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Universal Behavior of Lyapunov Exponents in Unstable Systems
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We calculate the Lyapunov exponents in a classical molecular dynamics framework. Yukawa and
Slater-Kirkwood forces are considered in order to give an equation of state that resembles the nuclear
and the atomic4He equation of state, respectively, near the critical point for liquid-gas phase transition.
The largest Lyapunov exponentsl are always positive and can be very well fitted near the “critical
temperature” with a functional forml ~ jT 2 Tcj

2v, where the exponentv ­ 0.15 is independent of
the system and mass number. At smaller temperatures we find thatl ~ T 0.4498, a universal behavior
characteristic of an order to chaos transition.

PACS numbers: 05.45.+b, 05.70.Fh, 24.60.Lz
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The phenomena of phase transitions have been alw
a subject of great interest for many (generations o
physicists. Very recently there has been a large interes
studying what happens when the system is not compo
of 1023 particles and confined in a box but, on th
contrary, is composed of few hundred particles that a
not confined. This interest was born first in heavy io
collisions where one would like to study the nuclea
equation of state (NEOS) [1]. In the nuclear case
is not possible to study the infinite number of particle
case (apart in stars, with the obvious difficulties), so o
feasible way is to perform proton-nucleus or nucleu
nucleus collisions. In this manner it is possible to he
up and to explore different densities of the nuclei. O
course the problem is complicated apart from the fa
of having a small number of particles, also from th
presence of Coulomb force, angular momentum, and fr
the approximate knowledge of the “thermodynamic
parameters,” i.e., temperature, density, and pressure
4]. Similar problems can be found in the study o
metallic clusters and/or fullerenes [5]. One of the fir
questions that arises is: Does it make sense to sp
about phase transitions for a system made of 10
400 particles? To answer this question the authors
Refs. [3,5] and [6] have solved the exact classical ma
body problem [classical molecular dynamics (CMD
numerically for particles interacting through two bod
forces. In particular, by preparing 100 particles in th
ground state and giving to the particles an excitati
energy (or temperatureT ) the following results are found:

(1) For a given initial temperatureTc the system
undergoes multifragmentation [3,6,7]. The resulting ma
distributions display a power lawYsAd ~ A2t with t ­
2.23, which is exactly the value predicted in the Fishe
droplet model for a system near the liquid-gas pha
transition point [8]. Other critical exponents have als
been estimated within the same model [7]:g ­ 0.86,
b ­ 0.33 [9]. Similar estimates but for experimental dat
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on Au 1 C collisions at 1 GeVynucleon [4] also give
reasonable values of all the exponents.

(2) At the same temperature, fluctuations in the mass
distribution are maximum. This is revealed through the
study on an event by event analysis of intermittency
signal, factorial moments, and Campi’s plots [6,10,11].

(3) The “critical temperature” follows the scaling law
TcyjEbj ­ const [5], whereEb is the binding energy
of the system (10.5 MeV for nuclei, 9.5 eV for C60

fullerenes, and 50.5 K for4He molecules).
(4) At very small temperatures or, equivalently, small

excitation energies, the events are typical evaporationlike
events, i.e., with a final mass distribution composed of a
big fragment and many small ones: monomers, dimers, etc.

For some initial conditions the system displays large
fluctuations; thus we expect that other indicators of fluc-
tuations—the Lyapunov exponents—should be positive.
The values of the Lyapunov exponents for systems un-
dergoing a phase transition are not known (yet). In par-
ticular, the relationship between thermodynamical and
dynamical properties has not been exhaustively explored.
Ours is the first estimate of the Lyapunov exponents for
systems exhibiting a critical behavior (possibly because of
a liquid-gas phase transition). In a previous exploratory
work, except for a two dimensional system and in the
mean-field approximation, the largest Lyapunov expo-
nents were calculated in the spinodal region [12]. It is
well known, however, that the mean-field approximation
gives a rough estimate of the critical exponents [8]; thus
it is interesting to estimate their values in CMD.

We can summarize the main results of this work as
follows: Independent of the studied system, i.e., nuclei,
helium molecules, the largest Lyapunov exponents satisfy,
similar to the Landau theory of phase transitions, the
relation

l ­ CjT 2 Tcj2v , T , Tc , (1)

wherev ­ 0.15 6 0.04 andC is a constant.
© 1995 The American Physical Society
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At smaller temperatures the Lyapunov exponents s
as

l ~ T ln 2y ln d, (2)

with d ­ 4.669 . . . the Feigenbaum constant [13] whic
indicates a typical transition from order to chaos [14,15

Our studies are based on direct numerical simula
of an expanding system in classical molecular dynam
In particular, we have studied a “nuclear” system wh
“neutrons” and “protons” interact through Yukawa pote
tials. Details of these forces can be found in Refs. [3,1
The parameters entering the potentials have been
ted in such a way to have a ground state density
0.16 fm23, a binding energy of216 MeVynucleon for
an infinite system. For finite systems the binding e
ergy is210.5 MeVynucleon without Coulomb forces. I
this work we will discuss the parameter set that give
soft EOS, i.e., compressibilityK ­ 250 MeV [16] and
the Coulomb interaction will be neglected. We noti
that the use of the set corresponding to a stiff EO
K ­ 380 MeV , gives the same results.

