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1

Introduction

Systems that can be mapped as networks are all around us. Recently, scien-

tists have started to reconsider the traditional reductionism viewpoint that

has driven science ever since. The accumulated evidence that systems as

complex as a cell cannot be fully understood by studying only their iso-

lated constituents, but that rather most of biological characteristics and be-

haviours are related to complex interactions of many cellular constituents,

has given rise to the birth of a new movement of interest and research in

the study of complex networks, i.e. networks whose structure is irregular,

complex and dynamically evolving in time, with the main focus moving from

the analysis of small networks to that of systems with thousands or millions

of nodes, and with a renewed attention to the properties of networks of dy-

namical units. This flurry of activity has seen the physicists’ and biologist’s

communities among the principal actors, and has been certainly induced by

the increased computing powers and by the possibility to study the prop-

erties of a plenty of large databases of real networks. The regulatory and

cellular networks, that would be the subject of study in this chapter, have

been among the most studied networks, and the field has benefited from

many important contributions. The expectancy is that understanding and

modeling the structure of a regulatory network would lead to better com-

prehend its dynamical and functional behavior. In this chapter, we aim to

provide the reader with a glance at the most relevant results and novel in-

sights provided by network theory in this field, discussing both the structure

and the dynamics of a number of regulatory networks.
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Structure

Though in the last years many experimental techniques have been improved

and larger and larger amounts of data are available, the determination and

construction of the different cellular networks is not an easy task. Never-

theless, many complex interactions which take place at the cellular level,

such as metabolic chains, protein - protein interactions and gene - gene reg-

ulations, can be represented and then studied using the formalism of graph

theory, where each system is reduced to a set of nodes and edges, some-

times also called vertices and links. A node usually represents a cellular

constituent, like a protein or a gene. Nodes are linked by edges. An edge

can be directed or undirected, whether it has a direction or not (it “goes

out” of a node and “gets into” another). The meaning of edges changes

case per case: in the cellular field, for instance, it could represent a reaction

or an interaction between the nodes it is linking. In the next paragraphs,

we describe in more details some networks of fundamental importance for

the cell survival. While explaining the meaning of nodes and edges in every

particular context, we will also give some basic definitions of graph theory

(see Figures 2.1-2.3), in order to better understand the biological roles of

graph constituents and the dynamical properties which will be discussed in

the last part of this chapter.

2.1 Metabolic networks

A metabolic network is the complete set of metabolic and physical pro-

cesses that determine the physiological and biochemical properties of a cell.

As such, these networks comprise the chemical reactions of metabolism as

well as the regulatory interactions that guide these reactions. These are

accelerated, more accurately catalyzed, by enzymes. Therefore a complete

metabolic network is constituted by three kinds of nodes: metabolites, re-

2



2.1 Metabolic networks 3

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

k

P
(k

)

 

 

Random graph

Scale−free

Fig. 2.1. An important graph property is the degree distribution function P (k),
that describes the probability to find a node with k edges. A random graph is
constructed by randomly linking N nodes with E edges, and has a Poissonian

degree distribution P (k) = e−〈k〉 〈k〉
k

k!
. That means that the majority of nodes have

a degree close to the average degree 〈k〉. A scale-free graph is instead characterized
by a power-law degree distribution P (k) = Ak−γ , usually with 2 < γ < 3. A
power-law distribution appears as a straight line in a double-logarithmic plot. In a
scale-free graph, low degree nodes are the most frequent ones, but there are also a
few highly connected nodes, usually called hubs, not present in a random graph.

actions and enzymes, and by two types of edges representing mass flow and

catalytic regulations. The former kind of edge links reactants to reactions

and reactions to products, while the latter connects enzymes to the reactions

they catalyze. Needless to say, all these edges are directed.

The above representation is not always the most suitable. In fact, it some-

times implies the assumption that some virtual intermediate complexes take

place. To avoid subjective assumptions in the way the network is built up,

Wagner and Fell, for instance, have deduced two distinct networks from the

metabolic pathways of Escherichia Coli, which do not imply the definition of

virtual intermediate complexes. In one of the networks they define, metabo-

lites stand for nodes which are linked to undirected edges if they participate
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Fig. 2.2. A simple model to grow networks with a power-law degree distribution
was proposed by Barabasi and Albert (1999). The model is based on two main
ingredients, growth and linear preferential attachment. That means that the graph
grows during time by the addition of new nodes and new links, and that links are
not distributed at random, but the probability of connecting to a node depends on
the nodes’ degree. The algorithm to construct a network starts at time t = 0 with
a complete graph of m0 nodes (in the example, m0 = 3). Then, at each time step
t a new node n is added. The new node has m ≤ m0 edges (in our case, m = 2),
linking n to m different nodes already present in the system. When choosing the
nodes to which the new node n connects, it is assumed that the probability Πn→i

that n will be connected to node i is linearly proportional to the degree ki of node
i, i.e.: Πn→i(ki) = ki

∑

l
kl

. For large times (or N), this corresponds to a graph with

a stationary power-law degree distribution with exponent γ = 3.

in the same reaction. Another network is instead constituted by nodes

that represent metabolic reactions linked when sharing a metabolite. The

networks are respectively named metabolite network and reaction network.

