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Via S. Sofia, 64, 95123 Catania, Italy, EU

received 10 December 2007; accepted 8 March 2008
published online 16 April 2008

PACS 89.75.Hc – Networks and genealogical trees
PACS 89.75.-k – Complex systems
PACS 87.23.Ge – Dynamics of social systems

Abstract – We study the effect of motion on disease spreading in a system of random walkers
which additionally perform long-distance jumps. A small percentage of jumps in the agent motion
is sufficient to destroy the local correlations and to produce a large drop in the epidemic threshold,
that we explain in terms of a mean-field approximation. This effect is similar to the crossover found
in static small-world networks, and can be furthermore linked to the structural properties of the
dynamical network of agent interactions.
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Many communication and social systems can be
modeled as complex networks [1–3]. One of the reasons
for studying such networks is to understand the mecha-
nisms by which information, rumors and diseases spread
over them. Recent works have pointed out the importance
of incorporating the peculiar topology of the underlying
network in the theoretical description of disease spread-
ing [4–6]. Epidemic models are in fact heavily affected by
the connectivity patterns characterizing the population
in which the infective agent spreads. Both the nature of
the final state and the dynamics of the disease process
strongly depend on the coupling topology. Specifically,
spreading occurs faster in small-world systems, i.e. in
networks with short characteristic path lenghts [7,8].
Moreover, the epidemic threshold is affected by the
properties of the degree distribution P (k). For instance,
the divergence of the second-order moment of P (k)
leads, in scale-free networks, to the surprising result of
the absence of an epidemic threshold and its associated
critical behavior [9–11].
Most of the results present in the literature so far refer to

cases where the disease spreading takes place over a wiring
topology that is static, i.e. the underlying network is fixed
in time, or grown, once forever. A more realistic possibil-
ity is to consider the networks themselves as dynamical
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entities. This means that the topology is allowed to
change in time. The authors of refs. [12–14] have consid-
ered disease spreading on adaptive networks in which the
susceptible agents have perception of the risk of infection,
and are able to avoid contacts with infected agents by
rewiring their network connections. In such a case, the
network is driven by the very same disease process. In this
letter we study the different case in which the networks
change in time because of external factors, namely the
agents’ spatial motion. We model mobile agents as random
walkers which can additionally perform long-distance
jumps (this is in agreement with observed human trav-
elling behaviors [15]), and are only able to interact with
agents falling within a given interaction radius apart from
them. Hence, the interaction network between individuals
is a dynamical one, because the links evolve in time accord-
ing to the agent movement. The focus of our work is on the
influence of the kind of motion on the disease spreading. In
particular, we will show that the motion, usually neglected
in epidemic models, has instead a profound effect on the
dynamics of the spreading, leading to the striking result
that a small number of long-distance jumps is sufficient to
produce a large drop in the epidemic threshold, as that
observed in static small-world networks [8]. This result
can have important consequences both in social and in
artificial networks [16–20]. E.g., recently the analogy with
epidemic spreading has been exploited to propose routing
algorithms in highly mobile networks of computers [21,22].
We consider a system of N identical agents inde-

pendently moving in a two-dimensional cell of linear
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size D, with periodic boundary conditions. Fixing D
is equivalent to fix the agent density ρ=N/D2. The
agents are represented as point particles, and their posi-
tions and velocities at time t are indicated as ri(t)
and vi(t)≡ (vi(t)cosθi(t), vi(t)sinθi(t)), i= 1, . . . , N . We
further impose that the agents move with a velocity modu-
lus which is constant in time and equal for all the agents,
i.e. vi(t) = v,∀ i= 1, . . . , N and ∀ t. At time t= 0 the N
particles were distributed at random. At each time step,
the agents change stochastically the direction angles θi(t).
The positions and the orientations of the particles are thus
updated according to the following rule:

θi(t) = ξi,
ri(t+1) = ri(t)+vi(t),

(1)

where ξi are N independent identically distributed random
variables chosen at each time with uniform probability
in the interval [−π, π]. In addition, to include the possi-
bility that agents can move through the bidimensional
world with time scales much shorter than those related
to disease, as in the case of infected individuals travel-
ling by flights [18], we consider that agents can perform
long-distance jumps. This is accounted for by defining a
parameter, pj ∈ [0, 1], that quantifies the probability for an
agent to perform a jump into a completely random posi-
tion. In summary, at each time step, each agent evolves:
following eqs. (1), with a probability 1− pj , or performing
a jump, with probability pj . In the latter case the posi-
tion of the agent is updated into a new position chosen
at random in the cell. Models with different jumping
rules [15,19], non-indentical and interacting agents [16],
have also been considered, and the results will be reported
elsewhere. Finally, the main parameters controlling the
moving agents in our model are ρ, v and pj .
Among the possible mechanisms of disease spread-

