be roughly di-
vided into two large classes: �1� patterns grown throughout a
largely self-organized, fine-grained historical process, out of
the control of any central agency; �2� patterns realized over a
short period of time as the result of a single plan, and usually
exhibiting a regular gridlike, structure. Ahmedabad, Cairo,
and Venice are the most representative examples of self-
organized patterns, while Los Angeles, Richmond, and San
Francisco are typical examples of mostly-planned patterns.
We have selected two different parts of the city of Irvine,
CA, �named Irvine 1 and Irvine 2� for two highly diverse
kinds of urban fabrics: the first is a sample of an industrial
area showing enormous blocks with few intersections while
the second is a typical residential early Sixties “lollipop” low
density suburb based on a treelike layout with a lot of dead-
end streets. The differences between cities are already evi-
dent from the basic properties of the derived graphs. In fact,
the number of nodes N, the number of edges K, and the cost
of the wiring, defined as the sum of street lengths

W = �
i,j

aijlij , �1�

and measured in meters, assume widely different values, not-
withstanding the fact that we have considered the same
amount of land. Notice that Ahmedabad has 2870 street in-
tersections and 4387 streets in a surface of 1 square mile,
while Irvine has only 32 intersections and 37 streets.
Ahmedabad and Cairo are the cities with the largest cost,
while the cost is very small �less than 40 000 meters� in Bar-
celona, Brasilia, Irvine, Los Angeles, New Delhi, New York,
San Francisco, Washington, and Walnut Creek. A large dif-
ference is also present in the average edge �street� length �l	,
that assumes the smallest values in cities as Ahmedabad,
Cairo, and Venice, and the largest value in San Francisco,
Brasilia, Walnut Creek, and Los Angeles. In Ref. �21� we
have studied the edges length distribution P�l� for the two
different classes of cities, showing that self-organized cities
show single peak distributions, while mostly planned cities
exhibit a multimodal distribution, due to their grid pattern.
We now have gone deeper into the characterization of the
distributions of nodes �street intersections� in the unit square:
we have calculated the fractal dimension of the distributions,
by using the box counting method �26�. In all the samples,
except Irvine 1 that is too small to draw any conclusion, we
have found that the nodes are distributed on a fractal support
with a fractal dimension ranging from 1.7 to 2.0. This result
is similar to that obtained by Yook et al. for the spatial dis-
tribution of the nodes of the Internet, considered both at the
level of routers and at the level of autonomous systems �12�.

III. MINIMUM SPANNING TREES AND GREEDY
TRIANGULATIONS

Planar graphs are those graphs forming vertices whenever
two edges cross, whereas nonplanar graphs can have edge
crossings that do not form vertices �27�. The graphs repre-
senting urban street patterns are, by construction, planar, and
we will then compare their structural properties with those of
minimally connected and maximally connected planar
graphs. In particular, following Buhl et al. �19�, we consider
the minimum spanning tree �MST� and the greedy triangula-
tion �GT� induced by the distribution of nodes �representing
street intersections� in the square. The minimum spanning
tree (MST) is the shortest tree which connects every node
into a single connected component. By definition the MST is
an acyclic graph that contains Kmin=N−1 edges. This is the
minimum number of edges in order to have all the nodes
belonging to a single connected component �27�. At the other
extreme, the maximum number of edges, Kmax, that can be
accommodated in a planar graph with N nodes �without
breaking the planarity� is equal to Kmax=3N−6 �28�. The
natural reference graph should be then the minimum weight
triangulation (MWT), which is the planar graph with the
highest number of edges Kmax, and that minimize the total
length. Since no polynomial time algorithm is known to
compute the MWT, we thus consider the greedy triangula-
tion (GT), that is based on connecting couples of nodes in
ascending order of their distance provided that no edge

TABLE I. Basic properties of the planar graphs obtained from
the twenty city samples considered. N is the number of nodes, K is
the number of edges, W and �l	 are respectively the total length of
edges and the average edge length �both expressed in meters�, Dbox

is the box-counting fractal dimension.