We have also studied He atoms interacting through
potential [17]

ysrd ­ 5.67 3 106e221.5srysd 2 1.08

µ
s

r

∂6

, (3)

wheres ­ 4.64 Å andysrd is in kelvin.
Clearly the systems we are treating are quantal o

However, we expect that a classical picture should g
a reasonable description of the dynamics at high tem
atures, i.e., near and above the critical temperature, s
in these cases the densities reached are rather low
still high enough excitation energies. This is also dem
strated by the nice agreement of our CMD approach w
data resulting from heavy ion collisions [3,6,7,16].
very low temperatures quantum features become very
portant. Thus one should keep in mind that quantum fl
tuations will change this scenario especially forT ! 0.
In any case, it is very important to know the classical
havior of a quantum system since the quantal analo
reminiscent of classical chaos [15]. Unfortunately a fu
microscopic treatment of quantum dynamics and fluct
tions is still lacking.

In order to calculate the largest Lyapunov expone
[15] we first define the following metric in phase space

dstd ­

vuut NX
i­1

fasssr0
1std 2 r0

2stdddd2 1 bsssp0
1std 2 p0

2stdddd2gi ,

(4)

where the sum runs over all theN particles of the system
the subscripts 1 and 2 refer to two events that at t
t ­ 0 differ of an infinitesimal quantityds0d ­ 1026 or
less. Ther0 andp0 are scaled positions and momenta.
our case

r0std ­ rstdyRrms , (5)

p0std ­ pstdyP , (6)
ale

h
].
on
cs.
re
-

6].
fit-
of

n-

a

e
S,

the

es.
ve
er-
nce
ith

n-
ith
t
im-
c-

e-
is

ly
a-

ts

e

In

where Rrms is the root mean square radius andP ­p
2mT is an average momentum, withm the nucleon

(or the atom) mass andT the initial temperature (see
below). Normally the Lyapunov exponents are calculated
for systems bound in phase space. This is not always the
case in our simulations since for high excitation energy
the phase space explodes. In order to be certain of the
soundness of our results we calculated the metric for three
cases: (1)a ­ 1 and b ­ 1, (2) a ­ 1 and b ­ 0, (3)
a ­ 0 and b ­ 1. The results are independent of the
choice of the metric, cases [1–3], as it should be.

The Lyapunov exponentsl are obtained from the
relation

dstd ­ ds0delt . (7)

In our numerical simulations we prepared a system of
100 particles in their ground state. Then we distributed
the moments of the particles according to a Maxwell-
Boltzmann distribution at temperatureT and let the sys-
tem evolve in time by solving the classical equations of
motion. At each temperature 100 events were generated.
For each event (test event) ten other events were gen-
erated, each event differing from the test event ofds0d.
The exponents were obtained by averaging over all the
events. In order to getl numerically, we calculated the
ratio dstdyds0d and fitted its exponential growth. As a
check we estimated also

Ùdstdydstd ­ l . (8)

In Fig. 1 we plot typical evolutions ofdstdyds0d at three
temperaturesT ­ 2, 5, and 20 MeV for the nuclear
system. We see that the distance increases exponentially
with time and can be very well fitted with a straight
line (in a semilogarithmic plot) whose slope is just the
Lyapunov exponent. The same results are found by using
Eq. (8). In general we get Lyapunov exponents which are

FIG. 1. The ratiodstdyds0d is plotted as a function of time
at three initial temperaturesT ­ 2, 5, 20 MeV for the nuclear
system. The dashed lines are fits whose slope give the typicall
for these temperatures after averaging over hundreds of events.
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always positive at all temperatures and have a maxim
value atT , 4.5 MeV. Similar behavior is found for the
atomic case with a maximum atT , 21.8 K. In order to
compare such different systems like nuclei or atomic H
we scale temperatures and times with typical values
the different systems. Usually one scales with the val
obtained at the critical point. Since we do not know the
valuesa priori, we scale the temperature with the absolu
value of the binding energy and the (inverse) times with
typical valuel0

l0 ­
q

2jEb jymyR0 . (9)

Recall that in order to derive the EOS [8] one nee
to know the hard core radius and the depth of t
two body potential. These quantities are proportional
the average equilibrium distance between particlesR0 ­
RyA1y3, whereR is the radius of the system andA the
mass number, and to the binding energy. In our c
l0 ­ 8.82 3 1025acya0 for the atomic one, witha the
fine structure constant,c the speed of light, anda0 the
Bohr radius.

