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We introduce a fully nonhierarchical network growing mechanism, that furthermore does not
impose explicit preferential attachment rules. The growing procedure produces a graph featuring
power-law degree and clustering distributions, and manifesting slightly disassortative degree-
degree correlations. The rigorous rate equations for the evolution of the degree distribution and
for the conditional degree-degree probability are derived.
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Complex networks are the prominent candidates
to describe the topology of many real systems in
social, technological and natural sciences [Albert &
Barabási, 2002; Newman, 2003; Boccaletti et al.,
2006].

In particular, the massive and comparative
analysis of the available data has uncovered four
main properties common to most of the real-world
networks, namely: (i) scale-free degree distribu-
tions, (ii) the small-world behavior, (iii) a hier-
archical structure in the clustering features, and
(iv) degree-degree correlations. The first property
accounts for a degree distribution Pk (the proba-
bility that a node, chosen at random, has k edges)
exhibiting a power law tail, Pk ∼ k−γ [Barabási &
Albert, 1999]. The second indicates that the char-
acteristic path length 〈l〉 scales at most logarith-
mically with the number of nodes N in the graph,
while the clustering coefficient C is of the order of
one independent of N [Watts & Strogatz, 1998]. The
third means that the clustering coefficient Ck of a

connectivity class k (the average clustering coef-
ficient of all nodes with a given degree k) does
depend on k as Ck ∼ k−ω [Ravasz et al., 2002].
The fourth reveals that the probability that a node
of degree k is connected to another node of degree
k′, depends on both k and k′. This is reflected by
a degree-degree correlation coefficient r �= 0 [New-
man, 2002]. The specific values of γ, ω and r depend
on the specific case under study. One usually finds
2 ≤ γ ≤ 3 [Albert & Barabási, 2002; Newman, 2003;
Boccaletti et al., 2006], ω � 1 [Ravasz et al., 2002],
and r < 0 (r > 0) for technological and biological
(social) networks [Newman, 2002].

Network models featuring a power-law degree
distribution can be simply obtained as a particular
case of random graphs with a given degree distribu-
tion [Bender & Canfield, 1978]. While these mod-
els are an appropriate representation of all those
cases in which growth or aging do not play a dom-
inant role in determining the structural properties
of a network, the recent research on graph modeling
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has instead concentrated on networks emerging
from a growing process [Albert & Barabási, 2002;
Newman, 2003; Boccaletti et al., 2006; Barabási
& Albert, 1999]. In this framework, it was ini-
tially postulated that a scale-free degree distri-
bution is the direct consequence of a preferential
attachment mechanism taking place in the grow-
ing process, through which the larger is the degree
[Barabási et al., 1999; Albert & Barabási, 2000] (or
the intrinsic fitness [Bianconi & Barabási, 2001]) of
an existing node, the higher the probability that
this node will form connections with newly added
ones. Only in the last few years some alternatives
to the preferential attachment mechanism, like the
so-called vertex copying mechanisms and duplica-
tion models [Kim et al., 2002; Chung et al., 2003;
Vázquez et al., 2003] have been introduced in order
to generate power-law distributions.

Furthermore, the scaling of the clustering coef-
ficient Ck ∼ 1/k observed in real networks, can be
attained in models of growing graphs by further
introducing ad hoc mechanisms (as, for instance,
by hierarchically repeating the same construction
rules at different scales [Ravasz et al., 2002], or by
considering a set of local rules [Vázquez, 2003]).

Nevertheless, a direct preferential attachment
mechanism manifests two main drawbacks. First of
all, it is not plausible that a node adding to the net-
work has full information on the degree sequence
of the existing nodes, which in fact the preferen-
tial attachment rule would require to fix its con-
nectivity properties. Secondly, a scale-free degree
distribution comes out to be a singular limit cor-
responding to linear preferential attachment pro-
cesses. Indeed, by considering attachment processes
in which Πn→j ∝ kα

j (Πn→j being the probability
that a new node n attaches to the existing node j),
Krapivsky et al. [2000] has shown that, if α < 1, the
mechanism produces a stretched exponential degree
distribution while, for α > 1, a single site connects
to nearly all other sites.

In this paper, we show how it is possible,
instead, to grow a graph displaying power-law fea-
tures in both degree and clustering distributions, by
means of a fully nonhierarchical mechanism, that
furthermore does not impose explicitly any prefer-
ential attachment rule.

