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Universal Behavior of Lyapunov Exponents in Unstable Systems
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We calculate the Lyapunov exponents in a classical molecular dynamics framework. Yukawa and
Slater-Kirkwood forces are considered in order to give an equation of state that resembles the nuclear
and the atomicHe equation of state, respectively, near the critical point for liquid-gas phase transition.
The largest Lyapunov exponentsare always positive and can be very well fitted near the “critical
temperature” with a functional form « |T — T.|~, where the exponend = 0.15 is independent of
the system and mass number. At smaller temperatures we find thaf%*4%¢, a universal behavior
characteristic of an order to chaos transition.

PACS numbers: 05.45.+b, 05.70.Fh, 24.60.Lz

The phenomena of phase transitions have been always Au + C collisions at 1 GeYnucleon [4] also give
a subject of great interest for many (generations ofyeasonable values of all the exponents.
physicists. Very recently there has been a large interestin (2) At the same temperature, fluctuations in the mass
studying what happens when the system is not composatistribution are maximum. This is revealed through the
of 10% particles and confined in a box but, on thestudy on an event by event analysis of intermittency
contrary, is composed of few hundred particles that areignal, factorial moments, and Campi’s plots [6,10,11].
not confined. This interest was born first in heavy ion (3) The “critical temperature” follows the scaling law
collisions where one would like to study the nuclearT./|E,| = const [5], whereE, is the binding energy
equation of state (NEOS) [1]. In the nuclear case itof the system (10.5 MeV for nuclei, 9.5 eV for g6
is not possible to study the infinite number of particlesfullerenes, and 50.5 K fotHe molecules).
case (apart in stars, with the obvious difficulties), so one (4) At very small temperatures or, equivalently, small
feasible way is to perform proton-nucleus or nucleus-excitation energies, the events are typical evaporationlike
nucleus collisions. In this manner it is possible to heakvents, i.e., with a final mass distribution composed of a
up and to explore different densities of the nuclei. Ofbig fragment and many small ones: monomers, dimers, etc.
course the problem is complicated apart from the fact For some initial conditions the system displays large
of having a small number of particles, also from thefluctuations; thus we expect that other indicators of fluc-
presence of Coulomb force, angular momentum, and frontuations—the Lyapunov exponents—should be positive.
the approximate knowledge of the “thermodynamicalThe values of the Lyapunov exponents for systems un-
parameters,” i.e., temperature, density, and pressure [2dergoing a phase transition are not known (yet). In par-
4]. Similar problems can be found in the study ofticular, the relationship between thermodynamical and
metallic clusters and/or fullerenes [5]. One of the firstdynamical properties has not been exhaustively explored.
guestions that arises is: Does it make sense to spedburs is the first estimate of the Lyapunov exponents for
about phase transitions for a system made of 100systems exhibiting a critical behavior (possibly because of
400 particles? To answer this question the authors od liquid-gas phase transition). In a previous exploratory
Refs. [3,5] and [6] have solved the exact classical manwork, except for a two dimensional system and in the
body problem [classical molecular dynamics (CMD)] mean-field approximation, the largest Lyapunov expo-
numerically for particles interacting through two body nents were calculated in the spinodal region [12]. It is
forces. In particular, by preparing 100 particles in thewell known, however, that the mean-field approximation
ground state and giving to the particles an excitatiorgives a rough estimate of the critical exponents [8]; thus
energy (or temperaturg) the following results are found: it is interesting to estimate their values in CMD.

(1) For a given initial temperaturd’, the system We can summarize the main results of this work as
undergoes multifragmentation [3,6,7]. The resulting mas$ollows: Independent of the studied system, i.e., nuclei,
distributions display a power law(A4) « A7 with = =  helium molecules, the largest Lyapunov exponents satisfy,
2.23, which is exactly the value predicted in the Fishersimilar to the Landau theory of phase transitions, the
droplet model for a system near the liquid-gas phaseelation
transition point [8]. Other critical exponents have also . e _
been estimated within the same model [7} = 0.86, A=CIT = T, r~T., (1)
B = 0.33[9]. Similar estimates but for experimental datawherew = 0.15 = 0.04 andC is a constant.
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At smaller temperatures the Lyapunov exponents scalehere R,,,s is the root mean square radius afd=

as V2mT is an average momentum, withh the nucleon
A o TI2/InG 2) (or the atom) mass and' the initial temperature (see