Both these networks exhibit a power-law degree distribution (see Figs. 2.1

and 2.2) and small-world properties (Fig. 2.3). Surprisingly, when consider-

ing the whole metabolic pathways of organisms that have evolved differently

and consequently show many differences, the metabolic networks share the

same topological and statistical properties, namely, those corresponding to

scale-free graphs (Jeong et al. (2000)).

2.2 Protein - protein interaction networks

The interactions between proteins are crucial for many biological functions.

For example, signals from the exterior of a cell are mediated to the inside of

that cell by protein-protein interactions of the signaling molecules (Fig. 2.4).

This process, called signal transduction, plays a fundamental role in many

biological processes. Proteins might interact for a long time to form part of a

protein complex, a protein may be carrying another protein, or a protein may
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Fig. 2.3. Small-world networks, as defined by Watts and Strogatz (1998), have
intermediate properties between regular lattices (such as the first graph in the
figure) and random networks (such as the last graph in the figure). A regular lattice
has high clustering but also a large average path length, while a random graph is
characterized by a short path length together with a low clustering. A small world
network (in the middle in the figure) borrows a high clustering coefficient from the
former and a short average path length from the latter.

interact briefly with another protein just to modify it. This modification of

proteins can itself change protein-protein interactions. Therefore, protein-

protein interactions are of central importance for every process in a living

cell.

In a protein interaction network, nodes represent proteins while an undi-

rected edge is drawn between two proteins when they physically interact.

Though the data may be incomplete and contain a very high number of

false positives, the results obtained from databases with very small over-

lap between them show the same network properties: scale-freeness, high-

clustering and small world properties. These topological properties have

already been exploited as the network approach allows to look at the sys-

tem from new points of view and to borrow tools from other fields to solve

(or at least to give alternative solutions to) known open problems. For

example, this is the case of the Saccharomyces Cerevisiae network widely

studied in the literature. In particular, using the protein-protein interaction

network representation of this organism (Uetz et al. (2000)), it has been

possible to suggest or, at least, to guess the function of many unclassified

proteins (Vazquez et al. (2003a)).

2.3 Gene regulatory networks

Some achievements in experimental techniques during the last few years,

like gene chips and microarray, have paved the way to the study of the so-

called gene regulatory networks. At the cellular level, the production and

degradation of all proteins is supervised by the gene regulatory network,
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constituted by those pairs of genes whose products in proteins is so that the

former regulates the abundance of the second. That is the case, for instance,

of the transcription regulatory network which is also the most studied one. It

is well known that the transcription of genes from DNA to RNA is regulated

by some particular proteins which are called transcription factors (see Fig.

2.4). These proteins are the products of some genes.

Therefore, the nodes of the network are genes, namely, the DNA sequences

which are transcribed into the mRNAs that translate into proteins, while

edges between nodes represent individual molecular reactions, the protein-

protein, protein-mRNA, and protein-DNA interactions through which the

products of one gene affect those of another. These interactions can be

inductive, with an increase in the concentration of one leading to an increase

in the other, or inhibitory, with an increase in one leading to a decrease in

the other.

The method to build the graph representing a gene regulatory network

is mostly based on genome-wide gene expression data. Agrawal (2002) has

suggested an algorithm to build a gene regulatory network starting from a

microarray gene data. For a given number N of genes, data can be repre-

sented in a matrix N × D, where D is the number of sampling conditions

where the expression level appear. Looking at the rows as vectors, an Eu-

clidean distance among genes can be defined. Each gene is then linked to his

K nearest neighbors, where the Euclidian distance has been used to deter-

mine them. Many networks are then constructed by treating K as an order

parameter.

2.4 Overall Leitmotif

What is extremely interesting is that all the biological networks we have

so far briefly described, although being very different one from the other,

share many topological features. Each of them shows not only a power-law

degree distribution, but also high clustering coefficient (numbers of triangles

present in the network, or, in other words, the probability that if A is linked

to B and B is linked to C, A is also linked to C) and short mean path length

(every couple of nodes can be connected with a path of only few links) which

lead to the so-called small-worldness.