City N K W �l	 Dbox

1 Ahmedabad 2870 4387 121037 27.59 1.92

2 Barcelona 210 323 36179 112.01 1.99

3 Bologna 541 773 51219 66.26 1.95

4 Brasilia 179 230 30910 134.39 1.83

5 Cairo 1496 2255 84395 37.47 1.82

6 Irvine 1 32 36 11234 312.07 —

7 Irvine 2 217 227 28473 128.26 1.81

8 Los Angeles 240 340 38716 113.87 1.90

9 London 488 730 52800 72.33 1.94

10 New Delhi 252 334 32281 96.56 1.85

11 New York 248 419 36172 86.33 1.72

12 Paris 335 494 44109 89.29 1.88

13 Richmond 697 1086 62608 57.65 1.78

14 Savannah 584 958 62050 64.77 1.85

15 Seoul 869 1307 68121 52.12 1.87

16 San Francisco 169 271 38187 140.91 1.90

17 Venice 1840 2407 75219 31.25 1.81

18 Vienna 467 692 49935 72.16 1.88

19 Washington 192 303 36342 119.94 1.93

20 Walnut Creek 169 197 25131 127.57 1.80
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crossing is introduced �29�. The GT is easily computable and
leads to a maximal connected planar graph, while minimiz-
ing as far as possible the total length of edges considered.

To construct both the MST and the GT induced by the
spatial distribution of points �nodes� �xi ,yi�i=1,. . .,N in the unit
square, we have first sorted out all the couples of nodes,
representing all the possible edges of a complete graph, by
ascending order of their length. Notice that the length of the
edge connecting node i and node j is here taken to be equal
to the Euclidean distance dij

Eucl=
�xi−xj�2+ �yi−yj�2. Then, to
compute the MST we have used the Kruskal algorithm
�30,31�. The algorithm consists in browsing the ordered list,
starting from the shortest edge and progressing toward the
longer ones. Each edge of the list is added if and only if the
graph obtained after the edge insertion is still a forest or it is
a tree. A forest is a disconnected graph in which any two
elements are connected by at most one path, i.e., a discon-
nected ensemble of trees. �In practice, one checks whether
the two end nodes of the edge are belonging or not to the
same component.� With this procedure, the graph obtained
after all the edges of the ordered list are considered is the
MST. In fact, when the last edge is included in the graph, the
forest reduces to a single tree. Since in the Kruskal algorithm
an edge producing a crossing would also produce a cycle,
following this procedure prevents for creating edge cross-
ings. To compute the GT we have constructed a brute force
algorithm based on some of the properties of planar GT �29�.
The algorithm consists in browsing the ordered list of edges
in ascending order of length, and checking for each edge
whether adding it produces any intersections with any other
edge already added �32�.

For each of the twenty cities we have constructed the
respective MST and GT. These two bounds make sense also
as regards to the possible evolution of a city: the most primi-
tive forms are close to trees, while more complex forms in-
volve the presence of cycles. We can then compare the struc-
tural properties of the original graphs representing the city
with those of the two limiting cases represented by MST and
GT. As an example in Fig. 1 in the bottom-left and in the
bottom-right panels we report respectively the MST and the
GT obtained for the city of Savannah.

IV. RESULTS

In this section we propose a series of measures on the
local and global properties of a graph. In particular, we con-
sider degree distributions, meshedness coefficients, number
of short cycles �of three, four, and five edges�, global effi-
ciency, and cost. We then compare real and artificial net-
works with particular attention to the characterization of
groups of cities belonging to a priori known classes �as
single planned or self-organized patterns�.

A. Graph local properties

The degree of a node is the number of its direct connec-
tions to other nodes. In terms of the adjacency matrix, the
degree ki of node i is defined as ki=� j=1,Naij. In many real
networks, the degree distribution P�k�, defined as the prob-
ability that a node chosen uniformly at random has degree k
or, equivalently, as the fraction of nodes in the graph having
degree k, significantly deviates from the Poisson distribution
expected for a random graph and exhibits a power law �scale
free� tail with an exponent � taking a value between 2 and 3
�1,2,4�. As already mentioned in the Introduction, we do not
expect to find scale-free degree distributions in planar net-
works because the node degree is limited by the spatial em-
bedding. In particular, in the networks of urban street pat-
terns considered, it is very unprobable to find an intersection
with more than 5 or 6 streets. In Fig. 2 we report the average
degree �k	, and the degree distribution P�k� for k going from
1 to 5. The cities are labeled with an index going from 1 to
20, the same index we have used in Table I. In all the
samples considered, the largest number of nodes have a de-
gree equal to 3 or 4. Self-organized cities as Ahmedabad,
Bologna, Cairo, and Venice have P�k=3�� P�k=4�, while
the inverse is true for most of the single-planned cities as
New York, San Francisco, and Washington, because of their
square-grid structure. It is not the aim of this paper to discuss
the meaning of such differences in terms of their possible
impacts on crucial factors for urban life, such as pedestrian
movement, way finding, land uses, or other cognitive or be-
havioral matters. However, it is worth noting that, for in-