The model to grow a network of N nodes
starts from an initial (t = 0) connected graph of
N0 � N nodes and K0 edges, such that no node
has degree smaller than a given m. For simplicity,
here, we fix K0 = N0(N0 − 1)/2, i.e. we start from

a complete graph with N0 nodes. Time is discrete
(t = 1, 2, . . . , N −N0), and at each time step a new
node n, with m edges, is added to the graph. The
new node is linked to m different nodes of the exist-
ing graph selected by the following three-steps rule:

• (A) The new node n selects randomly a node,
say node j, in the graph with uniform probabil-
ity among the set of N0 + t existing nodes.

• (B) The new node considers the set Sj(t) formed
by kj(t) + 1 nodes: the node j and the set Nj(t)
of its kj neighbors at time t.

• (C) The new node n links to m distinct nodes,
randomly chosen with uniform probability from
the set Sj(t).

Notice that this growing mechanism shares
some features with the vertex copying mechanisms
and duplication models [Kim et al., 2002; Chung
et al., 2003; Vázquez et al., 2003], and with a partic-
ular kind of model based on local rules, the so-called
random walk model, proposed in [Vázquez, 2003].
Furthermore, in the proposed growing process, each
newly added node n has only a partial information
on the existing network structure (limited to the
initially randomly selected node j and its neighbor-
hood Nj), and does not use explicitly a preferential
rule for setting up the connectivity (both the ini-
tial node j and the connections are chosen at ran-
dom with a uniform distribution). Nevertheless, it
should be highlighted that high degree nodes auto-
matically receive more new links (in a way linearly
proportional to their degree) because they can be
reached in a larger number (linearly proportional
to the degree) of ways, as first suggested by Cohen
et al. [2003]. Therefore, our growing procedure can
be seen as a way of introducing a linear preferential
attachment mechanism without having to ad hoc
postulating it in a direct way in the network growth.

The resulting degree distribution in the model
(N0 = 6 and m = 5) is depicted in Fig. 1(a). The
data refer to an ensemble average over ten different
realizations of a network with N = 10000 nodes.
Within the same panel, we draw the line corre-
sponding to the function Pk = k−γ , with γ = 3, in
order to make it evident that the proposed mecha-
nism induces a power-law degree distribution that
has the very same features of those attained by the
original linear preferential attachment mechanism
[Barabási & Albert, 1999]. The same value of γ is
obtained for different N0 and m values.
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(a) (b)

Fig. 1. (a) Degree distribution Pk (in logarithm scale) versus the logarithm of the node degree, for N0 = 6 and m = 5. Both
quantities are adimensional. The straight line depicts the function Pk = k−γ , with γ = 3. (b) Characteristic path length 〈l〉
versus the logarithm of the network size N .

A measure of the typical separation between
two nodes in a graph is given by the characteristic
path length, defined as the mean of geodesic lengths
over all couples of nodes [Watts & Strogatz, 1998]:

〈l〉 =
1

N(N − 1)

∑
i,j=1,...,N,i �=j

dij, (1)

where dij is the length of the geodesic (the number
of edges in the shortest path) from node i to node j.
Figure 1(b) highlights that the proposed mechanism
originates a graph possessing the small-world prop-
erty, i.e. such that 〈l〉 scales logarithmically with
the network’s size N , as it was observed in many
real world networks [Watts & Strogatz, 1998].

As for the clustering properties, these can
be quantified by means of the graph clustering

coefficient C, given by the average of ci over all the
nodes:

C = 〈c〉 =
1
N

∑
i=1,...,N

ci, (2)

where ci (the local clustering coefficient of node i)
is the normalized number of edges (denoted by ei)
in the subgraph of neighbors of i, and is defined as
ci = (2ei)/[ki(ki−1)] [Watts & Strogatz, 1998]. The
inset of Fig. 2 illustrates the behavior of C versus
N , and shows that, as the network size increases,
C tends to approach a size-independent value very
close to 1, indicating that the grown network dis-
plays prominent clustering features, at variance
with what happens with the preferential attach-
ment mechanism [Barabási & Albert, 1999]. Our

Fig. 2. The clustering coefficient Ck of a connectivity class k (in logarithm scale) versus the logarithm of k. Both quantities
are adimensional. The straight line depicts the function Ck = k−ω, with ω = 1. The inset reports the clustering coefficient C
versus the network size N (in logarithmic scale).
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numerical simulations indicate that this asymptotic
behavior of C persists also for poorly clustered ini-
tial graphs.