These characteristics are present not only for networks in the biological

field, but also in other complex systems, going from technological to social

networks. Such a universality in systems so far one from the other is quite

intriguing and suggests to focus on which meanings all these topological

features hide.
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Fig. 2.4. The different stages of gene expression. The basic ingredients are the
proteins and specific gene regions in the DNA, such as promoters and transcribed
sequences (panel (a)). A specific protein binds to a part of the DNA sequence
called the promoter, the protein is known as the transcription factor since it starts
the transcription of the genetic information encoded at the specific gene that the
complex promoter + transcription factor regulates (panel (b)). After the genetic
information is transcribed into the messenger RNA, by RNA polymerase (panel (c)),
it is subsequently translated into proteins at the ribosomes (panel (d)). The protein
product that emerges after this process can act either as another transcription
factor for the expression of other genes or as a repressor of the activity of other
genes stopping the synthesis of their protein products. Another possibility is that
this protein product participates in the physiological processes of the cell and form
protein complexes as enzymes.

The power-law degree distribution involves the presence of highly con-

nected nodes, called hubs, even if the small-degree ones are the most abun-

dant (see Figs. 2.1 and 2.2). The existence of hubs seems to be correlated

with evolutionary processes. The hubs should represent the oldest cellu-

lar constituents, to which new nodes, generated by gene duplication pro-

cesses, preferentially attach. This growing mechanism has been shown to

explain the topology of protein-protein interaction networks (Vazquez et al.

(2003b)), but with proper adjustments it seems to explain the scale-free

features of regulatory and metabolic networks as well. However, it is quite

clear that highly connected nodes are subjected to severe selective and evo-

lutionary constraints and that the cell is vulnerable to the loss of highly

interactive hubs, which can result in the breakdown of the network into iso-

lated clusters. A famous example of a hub protein is the tumor suppressor
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Fig. 2.5. A motif of a graph is a connected subgraph of n nodes which appears over
represented if compared to a graph of the same size, number of edges and degree
distribution, but with randomized connections. Motifs can group to form clusters
or sometimes can interact one with each other if linked to a common hub.

protein p53, which Vogelstein et al. (2005) have demonstrated to be inactive

in half of human tumors.

On the other hand, the high clustering feature is related to the existence

of modules (Fig. 2.5). Networks are composed by subgraphs of highly in-

terconnected groups of nodes, usually called motifs or modules. Formally,

a motif is a connected subgraph of n nodes which appears more frequently

than in a graph with the same size, number of edges and degree distribu-

tion, but with randomized links. Each real network is characterized by its

own set of distinctive motifs. It has been suggested that motifs have spe-

cific functions as elementary circuits. For example, in regulatory networks

feed-forward loops appear more frequent than expected from randomly con-

nected graphs, while in protein-protein maps there is a high abundance of

completely connected subgraphs and short cycles.

The molecular components constituting a motif not only interact with the

elements of that motif but can be linked to other motifs giving rise to clusters

and modules at a larger scale which are still interconnected to each other.

Moreover, the presence of hubs makes the existence of relatively isolated

modules unlikely, which ultimately gives to cellular networks a hierarchical
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topology. Admittedly, there is a high degree of overlap and crosstalk between

modules with small modules forming cohesive communities. Interestingly,

these structural modules correlate very well with functional ones, thus pro-

viding a way to study systematically the structure-function relationship.
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Dynamics of Regulatory Networks

After the structural characterization of interaction maps between genes, pro-

tein and metabolites the following question turns up into scene: What is the

relationship between the structure of interactions observed in most biological

networks and their task-performing ability? In order to answer this ques-

tion and shed new light on what is going on at the cellular and molecular

levels of organization of biological systems scientists have begun to look

for the dynamical evolution of the activity patterns of the constituents of

such biological networks. In fact, during the last several years, the available

amount of experimental data, obtained with technological advances such as

cDNA microarrays, has exploded. This has allowed to face the dynamical

characterization of diverse biological processes both on a genome-wide and

on multi-gene scales and with fine time resolution. On the other hand, de-

spite the advances in biological engineering, the formulation of compelling

models on the dynamics governing metabolic and genetic processes is still

a hard issue because the observed dynamical patterns are highly nonlinear

and one needs to deal with many degrees of freedom for a proper description

of regulatory mechanisms.

Although the ultimate goal of systems biology is to describe the cellu-

lar processes as a whole by means of a global biochemical regulatory net-

work, the three levels of description (gene expression, protein interaction

and metabolic fluxes) are usually studied separately (as we have seen in

the previous section) also when studying the dynamics of interactions. The

reason behind this compartmentalization of the cellular system is the di-

verse ability for profiling genes, proteins or metabolites. While current tech-

niques for measuring genome-wide differential gene expression are nowadays

widespread, this is not the case for the current methods used to deal with

proteins and metabolites. In principle, one cannot get rid of the two higher

organization levels of a cell, however, a number of relevant processes of cell

10
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Fig. 3.1. Coarse graining of cellular interactions into a single gene network. The
three levels of description (genes, proteins and metabolism) and the interactions
between their constituents are embedded on a single map of interactions between
genes.

physiology can be mapped into a gene network coarse-grained view of cells

(see Figure 3.1). In this part of the chapter we will focus on the current

models used to describe the dynamics of gene regulatory networks.