FIG. 2. Average degree �k	 and probability of
having nodes with degree respectively equal to 1,
2, 3, 4, and 5 for the twenty cities considered.
The cities are labeled from 1 to 20 as reported in
Table I. The degree distribution P�k� is defined as
P�k�=N�k� /N, where N�k� is the number of
nodes having degree k.
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stance, 3-arms and 4-arms street junctions are expected to
perform very differently in human orienteering within an ur-
ban complex system due to the differences in the angle
widths involved in each turn �33,34�. It is also interesting to
notice the significative frequency of nodes with degree 1 in
cities as Irvine and Walnut Creek. Such nodes correspond to
the dead-end cul-de-sac streets typical of the suburban early
Sixties lollipop layouts, which in turn leads to highly debated
topics in the current discussion about safety and liveability of
modern street patterns as opposite to more traditional ones
�35,36�.

Many complex networks show the presence of a large
number of short cycles or specific motifs �1,2,4�. For in-
stance, the so called local clustering, also known as transi-
tivity, is a typical property of acquaintance networks, where
two individuals with a common friend are likely to know
each other �10�. The degree of clustering is usually quantified
by the calculation of the clustering coefficient C, that is a
measure of the fraction of triangles present in the network
�5�, or by the k clustering coefficient, that accounts for k
neighbors �6�. Such quantities are not suited to characterize
the local properties of a planar graph, since by a simple
counting of the number of triangles present in the graph it is
not possible to discriminate between different topologies. For
instance, there are cases as diverse as trees, square-meshes,
and honeycomb meshes, all having the same clustering coef-
ficient equal to zero. Buhl et al. have proposed a more gen-
eral measure of the structure of cycles �not restricted to
cycles of length 3� in planar graphs, the so called meshedness
coefficient M �19�. The meshedness coefficient is defined as
M =F /Fmax, where F is the number of faces �excluding the
external ones� associated with a planar graph with N nodes
and K edges, and expressed by the Euler formula in terms of
number of nodes and edges as: F=K−N+1. Fmax is the
maximum possible number of faces that is obtained in the
maximally connected planar graph, i.e., in a graph with N
nodes and Kmax=3N−6 edges. Thus Fmax=2N−5 and the
meshedness coefficient can vary from zero �tree structure� to
one �maximally connected planar graph, as in the GT �32��.

Here, we have evaluated the meshedness coefficient M for
each of the twenty cities. In addition, we have counted the
cycles of length three, four, and five by using the properties
of powers of the adjacency matrix A. E.g., the number of
cycles of length three is simply equal to 1/6Tr�A3� �37�. We
have denoted by Ck the number of cycles of length k in a
given city, and by Ck

GT the same number in the corresponding
GT. The results are reported in Table II. Three are the cities
with a value of meshedness larger than 0.3: New York, Sa-
vannah, and San Francisco. These represent the most com-
plex forms of cities. On the other hand, Irvine and Walnut
Creek with a value of M lower than 0.1 have a treelike struc-
ture. Notice that both the first and the second group of cities
are examples of planned urban fabrics. On the other hand,
organic patterns such as Ahmedabad, Cairo, and Seoul also
exhibit high values of meshedness, which means a consider-
able potential of local clustering. Thus, beside the suburban
lollipop layout, both grid planned and organic self-organized
patterns do show good local performances in terms of the
local structural properties of the network: this is even more
interesting if coupled with our previous finding that such two

classes of patterns perform radically differently in terms of
how centrality flows over the network, the former exhibiting
power-law distributions while the latter single-scale expo-
nential distributions �21�. In most of the samples we have
found a rather small value of C3 /C3

GT �as compared, for in-
stance, to C4 /C4

GT�, denoting that triangles are not common
in urban city patterns. This is another proof that the cluster-
ing coefficient C alone is not a good measure to characterize
the local properties of such networks. Walnut Creek, Los
Angeles, and Savannah are the cities with the smallest value
of C3 /C3

