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We present a novel approach to quantify the vulnerability of a complex network, i.e., the capacity
of a graph to maintain its functional performance under random damages or malicious attacks. The
proposed measure represents a multiscale evaluation of vulnerability, and makes use of combined
powers of the links’ betweenness. We show that the proposed approach is able to properly describe
some cases for which earlier measures of vulnerability fail. The relevant applications of our method
for technological network design are outlined. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2801687�

Many natural, technological, and social systems find a
suitable representation as networks made of a large num-
ber of highly interconnected units. This is the case, for
instance, of electric power grids, the Internet, neural net-
works, or networks of acquaintance or collaboration be-
tween individuals. Recent studies have revealed that such
systems are all characterized by similar topological prop-
erties (such as relatively small characteristic path length,
high clustering, and fat tailed degree distributions) and
have started a new movement of interest and research in
the study of complex networks.1–3,13

A central issue in the analysis of complex networks is the
assessment of their security and stability. The main aim is to
understand, predict, and possibly even control the behavior
of a networked system under attacks or dysfunctions of any
type.

A central concept that is nowadays used to assess stability
and robustness of the global behavior �or performance� of
complex network dynamics under external perturbations �as
failures or malicious attacks� is that of vulnerability.

Different approaches to properly define a measure for net-
work vulnerability has been proposed so far, relating it to, for
instance, percolation theory4 �see also Refs. 2 and 3�, varia-
tions of network efficiency,5 some structural properties of the
degree distribution,6 and the bottlenecks of the network.7 In
this Letter, we show that all such methods are useless to
properly describe the vulnerability of some networks, and we
introduce a new approach to the concept of vulnerability that
overcomes the encountered limitations.

In order to describe the concept of vulnerability of a net-
work, one has first to discuss the issue of network malfunc-

tioning. This may be done under two different points of
view:

�i� By considering the deactivation �deletion� of a node,
together with all the links having such a node as an
extreme. This point of view is especially suitable when
one deals, e.g., with computer networks.4

�ii� By considering the deactivation �deletion� of one or
several edges, without deleting any node.5 This is the
case, for instance, of airline networks: if the pilots or
the ground crew in an airport are on strike, all the links
of the node representing that airport should be deleted,
but neither the node �the airport� nor the passengers
will disappear.

These two viewpoints are far from being equivalent, The
approach �i� can give rise to some problems, as the following
simple example shows. Consider the graph G1 in Fig. 1. If
we delete node 1 and its corresponding edge, we obtain the
complete graph K4, so the connectivity of our graph has im-
proved. On the other hand, under the approach �ii� of only
deleting the links, G2 is obtained from G1, with an obvious
decrease in connectivity. For this reason, in the following we
will consider only the approach �ii�.

Let us now consider the two graphs depicted in Fig. 2, the
so-called “bat” graph G and the “umbrella” graph G�. It is
easy to realize that the two graphs differ only by the fact that
the links �= �1,3� and �= �4,6� in G are substituted with the
links �= �1,6� and �= �3,4� in G�. As a result, the two graphs
display an identical degree distribution function, and all ap-
proaches based on degree distributions, such as those of
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Ref. 6, would give the same value of vulnerability in both
cases.

Moreover, by using the drop in the efficiency method pro-
posed in Ref. 5, it is easy to verify that the vulnerabilities of
G and G� under removal of single links coincide, v�G�
=v�G��=0.1951. This is the maximal drop in the efficiency,
obtained, in both networks, when the link �= �7,8� is re-
moved. Also, it can be easily checked that, despite the adja-
cency matrices of G and G� have different eigenvalues/
eigenvectors, they share the eigenvectors corresponding to
the maximal and minimal eigenvalues. This implies that
measures of node centrality based on eigenvectors, like the
one in Ref. 8, would be unable to distinguish between the
two graphs. The question of when these two vulnerability
measures fail to provide a sharp method to choose among
graphs requires a deep understanding of their global struc-
ture. For example, when dealing with the eigenvalue vector
vulnerability, just determining if two graphs have the same
spectral radius is a central problem in graph spectrum analy-
sis theory �see Ref. 9�.

On the other hand, it is clear that the “bat” graph is more
vulnerable than the “umbrella,” because an attack involving
the deletion of the links pertinent to node 7 would cut the
graph G into three disconnected components, while graph G�
would be cut into two disconnected components.

After careful inspection, one realizes that the difference
between the “bat” and the “umbrella” graphs is in the way
they distribute the load of pathways on their links. It is then
evident that a proper measure of vulnerability should refer to
measures of the link betweenness.10–12

A simple use of the standard measures of betweenness
cannot, however, circumvent the problem. Indeed, if G
= �X ,E� is a graph, for each link ��E one can define the
edge betweenness as10,11

b� = �
j,k�X

njk���
njk

, �1�

where njk��� is the number of geodesics from j to k that
contain the link � and njk is the total number of geodesics
from j to k. One can then define the average edge between-
ness of the graph G as

b1�G� =
1

�E� ���E

b�. �2�

However, by evaluating Eq. �2� for the two graphs, one
gets b1�G�=b1�G��=43/13. Actually, this equivalence is the
direct consequence of a general property: For a generic net-
work G= �X ,E� the parameter b1�G� is, up to normalization,
the characteristic path length of G. Therefore b1�·� gives no
relevant new information about the vulnerability of the net-
work.