As in other scientific fields, the work on the characterization of gene-

gene regulation started by looking at the basic mechanisms and building

blocks of the entire biological system. Following this constructionist scheme,

concepts such as operon, regulator gene and transcriptional repression were

first introduced in the literature by Jacob and Monod (Jacob and Monod

(1961)). Their model has settled the basis for more elaborated models as

different regulatory mechanisms have been discovered (Wall et al. (2004)).

Here, after discussing the basis of the dynamical models, we will also move

from small gene circuits (so-called modules), where predictive their power

is high, to large scale gene networks, where the goal is to model the global

functioning of cells. This bottom-up approach is aimed at addressing several

issues of relevance in cellular processes, first on the small scale to analyze the

robustness of small circuits under external (environmental) perturbations,

and second on large scale networks to test the ability of groups of genes to

perform different coordinated tasks.

3.1 Mathematical formulation: Boolean models versus

Differential equations

Regulatory mechanisms among genes can be translated into mathematical

language in various ways. The appropriate choice of the dynamical equations
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will depend on the level of description required. In this sense, large scale

gene regulatory networks are usually described by a simple mathematical

framework that makes use of Boolean functions. On the other hand, when

one is interested in describing simple regulatory mechanisms that involve

few genes more detailed models such as nonlinear differential equations are

best suited. The use of each type of description thus depends on the sum of

complexities regarding the structure and the dynamics. In the following we

describe the essential ingredients of both mathematical approaches.

3.1.1 Boolean modeling of regulatory networks

Boolean models are based on the assumption that genes can be found in one

of a discrete set of states, and account for the different kinds of interactions

that appear in gene regulatory networks by means of simple rules. Besides

their simplicity, the success of Boolean models relies on the inherent difficulty

in obtaining an accurate functional form of the reaction kinetics associated

to every gene-gene interaction. Boolean dynamics has been widely used to

analyze the importance that the global topological features of a gene network

(such as path redundancy or abundance of loops, average number and sign

of regulatory inputs, etc...) have on its dynamical organization.

In the usual Boolean framework, a gene i at time t can be in two possible

dynamical states: active (gi(t) = 0) or inactive (gi(t) = 1). The activity of

a gene depends on the state of those genes from which it receives a regula-

tory input (i.e. incoming link of the regulatory network). Besides, time is

considered as a discrete variable so that at each time step the activity level

of every gene i is updated considering its ki input signals

gi(t + τ) = fi(gj1(t), ..., gjki
(t)) . (3.1)

The updating process of the whole network can be synchronous (parallel

updating) or asynchronously (sequential updating). The specific form of

every function, fi is constructed by following the specific interactions that

gene i receives from its regulators. These functions are always combinations

of the basic (“AND”, “OR” and “NOT”) logical operators so that the results

can be either 1 if the statement is true or 0 if it is false. These single functions

are expressed by means of truth tables as shown in Figure 3.2.

Once the network and the specific Boolean functions governing the in-

teractions are set, the study focuses on the possible dynamical behaviors.

Starting from different initial conditions (in principle 2N different possibil-

ities) one computes how many different final states are reached. There are

three possibilities, namely, (i) the system becomes frozen in a unique dynam-
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=

g1  g4   g3
0     0    0
1     0    1

1     1    1
0     1    1

0     1
1     0

g2   g4
g4 =  (NOT g2)

g2 = (g1  AND  g3) g3 = (g1 OR g4)

Truth tables

g1  g3   g2
0     0     0
1     0     0
0     1     0
1     1     1

g1

g2

g3

g4

g1

g2

g4

g3

Fig. 3.2. Translation of the regulatory genetic map of Figure 3.1 into Boolean reg-
ulatory functions. The three Boolean relations for genes g2, g3 and g4 make use of
the basic logical operators “AND”, “OR” and “NOT”, respectively.

ical state (fixed point of the dynamics), (ii) the system explores cyclically a

set of states ending in a periodic attractor of a length given by the number

of different configurations explored, (iii) the dynamics is chaotic and the

system explore different configurations without any periodicity. In general,

different attractors can coexist in the configuration space, each of them with

its own basin of attraction of initial conditions. As an example, we show in

Figure 3.3 the typical representation used to characterize the configuration

dynamics of a simple regulatory network composed of three nodes, the tran-

sition between the different dynamical states reveals one periodic attractor

of length 5 and the fixed point (0, 0, 0).