In Fig. 2 we plot the Lyapunov exponents at ea
initial temperature (in units of their typical values) for th
nuclear (circle symbols) and atomic cases (squares). N
that the maximum value ofl is obtained at the initial
scaled temperature

TcyjEbj , 0.43 (10)

for both systems. For such temperatures the syst
undergo multifragmentation and a power law in th
mass distribution and factorial moments is found [3,
Thus our result confirms that in this temperature reg
fluctuations are largest. Inspired by the Landau theory

FIG. 2. The scaled largest Lyapunov exponentslyl0 are
plotted vs the scaled initial temperatureTyjEb j for the nuclear
(circles) and the atomic (squares) case. The full and das
lines are fits obtained with the functional formCjT 2 Tcj

2v

wherev ­ 0.15 6 0.04. The parameters of the fits areC ­
0.25 and 0.3 for the nuclear and atomic cases, respectively.
text for further details.
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phase transition, we parametrized the exponents according
to Eq. (1). The fit is also displayed in Fig. 2 (full and
dashed curves). The same valuev ­ 0.15 6 0.04 was
used in both cases. We have obtained such a value by
fitting the nuclear data with the functional form (1) and
using C, Tc, andv as free parameters, but imposingTc

larger than 0.4. Then we fixed the values ofTc andv and
fit C to the atomic data. By doing the same procedure but
in reverse we get the error bar forv.

Note the good agreement with the scaledl at all tem-
peratures but the lowest ones. For such small tempera-
tures there is not any multifragmentation of the system, in-
deed the mass distribution reveals a typical case of evapo-
ration. Using the same language as in the theory of phase
transitions we could say that the small temperature cases
explore densities and pressures outside the spinodal re-
gion. Note that the absolute values of the scaled expo-
nents differ less than 30% for the two cases. Correspond-
ingly the two fits differs only for a multiplicative constant
C. The reason for such a small discrepancy is due to the
fact that in the nuclear case we have two fluids, neutrons
and protons. We will discuss this point in more detail
in a following publication [18]. We also stress that these
results are independent on the chosen metric, i.e., in the
values ofa and b in Eq. (4). We have also tested the
results by changing the mass of the fragmenting system.
The Lyapunov exponents remained the same for masses
ranging from 50 to 400 particles [18]. The uncertainties
reported in Fig. 2 are of the order of,10%.

A scaling law of Lyapunov exponents of the kind

l ~ sA 2 Apdln 2y ln d ­ sA 2 Apd0.4498, (11)

where A is a control parameter andd ­ 4.669 . . . the
Feigenbaum constant [13], is typical of order to chaos
transitions. The valueAp is the critical value which
indicates the onset of chaos. Expression (11) was initially
found in the logistic map [14], but various experiments
have confirmed its general validity [15]. In our case the
largest Lyapunov exponentsl are positive for all finite
temperatures, i.e., the dynamics is always chaotic, but
they tend to zero as the temperatureT goes to zero.
Actually for T ­ 0 the systems are frozen in their ground
state andl vanishes. Thus chaos starts atT . 0.

In Fig. 3 we plot a magnification of Fig. 2 for very
small temperatures. The full curve is the expression (11)
multiplied by a constant fitted on the numerical points. In
this case the control parameter is the scaled temperature
and Ap corresponds toT ­ 0. Agreement is impressive
for both systems up toTyjEb j , 0.1 [19].

Thus we have two different mechanisms at play. The
first one for small temperatures gives a transition from
order (the ground state) to chaos and has a dynamical
origin. The second mechanism, for reduced temperatures
larger than 0.1 has a thermodynamical origin appropriate
for a second order phase transition. Loosely speaking, we
have given evidence for “critical chaos” in the latter case.
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FIG. 3. A magnification of Fig. 2 at very small temperature
The full curve is a fit with the functional formKT 0.4498 where
K ­ 0.55 is the fitted parameter. See text for further details

In conclusion, in this work we have calculated th
largest Lyapunov exponents as a function of the in
tial temperature for an expanding system composed
100 particles in the framework of classical molecular d
namics. We have shown that these exponents are
ways positive and have their largest value at a temp
ature of ,0.45 MeV for the nuclear case and,21.8 K
for the atomic one. We have also demonstrated that
l obey universal scaling laws. They fulfill the relatio
jT 2 Tcj2v , v ­ 0.15 6 0.04, similar to the Landau
theory of phase transitions near the critical point. At th
same time, for smaller temperatures (evaporation even
Lyapunov exponents exhibit a general transition from o
dersT ­ 0d to chaossT . 0d. We feel that further inves-
tigations following the ideas presented in this Letter m
help our understanding of order and disorder in classi
systems and, after all, in (part of) nature itself.
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