ing [4–6], we focus on the SIR model, that divides the
N agents into three disjoint groups: susceptible (S ),
infective (I ) and recovered (R). We indicate as NS(t),
NI(t) and NR(t), respectively, the number of agents in
the three groups at time t, with the total number of
agents NS(t)+NI(t)+NR(t) =N being constant in time.
A small number of agents is set in the infective state at
t= 0 as the seed of the infection, while all the others start
from the susceptible state. The process through which
the disease spreads can be summarized as follows. An
interaction radius r is fixed (r= 1 in all our calculations),
and this defines the interaction network: at each time
step t each agent interacts only with those agents located
within a neighborhood of radius r. For a given susceptible
agent, the probability of being infected increases with the
number of infected individuals in the neighborhood. More
precisely, if an agent is in the S state at time t, and exactly
one of its neighbors is in the I state, then it moves into
the I state with probability λ and stays in the S state
with probability 1−λ. If NIr is the number of infected
individuals in the neighborhood of the agent, then its
probability of being infected is 1− (1−λ)NIr . In addition
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Fig. 1: (Color online). Number of infected individuals (percent-
age) as a function of time t. We have considered a system with
N = 1000, ρ= 1, v= 0.1, λ= 0.1, µ= 0.05 and different values
of pj . The system is started with 1% of the agents set in the
infective states. Results are averages over 100 runs. The dashed
line is the result in the homogeneous-mixing approximation of
eqs. (2).

to this, each infected agent can move into the R state with
probability µ, and then cannot catch the disease anymore.
This sets the average duration time of the infection: τ = 1

µ
.

In our model we implement the motion rules and we
update, at each time step, the disease state of every
agent. The model is simulated for a number of time steps
sufficiently high to ensure that, at the end, there are no
more infected in the population. During a simulation, the
number NI(t) of infected individuals grows up, reaches a
peak value, and then decreases. Typical cases are shown
in fig. 1, where it can be noticed that a larger value of pj
increases the spread of the infection. In fact, the peak of
infected individuals is higher in the presence of a larger
probability of jumping. We have verified that this is
also true for the total number of individuals which have
contracted the disease at the end of the process. Both the
two issues have important practical consequences, since
on the one hand the disease involves a higher percentage
of the population, and, on the other hand, it requires
more resources to deal with a higher peak of infected
individuals.
The behavior for large pj and/or large v can be inter-

preted in terms of a mean-field approximation. In fact, in
such limit, we expect that the spatial correlations in the
disease states are destroyed by the agent motion, and we
assume that the homogeneous-mixing (HM ) hypothesis is
valid. Under this hypothesis, all the individuals have the
same probability of contacting any other individual (i.e.,
the population mixes at random) [4–6,23], and the equa-
tions for the system of infectious mobile agents read

i(t+1) = i(t)+ s(t) [1− (1−λi(t))
a
]−µi(t),

r(t+1) = r(t)+µi(t), (2)

s(t+1) = ρ− i(t+1)− r(t+1),
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Fig. 2: (Color online). Epidemic threshold as a function of the
system density ρ. We have considered N = 1000, v= 0.1, and
µ= 0.05. Different curves correspond to different values of pj .
Results are averages over 100 runs. The dashed line is the
prediction in the homogeneous-mixing approximation.

where s(t) =NS(t)/D
2, i(t) =NI(t)/D

2, r(t) =
NR(t)/D

2, are, respectively, the densities of suscep-
tible, infected and recovered individuals at time t, and
a= πr2. The third equation is simply derived from the
conservation of the number of agents. The second equa-
tion indicates that the increase of recovered individuals
at time t+1 is proportional to the number of infected
individuals which get recovered, i.e. to µi(t). The first
equation can be derived by taking into account that the
density of infected individuals at time t+1 is decreased by
µi(t) and increased by the density of susceptibles catching
the disease. This last term is proportional to s(t) times
a contagion probability pcont. The contagion probability
is given by pcont = 1− p̄cont, where p̄cont represents the
probability of not being infected. p̄cont is the probability
that an agent is not infected by any of its neighbors,

i.e. p̄cont =
(

1−λNI(t)
D2

)a

, with a representing the area in

which each agent may sense other infective individuals,
that in our case is equal to πr2. The number of infective
agents as a function of the time in the HM approximation
computed from eqs. (2), with λ= 0.1 and µ= 0.05, is
reported as a dashed line in fig. 1. As expected, the curves
for the model approach the dashed line when pj→ 1.
The mean-field approach gives us also information on the
epidemic threshold. In fact, for small i(t) we can approx-
imate (1−λi(t))

a
≃ 1− aλi(t), and we get from eqs. (2)

the iterative rule i(t+1) = i(t)+πr2λs(t)i(t)−µi(t).
This allows to distinguish two cases. In fact, by assuming
s(0)≃ ρ, we get i(1)> i(0) when σ≡ λ/µ> 1