In a large regulatory network, one expect to obtain many different types

of coexisting dynamical states. This hypothesis is biologically based on

the fact that different network states correspond to different cell types, i.e.

cells with the same genome developing different functions. Although bio-

chemical data from real gene networks have become available only in recent

years, the search of network topologies sustaining a large number of dif-

ferent dynamical states started long time ago with the pioneering work by

S.A. Kauffman (Kauffman (1969)). Kauffman considered a random assign-

ment of the boolean functions that governs the dynamical evolution of the

gene’s activity so that all the nodes receives a constant number of K in-

put signals from other nodes and these signals are activatory or inhibitory

with equal probability. The main goal was to analyze the dependence of the

type, number and length of dynamical attractors with the system size N

and the number of inputs K. The results tell that, for K > 2 the dynamics

is mainly chaotic, the number of cycles scales with the number of genes, N ,
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Configuration Dynamics

g1 = [ g2 AND ( NOT g3 ) ]

g2 = ( g1 OR g3 )

g3 = (g1 AND g2 )

(0,1,0)

(0,1,1)

(1,1,1)

(1,0,0)

(0,0,0)

(0,0,1)

(1,1,0)

(1,0,1)

g1 g2

g3

Fig. 3.3. Small regulatory network and its configuration dynamics. The network is
composed by 3 genes that interact following the logical rules shown in the box. The
configuration dynamics is represented by a network whose nodes are all the possible
dynamical states and the directed links are the transitions from one to another (as
dictated by the Boolean dynamics). It is shown that a cycle of length 5 (red nodes)
and an steady state (blue node) exist. Yellow nodes are in the basin of attraction
of the periodic attractor.

and their length scale exponentially with N . On the other hand, for the

case K = 1 the dynamics is frozen and the number of attractors scales ex-

ponentially with N . Finally, the regime K = 2 is the most interesting since

both the number and length of attractors scale as
√

N . These findings are

very relevant biologically since the cell diversity of a living organism scales

approximately with the square root of the gene number, thus pointing out

that gene regulatory networks should operate just on the border between

frozen and chaotic dynamics, i.e. Kc = 2. If one breaks the symmetry

between activatory and inhibitory inputs the critical value of the network

connectivity fulfills the relation

2ρ(1 − ρ)Kc = 1, (3.2)

where ρ is the fraction of activatory inputs.

There has been a burst of research on Kauffman networks in the last

thirty years in order to redefine models and make them more accurate (see

e.g. (Glass (1975); Derrida and Pomeau (1986); Socolar and Kauffman

(2003); Samuelson and Troein (2003); Kauffman et al. (2003); Drossel et al.

(2005)) Perhaps, the most important refinement from the network perspec-

tive is to abandon the hypothesis of constant number of node’s inputs and

move to heterogenous networks, i.e. scale-free Boolean networks. In this

regard, one can consider the value K as the mean value of the number of

inputs of a complex network and, in particular, re-express it as a function

of the exponent γ of the power law degree distribution. The result (Aldana
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and Cluzel (2003)) is that an exponent γ > 2.5 assures robust behavior (i.e.

the absence of chaotic attractors) of network dynamics. Moreover, the nu-

merical exploration (Fox and Hill (2001)) of the phase space in the regime

where chaotic dynamics exist, indicates that the number of observed chaotic

attractors is smaller in scale-free networks than in networks with Poisson or

delta degree distributions. This result could in principle relate the ubiquity

of scale-free networks in regulatory systems to an evolutionary drift towards

dynamical robustness.

Synthetic Boolean regulatory networks, although being idealizations, have

served as test-beds for the mathematical models that are currently used on

large real regulatory networks as we will see in 3.2.2. Besides, most of the

results found for the Boolean approximation are robust when moving to more

refined piece-wise linear or nonlinear models. On the other hand continuous

models do not allow the computation of large-scale statistical properties of

their dynamical behavior.

3.1.2 Modeling through differential equations

Now we turn our attention to models where both time and concentrations

are modeled as continuous quantities. In this case, the dynamics of the con-

centration of biochemical products evolves in time following the differential

equation

d[xi]

dt
= fi([xi1 ], [xi2 ], ..., [xin ]) − γi[xi] , (3.3)

where [x] denote the concentration of product x in units of #moles/volume.

The second term in the right hand side of equation (3.3) accounts for the

degradation of xi, being γi the degradation rate parameter. The functional

form of fi, i.e. the rate of the reaction that produces xi, is dictated by

the reaction kinetics of the chemical processes at work. This makes ex-

tremely difficult to obtain a general framework since interactions of a gene,

its products, and its regulators are reaction-specific, in fact a whole expres-

sion should contain various biochemical processes as reaction reversibility,

product dimerization, enzyme-catalysis, etc...