Let us briefly demonstrate this property. One has

b1�G� =
1

�E� ���E

b�

=
1

�E� ���E
� �
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�
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Notice that if P jk is the set of all geodesics joining j and
k then one has

njk��� = �
g�Pjk

�g��� ,

where �g��� is 1 if � belongs to the geodesic g and 0 other-
wise. Hence if dj,k denotes the distance between j and k in
the network, then

b1�G� =
1

�E� �
j,k�X

1

njk
��
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njk����
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dj,k�
=

n�n − 1�
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and, therefore, b1�G� measures essentially the same global
properties than the characteristic path length L�G�.

In order to overcome such a limitation, we introduce here
the coefficient

bp�G� = � 1

�E� ���E

b�
p�1/�p�

, �3�

for each value of p�0. Such a coefficient gives a multiscale
measure of the vulnerability of a graph in the following
sense: if one wants to distinguish between two networks G
and G�, one first computes b1. If b1�G��b1�G��, then G is
more robust that G�. On the other hand, if b1�G�=b1�G��,

FIG. 1. From left to right: the initial graph G1; the complete graph K4

obtained from G1 by deleting node 1 and its corresponding edges; the graph
G2 obtained from G1 by deleting only the link emerging from node 1.

FIG. 2. The “bat” graph G and the “umbrella” graph G�.
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then one takes p�1 and computes bp until bp�G��bp�G��.
This, on its turn, introduces a scale p, at which the vul-

nerability measure of the networks is distinguishable. For
instance, in the example of the “bat” and “umbrella” graphs,
it can be easily verified that b2�G��b2�G�� and therefore p
=2 is already able to distinguish properly between G and G�.

Despite the fact that bp�G��bq�G� if p�q, in general we
have to consider the full multiscale sequence of betweenness
coefficients �bp�G��p�1 in order to get a sharp approach to
the robustness of the network and we can not only consider
the maximal extreme parameter b��G�=max	b� ; � �E
 �ob-
tained as the limit of bp�G� as p→ +��, since some networks
can be found, G and G� such that b1�G�=b1�G��, b��G�
=b��G��, and bp�G��bp�G�� for some 1� p��. As an ex-
ample, in Fig. 3 we report the values of bp�G� �thin increas-
ing line� and bp�G�� �dashed thin line� as a function of 1
� p��, in the case of the “bat” and “umbrella.” Notice that,
despite the fact that b1�G�=b1�G��=43/13 and b��G�
=b��G��=7, we have bp�G��bp�G�� for all 1� p��, and
therefore G� comes out to be less vulnerable than G at all
scales.

Furthermore, in this particular case, the maximal relative
difference �bp�G�−bp�G��� /bp�G� is obtained for p�2.979.
Such a maximal difference is only reached once, as one can
see from the plot of �bp�G�−bp�G��� /bp�G� as a function of
p, reported in Fig. 3 �thick line�.

On the other hand, if we consider the expression �3� for a
network whose geodesic distribution concentrates strongly
around a single link, the potential risk of a failure in this
critical link is hidden in the formula by the average with the
rest of minor links. However, if we go beyond the convexity
frontier �as in the case of p-norms in the functional analysis
context� and consider values of p less than 1, we can avoid
this difficulty and we are able to spot this kind of critical
links in a network.

An easy computation shows that, in the range 0� p�1,
the properties of the bp function yield counterintuitive behav-
iors. If we consider negative values of p, then an adequate
candidate should be the coefficient,

b−1�G� =
1

�E� ���E

1

b�

.

This formula is similar to the measure of global efficiency
introduced in Ref. 14, and is obtained by replacing the role
of distances by that of edge betweenness.

As a practical application of the proposed method we in-
vestigate the vulnerability of national airport networks. Air-
port networks are critical infrastructures having fundamental
economic impact on local and national economies. Here, we
compare the Italian and the Spanish airport networks. We
have built the two networks by considering cities with air-
ports as nodes, and assigning links to pairs of cities that are
connected by nonstop domestic flights.15 The Italian airport
network, denoted by G in the sequel, results in a graph with
33 nodes and 105 links, while the Spanish one, denoted by
G�, has 35 nodes and 123 flights. If we calculate the average
edge betweenness, we get b1�G��9.657 �for the Italian net-
work�, while b1�G���8.919 �for the Spanish one�. The dif-
ferences between the two graphs are more clear if one per-
forms a multiscale approach. Hence, we have computed the
shortest path betweenness for each link and then performed
the p-means over all links and the results are shown in Fig. 4.

Notice that the difference between the two networks are
maximal when we consider p�3.699, and this maximal dis-
crepancy is only attained for this values as the plot of the
function f�p�= �bp�G�−bp�G��� /bp�G�, as it is shown in Fig.
4 �thick line�.

In conclusion, we have introduced a novel approach to the
measure of vulnerability for a complex network, that makes
use of combined powers of the links’ betweenness. The pro-
posed approach is able to properly describe some cases for
which earlier measures of vulnerability fail. Besides the as-
sessment of the robustness of natural and biological net-
works against failures, the proposed approach is relevant for
the design of technological �computer networks, power grids,
etc.� secure graphs; given the number of nodes and links �and
a desired degree distribution� the calculation of multiscale
vulnerability would provide a solution to the problem of op-
timizing the placement of the links in order to ensure the

FIG. 3. bp�G� �thin line� and bp�G�� �dashed line� as functions of 1� p
��. 50�bp�G�−bp�G��� /bp�G� �thick line� as a function of 1� p�� has a
unique maximum at p�2.979.

FIG. 4. bp for the Italian airline network �dashed line� and the Spanish
airline �thin line� network as functions of 1� p��. 180�bp�G�
−bp�G��� /bp�G� �thick line� as a function of 1� p�� has a unique maxi-
mum at p�3.699.
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construction of a network with maximal resistance against
malicious attacks.
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