with & = 4.669. .. the Feigenbaum constant [13] which below). Normally the Lyapunov exponents are calculated

indicates a typical transition from order to chaos [14,15]. for systems bound in phase space. This is not always the

iopase in our simulations since for high excitation energy
of an expanding system in classical molecular dynamicst.he phase space explodes. In order to be certain of the
In particular, we have studied a “nuclear” system Wheresoundness of our results we calculated the metric for three
“neutrons” and “protons” interact through Yukawa poten- ©35€S: (I =1landf =1,(2)a =1andg =0, (3)

tials. Details of these forces can be found in Refs. [3,16].“h;C(; gp?hg r:e:r.ic -I;:ges J:Sﬁlisg ]afs ii?iﬁgi?ddgzt of the

The parameters entering the potentials have been fit .
ted in such a way to have a ground state density of The Lyapunov exponents. are obtained from the
0.16fm 3, a binding energy of-16 MeV /nucleon for relation
an infinite system. For finite systems the binding en- d(t) = d(0)e™. @)
ergy is—10.5 MeV /nucleon without Coulomb forces. In |, oy numerical simulations we prepared a system of
this work we will discuss the parameter set that gives &g particles in their ground state. Then we distributed
soft EOS, i.e., compressibilitk’ = 250 MeV [16] and  {he moments of the particles according to a Maxwell-
the Coulomb interaction will be neglected. We noticepgqi;mann distribution at temperatufeand let the sys-
that the use of the set corresponding to a stiff EOSiem evolve in time by solving the classical equations of
K =380 MeV, gives the same results. motion. At each temperature 100 events were generated.
We have also studied He atoms interacting through the.or each event (test event) ten other events were gen-
potential [17] . erated, each event differing from the test event/().
w(r) = 5.67 X 106¢-2150/7) _ 1.08<£> . (3 The exponents were obtained by averaging over all the
r events. In order to gex numerically, we calculated the

whereo = 4.64 A andv(r) is in kelvin. ratio d(¢)/d(0) and fitted its exponential growth. As a
Clearly the systems we are treating are quantal onesheck we estimated also
However, we expect that a classical picture should give d(1)/d(@) = A. 8)

a reasonable description of the dynamics at high temper- ) )

atures, i.e., near and above the critical temperature, sind8 Fig. 1 we plot typical evolutions of(r)/d(0) at three

in these cases the densities reached are rather low witgmperaturesT” = 2, 5, and 20 MeV for the nuclear
still high enough excitation energies. This is also demonSystem. We see that the distance increases exponentially
strated by the nice agreement of our CMD approach witf¥ith time and can be very well fitted with a straight
data resulting from heavy ion collisions [3,6,7,16]. At line (in a semilogarithmic plot) whose slope is just the
very low temperatures quantum features become very in-yapunov exponent. The same results are found by using
portant. Thus one should keep in mind that quantum flucEd- (8). In general we get Lyapunov exponents which are

tuations will change this scenario especially o 0.

In any case, it is very important to know the classical be- 10t £
havior of a quantum system since the quantal analog is
reminiscent of classical chaos [15]. Unfortunately a fully 5
microscopic treatment of quantum dynamics and fluctua- ° i
tions is still lacking. o
™~
In order to calculate the largest Lyapunov exponents T o2