The most simple examples of gene regulation are those of a gene x regu-

lated by a transcription factor y acting either as a repressor or as an activa-

tor. In these cases it is easy to show (Alon (2007)) that the input functions

to be included in Eq. (3.3), are respectively for repression and activation:

fx([y]) =
β

1 + K−n[y]n
(Repression) , (3.4)
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fx([y]) =
β[y]n

1 + K−n[y]n
(Activation) . (3.5)

In both expressions, [x] is the concentration of mRNA transcribed by gene

x, β is the maximal rate of mRNA transcription so that these expressions

can be read as β times the probability that the gene promoter DNA region

is either free (occupied) by the repressor (activator) transcription factor y.

The parameter K is the dissociation constant of the reaction that describes

the binding of y to the gene promoter in DNA. The value of n (so-called

Hill coefficient) accounts for the number of transcription factor subunits

that binds to the promoter. The repression input function shows that the

gene activity decrease to zero as the repressor concentration grows. On

the other hand the activatory input is a growing and saturable function,

and when n = 1, it takes the expression of the Michaelis-Menten equation

ubiquitously found for a wide range of biological processes such as enzyme

kinetics (Sethna (2006)).

These mechanisms of negative or positive regulation of a gene can be

closed in a negative or positive feedback loop if we consider that the tran-

scription factor that regulates gene activity is the same as the protein prod-

uct of mRNA translation. In this case a second differential equation

d[y]

dt
= α[x] − γy[y] , (3.6)

accounts for the rate production of protein y regulated by the activity of

gene x. This equation has to be solved together with Eq. (3.3) with the

input function given in Eq. (3.4) or (3.5). The solution to the feedback loop

depends on whether there is activation or inhibition of y to x as it is shown

in Figure 3.4. For the negative regulation a unique steady state exists and

it is linearly stable meaning that any small perturbation of the system will

return to the original state (homeostasis). On the other hand, when positive

regulation occurs three possible steady states are possible, with only two of

them being stable. In this case the system can choose between two different

cell states.

The above modeling for the gene activity level can be extended to the more

realistic case when there is more than one transcription factor regulating its

expression. What are the effects of a activators and r repressors coordinated

in the gene dynamics? In the simple case where different proteins can bind all

together in the promoter region and proteins complexes are not formed after

translation, one must consider all the possible configurations for the complex

(Gene Promoter + Transcription Factors) that allow gene expression and

sum up their associated probabilities. A first order approximation to the
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Fig. 3.4. Negative (left) and positive (right) feedback loops. Both systems describe
a gene encoding its own transcription (repressor or activator) factor. Solving graph-
ically the two systems of coupled differential equations, Eqs. (3.4)-(3.6) and Eqs.
(3.5)-(3.6), one can compute the steady states of the system. In the first case,
dynamics of mRNA and protein concentrations reaches a unique stable fixed point.
For the positive loop there are three steady states, being stable (and thus biologi-
cally reliable) two of them (one corresponding to the rest state of the system). We
have set in both cases β = 2, n = 3 and γx = γy = α = K = 1.

general formula is given by this general input gene function (Alon (2007)),

fx([y1], ..., [ya], [ya+1], ...., [ya+r ]) =

∑a
i=1 βi([yi]/Ki)

ni

1 +
∑a+r

i=1 βi([yi]/Ki)ni

, (3.7)

where we have ordered the arguments of fx(y) so that the first a variables

correspond to activators and the remaining r are repressors. A more detailed

construction (where e.g. protein dimerization is taken into account) of a

mean-field model for gene regulatory inputs can be found in (Andrecut and

Kauffman (2006)).

Although the above mathematical setting is only suited when small net-

work circuits or modules (see section 3.2.1) are analyzed, one can relax the

rigidity of regulatory input functions and construct more general equations

that incorporate the main features of regulatory dynamics as the saturable

character of the gene response under activatory inputs. In reference (Gómez-

Gardeñes et al. (2006)) the authors make a coarse-grained formulation of

continuous time gene dynamics by writing the following equations for mRNA
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Fig. 3.5. (Left panel) Probabilities that an arbitrary initial condition ends in a
periodic, Pper , and chaotic attractor, Pch, as functions of the fraction of inhibitory
inputs in the network,p. Obviously when p = 1 only zero-activity states are achieved
thus both probability tend to zero as p → 1. The results show that there is a region
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dynamics, and that the threshold of order (no chaotic states) around pc ≃ 0.26.
This threshold (right panel) seems to grow slightly when the exponent γ of the
power law degree distribution decreases (and so the degree heterogeneity in the
network grows). After Gómez-Gardeñes et al (2006).

concentrations,

d[xi]

dt
= −[xi] + β

Φ
(

∑N
i=1 Wij[xj ]

)

1 + K−1Φ
(

∑N
i=1 Wij [xj]

) , (3.8)

where W is the interaction matrix whose entries are Wij = 1 if product of

gene j activates expression of gene i, Wij = −1 if product of gene j inhibits

gene i, and Wij = 0 if no regulatory interaction is found. Besides Φ(x) is de-

fined as Φ(x) = x if x > 0 and Φ(x) = 0 otherwise. This compact and simple

form for regulatory continuous dynamics paves the way for a thorough study

of two essential ingredients in biological regulatory networks: saturability

of the interactions and scale-free character of the interconnections among

constituents.