Usually, another measure is also considered,
namely Ck, the clustering coefficient of a connec-
tivity class k, defined as in Eq. (2), with the sum
restricted over the set of all nodes with a given
degree k. Figure 2 reports Ck versus the logarithm
of the node degree, showing that our growing mech-
anism, despite being fully nonhierarchical, recovers
the power-law behavior Ck ∼ k−1, typical of hierar-
chically growing networks [Ravasz et al., 2002]. This
result can be explained by simple heuristic argu-
ments. Precisely, the leading term in the probability
Π� that the connections from a newly added node n
contribute in forming triangles in the graph is equal
to the probability that the added node forms a con-
nection with the initially randomly selected node
j (in this case, indeed, the connections of the new
nodes will form m − 1 triangles in the network). If
node j has degree kj , the probability that node n
will form a connection with it is m/(kj + 1), and
therefore the clustering coefficient Ck has to scale
like k−1.

As for the power-law degree distribution, one
has to explicitly write down the rate equations
for the time evolution of the number of nodes
Nk(t) with degree k at time t [Krapivsky et al.,
2000]. Nk(t) satisfies the normalization condition∑

k Nk(t) = N(t) = N0 + t ≈ t. The rate equations,
for k ≥ m, read:

dNk(t)
dt

= −Nk(t)
N(t)

m

k + 1
−

∑
k′

Nk′(t)
N(t)

P (k|k′)
m

k′ + 1

+
Nk−1(t)

N(t)
m

k
+

∑
k′

Nk′(t)
N(t)

P (k − 1|k′)

× m

k′ + 1
+ δk,m. (3)

The terms in the right-hand side of Eq. (3) with
negative (positive) signs correspond to loss (gain)
terms. The first of the loss terms accounts for the
fact that, at each time step, a node with k edges
can be chosen as the first node in the wiring pro-
cess. Nk(t)/N(t) is the probability to get a node
with k links by choosing a node at random, and
m/(k + 1) is the probability that one out of the m
new edges connects the added node with the ran-
domly chosen one. The second contribution to the
loss term comes from the fact that we can choose
a node with k edges not as the initial node, but

as the first neighbor of an initial node with degree
k′. The conditional probability P (k|k′) in Eq. (3) is
defined as the probability that a node with k′ links
is connected to a node with k links, and satisfies the
conditions

∑
k P (k|k′) = 1 and k′P (k|k′)P (k′) =

kP (k′|k)P (k) [Pastor-Satorras et al., 2001; Boguñá
et al., 2003]. The gain part of Eq. (3) is made by
two contributions similar to those in the loss term,
plus a third contribution (δk,m) accounting for the
addition, at each time step, of a new node with m
links. Assuming now the existence of a stationary
probability distribution Pk = limt→∞ Pk(t), where
Pk(t) = Nk(t)/N(t) is the degree distribution at
time t, since for large times N(t) ≈ t, we can
write Nk(t) ≈ tPk. Substituting in Eq. (3), since
dNk(t)/dt = d[tPk]/dt = Pk, we get:

Pk = −Pk
m

k + 1
−

∑
k′

Pk′P (k|k′)
m

k′ + 1

+ Pk−1
m

k
+

∑
k′

Pk′P (k − 1|k′)
m

k′ + 1
+ δk,m.

(4)

Equation (4) reveals a peculiar feature of our
model: the asymptotic degree distribution explic-
itly depends on the degree-degree correlation [the
equation for Pk depends explicitly on the con-
ditional probability P (k|k′)]. This is because the
set Sj in step (B) of the growing procedure,
includes both the node j and its first neighbors.
If one considers a simplified version of the model
in which the newly attached node n links to m
(randomly chosen) neighbors of a randomly cho-
sen node j (i.e. Sj = Nj), the growth turns
out to be well described by the equations (valid
for k ≥ m):

dNk(t)
dt

= m
−kNk(t) + (k − 1)Nk−1(t)∑

k

kNk(t)
+δk,m. (5)

These rate equations are simply derived by con-
sidering that the degree k of the first neigh-
bors of a randomly chosen node is distributed as
kNk/

∑
k kNk [Newman, 2003; Boccaletti et al.,

2006]. The rate equations in (5) are identical to
those of the model proposed by Barabasi and Albert
[1999] (see also [Barabási et al., 1999; Krapivsky
et al., 2000]). Since for large times Nk(t) ≈ tPk

and
∑

k kNk(t) ≈ 2mt, one gets the following recur-
sive equations for the stationary degree distribution
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[Newman, 2003]:

Pk =




k − 1
k + 2

Pk−1 for k > m

2
(m + 2)

for k = m

(6)

which give Pk = [2m(m + 1)]/[k(k + 1)(k + 2)].
In summary, this simplified version can be solved
exactly and produces a power-law degree distribu-
tion with an exponent γ = 3, equal to that observed
in Fig. 1 for the complete model. On the other
hand, the simplified model does not produce the
hierarchical clustering coefficient C ∼ 1/k observed
in Fig. 2.