GT, while Irvine 1, Richmond, Brasilia, and Paris are
the cities with the largest value of C3 /C3

GT. In 17 samples out
of 20 we have found C4 /C4

GT�C3 /C3
GT: Brasilia, Irvine 1,

and Irvine 2 are the only cities having a prevalence of tri-
angles with respect to squares. San Francisco, New York,
Washington, Savannah, and Barcelona are the cities with the
largest value of C4 /C4

GT �larger than 0.1�. Finally, concerning
C5 /C5

GT, we have found three classes of cities. Samples such
as Ahmedabad, Cairo, Seoul, and Venice having C3 /C3

GT

�C5 /C5
GT. Samples such as Brasilia, Irvine, and Paris with

C3 /C3
GT�C5 /C5

GT, and samples as Los Angeles, Savannah,
and Vienna with C3 /C3

GT�C5 /C5
GT.

B. Graph global properties

One of the possible mechanisms ruling the growth of an
urban system is the achievement of efficient pedestrian and
vehicular movements on a global scale. This has important

TABLE II. Local properties of the graphs of urban street pat-
terns. We report the meshedness coefficient M �19�, and the number
Ck of cycles of length k=3,4 ,5 normalized to the number of cycles
in the GT, Ck

GT.

City M C3 /C3
GT C4 /C4

GT C5 /C5
GT

1 Ahmedabad 0.262 0.023 0.042 0.020

2 Barcelona 0.275 0.019 0.101 0.019

3 Bologna 0.214 0.015 0.048 0.013

4 Brasilia 0.147 0.029 0.027 0.012

5 Cairo 0.253 0.020 0.043 0.019

6 Irvine 1 0.085 0.035 0.022 0.005

7 Irvine 2 0.014 0.007 0.004 0.001

8 Los Angeles 0.211 0.002 0.075 0.011

9 London 0.249 0.011 0.060 0.020

10 New Delhi 0.154 0.011 0.020 0.011

11 New York 0.348 0.024 0.136 0.028

12 Paris 0.241 0.028 0.063 0.016

13 Richmond 0.279 0.034 0.068 0.022

14 Savannah 0.322 0.002 0.111 0.026

15 Seoul 0.253 0.021 0.051 0.021

16 San Francisco 0.309 0.003 0.148 0.003

17 Venice 0.152 0.016 0.030 0.010

18 Vienna 0.242 0.007 0.063 0.018

19 Washington 0.293 0.026 0.132 0.022

20 Walnut Creek 0.084 0.000 0.011 0.003
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consequences on a number of relevant factors affecting the
economic, environmental, and social performances of cities,
ranging from accessibility to microcriminality and land uses
�38�. The global efficiency of an urban pattern in exchanging
goods, people, and ideas should be considered a reference
when the capacity of that city to support its internal rela-
tional potential is questioned. It is especially important to
develop a measure that allows the comparison between cases
of different form and size, which poses a problem of normal-
ization �39�. The global structural properties of a graph can
be evaluated by the analysis of the shortest paths between all
pairs of nodes. In a relational �unweighted� network the
shortest path length between two nodes i and j is the mini-
mum number of edges to traverse to go from i to j. In a
spatial �weighted� graph, instead we define the shortest path
length dij as the smallest sum of the edge lengths throughout
all the possible paths in the graph from i to j �22,23�. In this
way, both the topology and the geography of the system are
taken into account. As a measure of the efficiency in the
communication between the nodes of a spatial graph, we use
the so called global efficiency E, a measure defined in Ref.
�22� as

E =
1

N�N − 1� �
i,j,i�j

dij
Eucl

dij
. �2�

Here, dij
Eucl is the distance between nodes i and j along a

straight line, defined in Sec. III, and we have adopted a nor-
malization recently proposed for geographic networks �40�.
Such a normalization captures to which extent the connect-
ing route between i and j deviates from the virtual straight
line. In Table III we report the values of efficiency obtained
for each city and for the respective MST and the GT. The
values of EMST and EGT serve to normalize the results, being
respectively the minimum and the maximum value of effi-
ciency that can be obtained in a planar graph having the
same number of nodes as in the original graph of the city
�41�. Notice that Irvine 2 is the only case in which E
�EMST. This is simply due to the fact that Irvine 2 is the
only city whose corresponding graph is not connected. Con-
sequently, the MST has a smaller number of edges but a
higher value of efficiency because it is, by definition, a con-
nected graph. The main result is that the cities considered,
despite their inherent differences, achieve a relatively high
value of efficiency, which is in most of the cases about 80%
of the maximum value of the efficiency in a planar graph,
EGT. Following Ref. �19� we define the relative efficiency
Erel as:

Erel =
E − EMST

EGT − EMST . �3�

Of course, the counterpart of an increase in efficiency is an
increase in the cost of construction, i.e., an increase in the
number and length of the edges. The cost of construction can
be quantified by using the measure W defined in formula �1�.
Given a set of N nodes, the shortest �minimal cost� planar
graph that connects all nodes corresponds to the MST, while
a good approximation for the maximum cost planar graph is

given by the GT. We thus define a normalized cost measure,
Wrel, as

Wrel =
W − WMST

WGT − WMST . �4�

By definition the MST has a relative cost Wrel=0, while GT
has Wrel=1. An interesting characterization of different city
patterns can be obtained by the plot of Erel as a function of
Wrel reported in Fig. 3. In fact, the cities can be a priori
divided into different classes: �1� medieval fabrics, including
both Arabic �Ahmedabad and Cairo� and European �Bolo-
gna, London, Venice, and Vienna�; �2� grid-iron fabrics �Bar-
celona, Los Angeles, New York, Richmond, Savannah, and
San Francisco�; �3� modernist fabrics �Brasilia and Irvine 1�;
�4� baroque fabrics �New Delhi and Washington�; �5� mixed
fabrics �Paris and Seoul�; �6� lollipop layouts �Irvine 2 and
Walnut Creek�. The plot Erel vs Wrel has a certain capacity to
characterize the different classes of cities listed above. The
plot indicates an overall increasing behavior of Erel as func-
tion of Wrel, with a saturation at Erel�0.8 for values of
Wrel�0.3. Grid-iron patterns exhibit a high value of relative
efficiency, about 70–80% of the efficiency of the GT, with a
relative cost which goes from 0.24 to 0.4. The three grid-iron
cities �New York, Savannah and San Francisco� with the
largest value of efficiency, Erel�0.8, have respectively a cost
equal to 0.342, 0.354, and 0.383. Medieval patterns have in
general a lower cost and efficiency than grid-iron patterns
although, in some cases as Ahmedabad and Cairo �the two

TABLE III. The efficiency E of each city is compared to the
minimum and maximum values of the efficiency obtained respec-
tively for the MST and the GT. The cities are labeled from 1 to 20
as in Table I.

City E EMST EGT

1 Ahmedabad 0.818 0.351 0.944

2 Barcelona 0.814 0.452 0.930

3 Bologna 0.799 0.473 0.936

4 Brasilia 0.695 0.503 0.931

5 Cairo 0.809 0.385 0.943

6 Irvine 1 0.755 0.604 0.943

7 Irvine 2 0.374 0.533 0.932

8 Los Angeles 0.782 0.460 0.930

9 London 0.803 0.475 0.936

10 New Delhi 0.766 0.490 0.930

11 New York 0.835 0.433 0.931

12 Paris 0.838 0.473 0.938

13 Richmond 0.800 0.502 0.939

14 Savannah 0.793 0.341 0.922

15 Seoul 0.814 0.444 0.941

16 San Francisco 0.792 0.448 0.893

17 Venice 0.673 0.386 0.943

18 Vienna 0.811 0.423 0.937

19 Washington 0.837 0.452 0.930

20 Walnut Creek 0.688 0.481 0.938
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medieval cities with the largest efficiency�, they can also
reach a value of Erel�0.8 with a smaller cost equal to 0.29.
Modernist and lollipop layouts are those with the smallest
value of W but also with the smallest value of efficiency.

V. CONCLUSIONS

We have proposed a method to characterize both the local
and the global properties of spatial graphs representing urban
street patterns. Our results show that a comparative analysis
on the structure of different world cities is possible by the

introduction of two limiting auxiliary graphs, the MST and
the GT. A certain level of structural similarities across cities
as well as some differences are well captured by counting
cycles and by measuring normalized efficiency and cost of
the graphs. The method can be applied to other planar graphs
of different nature, as highway or railway networks.
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