Inspired by the aforementioned works in Kauffman Boolean networks syn-

thetic Barabási-Albert scale-free networks are constructed (see Fig. 2.2) and

the sign of every interaction is assigned so that the fraction of inhibitory in-

puts is equal to p ∈ [0, 1]. The (continuous) phase space of the systems

is then explored by analyzing the final dynamical attractor of many differ-

ent initial conditions. As in the studies of Boolean synthetic networks, the



3.2 Dynamics of real regulatory networks 19

results here point out that different regimes (steady states, periodic and

chaotic attractors) are possible depending on the value of p (which plays

here the role of ρ in Boolean networks) as seen in Figure 3.5.

In addition, there are other dynamical features intrinsically related to the

continuous character of the equations. In particular, large networks can

dynamically fragment so that topologically disconnected subsets of nodes

sustain independent dynamics (e.g. steady states of non-zero activity and

periodic dynamics) while the rest of network’s nodes remain in the rest state.

The observation of such clusters of active nodes provides an emergent net-

work topology that is defined by those connected nodes sharing the same

kind of dynamics and the links between them. The topological analysis of

these dynamical clusters reveals remarkable differences from the substrate

scale-free network topology such as the existence of a high clustering coeffi-

cient. This latter result is much in agreement with the topological analysis

of real biological networks, and points out that the observed topology is a

result of functional (dynamical) relations between elements and therefore

interpretations about the origin of network patterns should not disregard

dynamical analysis. In the next section we will see how small network sub-

units (analogous to these dynamical clusters) with robust and coherent dy-

namics, termed motifs, have attracted a lot of attention when studying real

regulatory networks.

3.2 Dynamics of real regulatory networks

We now focus on applications to modeling real gene regulatory networks.

As discussed in the previous section, an important issue concerns the most

convenient level of description for a particular network (Bornholdt (2005)).

While network subunits or modules can be modeled in terms of differential

equations, a description of an entire regulatory system need to rely on the

coarse-grained picture of logical or Boolean dynamics.

3.2.1 Network modules

Network modules are presented in the literature as small circuits (composed

typically of three genes) embedded in large regulatory networks that are able

to display autonomous dynamics. Since it is difficult to detect modules by

simply looking at the whole network activity, several works have focused on

the identification of general building blocks in gene networks by looking for

motifs in the network topology (Milo et al. (2002)). Motifs, as previously

seen in section 2.4, are those subgraphs whose occurrence in the real network
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is significantly higher than in their randomized versions and include auto-

regulatory excitatory feedback loops, inhibitory feedback loops, feed-forward

loops and dual positive-feedback loops. Once network motifs are identified,

different test of dynamical robustness or reliability (e.g. synchronizability)

in different regulatory networks can be performed (Klemm and Bornholdt

(2005); Bradman et al. (2005); Ma’ayan et al. (2005); Lodato et al. (2007)).

When regulatory dynamics is implemented, the result is that network motifs

show a more robust behavior than other circuits, with the same number of

genes, that are not so frequent in the regulatory map. As a consequence, the

experimental occurrence of particular structures of regulatory interactions

seems to be due to their remarkable dynamical reliability. This suggest a

selective process acting on the pattern of interactions rather than on isolated

genes.

The finding that a few basic modules are the building blocks of large real

regulatory networks justifies the design and construction of small synthetic

regulatory circuits to implement particular tasks. The most salient example

of a synthetic gene network is the “repressilator” that has become one of the

best studied model systems of this kind. The repressilator is a network of

three genes, whose products (proteins) act as repressors of the transcription

of each other in a cyclic way (see Figure 3.6). This synthetic network was

implemented in the bacterium Escherichia coli so that periodically it induces

the synthesis of a green fluorescent protein as a readout of the repressilator

state (Elowitz and Leibler (2000)). In this regard, the temporal fluctuations

in the concentration of each of the three components of the repressilator

can be easily reproduced by analyzing a system of six ordinary differential

equations, based on Eqs. (3.3), (3.4) and (3.6)), read

d[xi]

dt
= −[xi] +

β

1 + [yj]n
, (mRNA dynamics) (3.9)

d[yi]

dt
= −α([yi] − [xi]) , (Protein dynamics) (3.10)

where the couples (i, j) asumme the values (1, 3), (2, 1) and (3, 2). The

variable [xi] is the mRNA concentration encoded by gene xi, and [yi] is the

concentration of its translated protein yi. The parameter α is the ratio of

the protein decay rate to the mRNA decay rate, and time has been rescaled

in units of the mRNA lifetime. This system of equations has a unique steady

state which can be stable or unstable depending on the parameter values.