Going back to the complete model, we notice
that Eq. (4) turns into a set of closed equations,
similar to Eq. (6), if the growing mechanisms would
produce a uncorrelated graph. In such a case the
conditional probability P (k|k′) would be indepen-
dent on k′ and would reduce to P (k|k′) = kPk/〈k〉.
The presence/absence of degree-degree correlations
can be checked numerically in the model by com-
puting the average degree of the nearest neigh-
bors of nodes with degree k, denoted as knn(k)
[Pastor-Satorras et al., 2001]. Since the latter can
be expressed as a function of P (k|k′) as knn(k) =∑

k′ k′P (k′|k), in the absence of correlations one
would obtain knn(k) = 〈k2〉/〈k〉, independent of k.
Figure 3 reports knn versus k for different network’s

sizes, revealing that in all cases the network man-
ifests slightly disassortative degree-degree correla-
tions [Newman, 2002] [knn(k) is a monotonically
decreasing function, i.e. nodes with low degree are
more likely connected with highly connected ones].
This is confirmed by the calculation of the Pearson
correlation coefficient of the degrees at either ends
of an edge r(N) [Newman, 2002], which turns out
to be negative for any finite size N , as shown in
the inset of Fig. 3. Since the correlations are small,
in a first approximation we can neglect them. By
plugging P (k|k′) = kPk/〈k〉 in Eq. (4), one gets the
recursive equations:

Pk =




m

(
1
k

+
k − 1
〈k〉 a

)

1 + m

(
1

k + 1
+

k

〈k〉a
)Pk−1 for k > m

1

1 + m

(
1

m + 1
+

m

〈k〉a
) for k = m

(7)

where a =
∑

k′(Pk′/(k′ + 1)). Equation (7) can be
solved numerically. Though representing only the
limit of uncorrelated graphs, Eq. (7) produces, for
large k, power-law degree distributions for any value
of m and a (for instance, m = 2, 〈k〉 = 2m, and
a = 0.8 give P (k) ∼ k−γ with γ = 3.5).

If one wants to solve rigorously the model, the
iterative equation for the conditional probability
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Fig. 3. Average nearest neighbors degree knn versus k (in logarithmic scale). The different curves correspond to different
network’s sizes. Precisely, the curve with triangles (squares, circles) refers to N = 10 000 (N = 20 000, N = 50 000), while the
solid line refers to N = 100 000. Inset: the Pearson coefficient r (see [Newman, 2002] for definition) versus the system size N ,
revealing the disassortative nature of the degree-degree correlations.
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P (k|k′) has to be given. The rate equation for
P (k|k′) can be written down by further assuming
that k is chosen simply proportional to Nk−1(t)
(i.e. as if each link is attached at a node chosen at
random). The details of the calculations are rather
complicated and somehow cumbersome, and will be
presented elsewhere. The final rate equations for
P (k|k′) are:

P (k|k′)k′P (k′)

= P (k − 1)P (k′|k − 1)
m

k

+ P (k′ − 1)P (k|k′ − 1)
m

k′

−PkP (k′|k)
m

k + 1
− P (k′)P (k|k′)

m

k′ + 1

+
∑
k′′

P (k′′)
m

k′′ + 1
[P (k − 1|k′′)P (k′|k − 1)

+ P (k′ − 1|k′′)P (k|k′ − 1) − P (k|k′′)P (k′|k)
−P (k′|k′′)P (k|k′)] + m δk′,1P (k − 1), (8)

that, once coupled with Eq. (4), allow for the ana-
lytical solution of both the degree distribution Pk

and the conditional probability P (k|k′).
In conclusion, we have shown that a simple

nonhierarchical growing mechanism is able to pro-
duce complex network structures, featuring all the
main statistical properties observed in most of the
real networks. Though not explicitly postulating
any preferential attachment rule, the procedure
generates: power-law degree and clustering distri-
butions, and disassortative degree-degree correla-
tions. The model, therefore, overcomes the two main
drawbacks typical of preferentially growing proce-
dure, especially it does not require full information
on the degree sequence when each time a new node
is added. Our results therefore contribute to a bet-
ter understanding of the growth mechanisms at the
basis of the formation of complex topologies in tech-
nological, social and biological systems.
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