[15] we first define the following metric in phase space: =1 2

My i
d01) — Qz[a(rim — B0 + B0 — PO, ot 7

i=1 I

4) 7
where the sum runs over all tid particles of the system, 100 3
the subscripts 1 and 2 refer to two events that at time o 20 40 60 80 100 120
t = 0 differ of an infinitesimal quantity/(0) = 107¢ or ¢ (5
less. Tha' andp’ are scaled positions and momenta. In (fm/c)
our case FIG. 1. The ratiod(¢)/d(0) is plotted as a function of time
r'(t) = r(t)/Rems , (5)  at three initial temperatureb = 2, 5, 20 MeV for the nuclear
) system. The dashed lines are fits whose slope give the typical
p'(t) =p@)/P, (6) for these temperatures after averaging over hundreds of events.
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always positive at all temperatures and have a maximurphase transition, we parametrized the exponents according
value atT ~ 4.5 MeV. Similar behavior is found for the to Eq. (1). The fit is also displayed in Fig. 2 (full and
atomic case with a maximum @t ~ 21.8 K. In orderto  dashed curves). The same valwe= 0.15 = 0.04 was
compare such different systems like nuclei or atomic Heused in both cases. We have obtained such a value by
we scale temperatures and times with typical values ofitting the nuclear data with the functional form (1) and
the different systems. Usually one scales with the valuessing C, T., and w as free parameters, but imposifg
obtained at the critical point. Since we do not know thesdarger than 0.4. Then we fixed the valuesfpfandw and
valuesa priori, we scale the temperature with the absolutefit C to the atomic data. By doing the same procedure but
value of the binding energy and the (inverse) times with @n reverse we get the error bar fer.
typical valueAq Note the good agreement with the scaledt all tem-
_ peratures but the lowest ones. For such small tempera-
Ao = y2IEp|/m/Ro. ©) tures there is not any multifragmentation of the system, in-
Recall that in order to derive the EOS [8] one needsjeed the mass distribution reveals a typical case of evapo-
to know the hard core radius and the depth of theation. Using the same language as in the theory of phase
two body potential. These quantities are proportional taransitions we could say that the small temperature cases
the average equilibrium distance between partidlgs=  explore densities and pressures outside the spinodal re-
R/A'3, whereR is the radius of the system antithe  gion. Note that the absolute values of the scaled expo-
mass number, and to the binding energy. In our cas@ents differ less than 30% for the two cases. Correspond-
Ao = 8.82 X 10 ac/ay for the atomic one, withw the  ingly the two fits differs only for a multiplicative constant
fine structure constant; the speed of light, ando the  C. The reason for such a small discrepancy is due to the
Bohr radius. fact that in the nuclear case we have two fluids, neutrons
In Fig. 2 we plot the Lyapunov exponents at eachand protons. We will discuss this point in more detail
initial temperature (in units of their typical values) for the in a following publication [18]. We also stress that these
nuclear (circle symbols) and atomic cases (squares). Notesults are independent on the chosen metric, i.e., in the
that the maximum value of is obtained at the initial values ofa and 8 in Eq. (4). We have also tested the
scaled temperature results by changing the mass of the fragmenting system.
T./|Ey| ~ 0.43 (10) The Lyapunov exponents remained the same for masses
ranging from 50 to 400 particles [18]. The uncertainties
for both systems. For such temperatures the systeM@ported in Fig. 2 are of the order 6f10%.

mass distribution and factorial moments is found [3,6].

Thus our result confirms that in this temperature region Ao (A= AN = (A — AP (11)

fluctuations are largest. Inspired by the Landau theory ofyhere A is a control parameter and = 4.669... the
Feigenbaum constant [13], is typical of order to chaos

. I B R A B transitions. The valued® is the critical value which

06— . indicates the onset of chaos. Expression (11) was initially

I | | found in the logistic map [14], but various experiments
have confirmed its general validity [15]. In our case the
largest Lyapunov exponents are positive for all finite
temperatures, i.e., the dynamics is always chaotic, but
they tend to zero as the temperatufegoes to zero.
Actually for T = 0 the systems are frozen in their ground
state and\ vanishes. Thus chaos startsTat> 0.

In Fig. 3 we plot a magnification of Fig. 2 for very
small temperatures. The full curve is the expression (11)
multiplied by a constant fitted on the numerical points. In

T T this case the control parameter is the scaled temperature
0'%.0 0.5 1.0 1.5 2.0 andA* corresponds t@ = 0. Agreement is impressive
T/IE, | for both systems up t@/|E,| ~ 0.1 [19].
b Thus we have two different mechanisms at play. The
FIG. 2. The scaled largest Lyapunov exponentér, are first one for small temperatures gives a transition from
plotted vs the scaled initial temperatuf¢|E,| for the nuclear  order (the ground state) to chaos and has a dynamical
(circles) and the atomic (squares) case. The full and dashegigin, The second mechanism, for reduced temperatures

lines are fits obtained with the functional for®T — T.|~¢ | than 0.1 h th d ical oriai it
wherew = 0.15 = 0.04. The parameters of the fits afe = arger than ©.1 has a thermodynamical origin appropriate

0.25 and 0.3 for the nuclear and atomic cases, respectively. S&&r a S?COHd 0_|'der phase trg_nsition. Loqsely speaking, we
text for further details. have given evidence for “critical chaos” in the latter case.

A/ No
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FIG. 3. A magnification of Fig. 2 at very small temperatures.
The full curve is a fit with the functional fornk7°44%¢ where
K = 0.55 is the fitted parameter. See text for further details.
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