In the unstable region of parameter space, the three protein concentrations

fluctuate periodically. Experiments show the temporal oscillations of fluo-

rescence, which were checked to be due to the repressilator, validating the
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Fig. 3.6. Schematic representation of the repressilator. The repressilator is a small
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of the subsequent. That is, the protein product of genes g1, g2 and g3 act as the
repressors of the activity of gene g2, g3 and g1 respectively.

model predictions. In particular, the previous mathematical model served

to identify possible classes of dynamical behavior and to determine what

experimental parameters should be adjusted in order to obtain sustained

oscillations.

The repressilator is an illustrative example of the experience gained by

identifying network modules and modeling its dynamical behavior in real

networks. Not surprisingly, the repressilator called attention from experts

on (biological) synchronization, for it offers good prospectives for further

insights into the nature of biological rhythms, whose mechanisms remain to

be understood. In this respect, a simple modular addition of two proteins

to the repressilator original design has been recently proposed (Ojalvo et al.

(2004)). This extension is made so that one of the new proteins can diffuse

through the cell membrane thus providing a coupling mechanism between

cells containing repressilator networks. This inter-cell communication cou-

ples the dynamics of the different cell oscillators (with different repressilator

periods) and thus allows the study of the transition to synchronization of

coupled phase oscillators in a biological system. The result reproduces the

phase transition from uncorrelated to coherent dynamics as the cell dilution

decreases (increasing cell-cell interaction).

3.2.2 Large regulatory networks

The study of elementary gene circuits certainly provides answers to intrigu-

ing questions about the regulatory mechanisms at work and their organiza-
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tional patterns. On the other hand, the description of how the organization

at the system level emerges is far from being trivial. Despite the enormous

complexity differences between living organisms as worms (e.g. C. Elegans)

and humans the difference between their genome length is too small to ex-

plain the species’ evolutionary gap. The difference should be unveiled by

looking at the complexity of each gene network that relies on the variety

of collective responses or phenotypes it displays. It is therefore clear that

genome-wide approaches will allow to discover new higher-order patterns.

The characterization of the dynamical complexity of real regulatory net-

works is a very recent issue. The most successful approach is to use Boolean

dynamics to characterize the regulatory interactions and thus to construct

an oversimplified (free of parameters) model. Recent studies on this direc-

tion have addressed different regulatory networks, some examples are found

in references (Mendoza et al. (1999); Li et al. (2004); Davidich and Born-

holdt (2007); Albert and Oltmer (2003); Faure et al. (2006)). Although the

number of gene networks that are currently analyzed from the dynamical

point of view is growing, it will still take a long time to follow the evolution

of complexity in living organisms by comparing gene networks and their dy-

namical behavior. Up to now the models focus on reproducing the sequential

expression patterns observed experimentally. This is the case for the seg-

ment polarity gene network in Drosophila Melanogaster (Albert and Oltmer

(2003)), and the cell-cycles of Saccharomyces Cerevisiae (Li et al. (2004))

and Schizosaccharomyces Pombe (Davidich and Bornholdt (2007)). These

two latter studies are particularly important since the two cells are well-

studied eukaryotic organisms and their network dynamics show remarkable

differences. In particular, it has been observed (Davidich and Bornholdt

(2007)) that although both cycles are similar in terms of the length of the

basin of attraction, the overall dynamics observed when external signals are

introduced is qualitatively different.

More promising, from the point of view of predicting power, are the find-

ings for the flower morphogenesis regulatory network in Arabidopsis thaliana

(Mendoza et al. (1999)). In this case the 5 different phenotypes (dynamical

attractors) of the flower (petals, sepals, stamen, carpels, and flower inhibi-

tion) are reproduced, plus a new sixth phenotype that does not correspond

to any previously found cell type. The above examples summarize the large

predicting power of dynamical models in large real regulatory networks. De-

spite the use of a coarse-grained view as Boolean dynamics, the qualitative

aspects of cellular dynamics seem to be already captured in this framework.
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Conclusions

Finally, we would like to emphasize that the studies mentioned here and oth-

ers available in the literature are only the tip of the iceberg. It is expected

that new tools come into play and that the universal behavior observed in

the topology of many diverse phenomena from physical, social, technolog-

ical and biological systems will allow a cross-fertilization between different

disciplines, the ultimate goal being to tackle the complex structural and dy-

namical relationships in living systems such as the a cell. If this is achieved,

then we would be able to use that consistent framework to make predictions

and to develop alternative experimental techniques and practical applica-

tions such as targeted drugs.
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