πr2ρ
, while

i(1)< i(0) when σ≡ λ/µ< 1
πr2ρ
. Thus, under the HM

hypothesis we derive a critical threshold:

σc =
1

πr2ρ
. (3)
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Fig. 3: (Color online). Scaled epidemic threshold σc(pj)/
σc(pj = 0) as a function of pj . We have considered v= 0.1 and
µ= 0.05. Different curves correspond to different values of the
density ρ. Results are averages over 100 runs.

Hence, when σ < σc, the number of infected individuals
decreases monotonically, while for σ > σc an epidemic
outbreak occurs. Also notice that σc =

1
〈k〉 , as found in

Erdős and Rényi random graphs [2,3], where 〈k〉 is the
average number of first neighbours of an agent, that in
our case is equal to πr2ρ.
In fig. 2 we report the epidemic thresholds σc computed

numerically for the model of infective agents moving with
different values of pj . We observe that σc is a decreasing
function of the density ρ. Moreover, for a given value of ρ,
the threshold decreases with the jumping probability pj . In
the same figure we report for comparison the prediction of
eq. (3), as a dashed line. We notice that the homogeneous-
mixing approximation becomes more and more accurate
when pj tends to 1. The convergence to the HM threshold
of eq. (3) as a function of pj is rather fast. For instance,
already at pj = 0.1, the threshold in the model is, for any
value of ρ reported, practically indistinguishable from the
HM one. In fig. 2 we have considered a fixed velocity v=
0.1. We have also studied σc as a function of v, at a fixed
density and for different values of pj . We observed that
for small values of v, the epidemic threshold tends to the
prediction of the HM when pj tends to 1, while, for large
enough values of v, the epidemic threshold is consistent
with the homogenous-mixing one, independently of pj .
Finally we investigate in more detail the effects of pj on

the epidemic threshold. In fig. 3 we report, as a function
of pj , the value of the threshold σc(pj), normalized by
σc(pj = 0), for different values of the density ρ. We observe
a rapid drop in the curves (note the logarithmic scale for
pj), meaning that a small number of long-range jumps
produces a large decrease in the epidemic threshold. The
plateau observed for pj larger than 10

−2 implies that in
order to have a significant change in the epidemic thresh-
old (and in the disease incidence) in our model of moving
agents, the jumping probability has to be extremely
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Fig. 4: Characteristic path length LG (circles) and clustering
coefficient CG (squares) as a function of pj (N = 1000, ρ= 1,
v= 0.1). Results are averages over 10 realizations.

small. This is in line with other results, stressing the
role of the large-scale properties of the airline trans-
portation networks in determining the global diffusion
pattern of emerging diseases [18], and can have important
implications in the immunization of real communication
networks [24]. Different curves in the figure correspond to
different densities. As ρ decreases, the drop in the curve
occurs for smaller and smaller values of pj , suggesting
that no finite critical value of pj can be determined this
way. This behavior is similar to the crossover observed in
the characteristic path length of small-world networks as
a function of the rewiring probability [7,25]. We notice,
however, that in our case the effect is due to the agent
movement and not to the rewiring of static links.
The observed behavior can be related to the topological

properties of the underlying dynamical network. For
such purpose we define an effective adjacency matrix
Gτ (t) = {gij(t)} taking into account that each infected
individual may infect other individuals during the average
duration of the infection, i.e. during τ = 1

µ
simulation

steps [19]. Let A(t) be the adjacency matrix at time
t defined so that aij(t) = 1 if the j-th agent is within
the interaction radius of the i -th agent at time t, and
aij(t) = 0 otherwise. We set gij(t) = 1, if at least for one t

′,
with t′ = t, t− 1, . . . , t− τ +1, it is verified that aij(t

′) = 1.
Otherwise we set gij(t) = 0. In fig. 4 we report the char-
acteristic path length, LG, and the clustering coefficient,
CG of matrix G(t) as a function of pj . The behavior we
observe is completely similar to that found in small-world
networks for increasing rewiring probability [7]. Notice
that the drop in LG occurs at the same value of pj at
which we have found the drop in the epidemic threshold.
In summary, we have introduced a simple model of

infectious mobile agents to study the effects of long-range
moves on the disease spreading. Our results indicate

that the interplay between dynamics and topology can
have important consequences for the global spreading of
infectious diseases in systems of mobile agents, and has to
be considered in related applications such as the forecast
of epidemic spreading and the development of wireless
routing strategies.
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