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Signals of critical behavior in fragmenting finite systems
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By studying the disassembly of excited drops within the framework of the classical molecular dynamics
(CMD) model, a critical review of observables which can give a signature of a critical behavior is performed.
In particular we look at the normalized variance of the mass of the largest fragiNgiM) and to the
intermittency signal(IS). It is found the NVM displays a maximum in the critical region for CMD and
percolation models, while it is not triggered in “noncritical” data like the one resulting from the random
partition model. On the other hand, the IS displays a maximum when events with a big fragment are mixed
with events composed mainly of small clustgiS0556-28189)00408-3

PACS numbegps): 25.70-z, 24.10.Lx, 25.75-q, 64.70—p

[. INTRODUCTION cally on the properties of the distribution as a whole and not
on the fluctuations of the population of each fragment mass

The possibility of observing a phase transition in nucleararound its mean valug8]. In the case offii) it has been
collisions at intermediate energies has attracted the attentiehown that an intermittency signdl) can be obtained even
of nuclear physicists for a long time now. This possibility for simple modelqi.e., the random population of mass bins
was initially fueled by the observation that fragment spectrawith a power law distributionin which the only nonstatisti-
resulting from heavy-ion collisions at energies around thecal source of fluctuations is a conservation law, i.e., mass
Fermi energy followed a power law distribution of the form conservatiof 13]. Moreover, it has been shown that when
Y(A)=Y,A™"[1]. This is precisely what is predicted by the total multiplicity is fixed the IS is washed away even for
Fisher’s droplet model for liquid-gas phase transitions in thepercolating networks in which fluctuations are of nontrivial
vicinity of the critical point[2]. Moreover, this is a common origin [8]. In fact, a property of the scaled factorial moments
feature of processes that satisfy scaling relations, for exapplied to size distributions is that the signal is given mainly
ample, percolation, Ising model, lattice gas, €&. From by the particles located in the first bin, i.e., the lightest par-
the theoretical point of view such a behavior would be con-icles[8,11], but the multiplicity distribution is also mainly
sistent with the predicted properties of the equation of stateletermined by the lightest particles. So fixing the total mul-
of infinite nuclear matter which is supposed to be similar totiplicity is equivalent to fixing the multiplicity of the lightest
that of van der Waal§4,5]. Nevertheless, a power law dis- particles; thus fluctuations are severely constrained and the
tribution of mass fragments is not enough to characterize thimtermittency signal is suppressed.
underlying physical process as a phase transition; for ex- In arecent papdr4] (hereafter referred a$ &n extensive
ample, such a distribution is obtained when analyzing thenalysis of signals of criticality was performed on the
fragment size distribution resulting from the impact of high- asymptotic mass spectra resulting from the microscopic
velocity projectiles on basalt rock$]. In order to properly simulation of the dynamical evolution of classical excited
characterize the process of a phase transition around the crithops. In the model used, the Hamiltonian, generator of the
cal region other signals should be found. It should be kept irevolution, had been carefully tailored in order to reproduce
mind that because we are dealing with a finite system, weeneral properties of both finite nuclei and nuclear matter
cannot talk about a sharp critical point, but instead of a rathef4]. In |, the behavior of the IS and moments of the resulting
fuzzy critical region. In this sense, a well-known property of distributions were analyzed, finding that they were consistent
such a phase transition is that fluctuations of all sizes shouldith critical behavior, for systems excited to an initial tem-
be present, and such a behavior gives rise to the phenomengpsrature of about 4.5—-5 Melsee Sec. Il for detai)s Such
of critical opalescenck3]. The main efforts towards a proper a value of the initial temperature for a critical behavior was
characterization of the criticality of the process consideredilso obtained from an analysis of the largest Lyapunov ex-
can be arbitrarily classified in two main groups. ponentg 15].

(i) The first comprises those that explore the extraction of We first explore a signal of critical behavior that has not
critical exponents from the analysis of combination of mo-been fully analyzed, to our knowledge, so far. This is, the
ments of the mass distribution under stydy-9]. normalized variance of the size of the maximum fragment

(i) The second comprises those approaches that aim at &4VM). In order to check the validity of the proposed ap-
analysis of the scaling properties of the other-than-statisticgbroach when used to study the results of our classical mo-
fluctuations of the population of the mass bins, i.e., the indecular dynamic§CMD) simulations, we first perform the
termittency analysi$10—12. calculations of the NVM on two simple systems for which

Several criticisms have been put forward on both apthe existence or not of critical behavior is known. First we
proaches. The analysis according to appro@chelies basi- used a random partitioning model in which the population of
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FIG. 1. Mass distributions obtained in the expansion of the sy#em00 with six different initial energies, namely, 2, 3, 4, 5, 7, and
15 MeV g from 2 to 15 MeV(begining at the upper left corner

the different mass numbers is obtained by randomly choosef the analysis as obtained from the simple random partition
ing values ofA following a prescribed mass distributiph3]. ~ model, for percolation, and in CMD models.

In this case the fluctuations in the populations are of statis- In Sec. IV we show the results of an intermittency analy-
tical origin or related to the fact that the total makg, is  Sis for simulations of finite expanding systems. We pay spe-
fixed and one should not obtain a signal of criticality. After- Cial attention to the sources of intermittent behavior. Finally,
wards we explore bond percolation model on a finite latticeconclusions are drawn in Sec. V.

which displays true critical behavior. We find that the NVM
peaks close to the critical bond activation probability corre-
sponding to the infinite system. This is a well-known result . ) o
[9], and it is usually stated that for finite systems the critical " the classical molecular dynamics model it is assumed
point is shifted towards higher values of the bond probabilthat the nucleus is made up Afnucleons that behave clas-
ity. spally. Thgse part|cle§ move un.der.the influence of a pair-

We then analyze the NVM from the outcome of micro- wise spherical interaction potentiglgiven by[4]
scopic simulations of the evolution of excited classical drops
in the framework of CMD. Again, we find that NVM peaks
close to the value at which the maximum IS is found.

We then reanalyze the IS in the CMD simulations. We
focus on the effect of performing different selections of
events according to cuts in the multiplicity distribution on
the resulting 1S. We demonstrate that the signal is strongest V(1) =Vpp(r) = Vo[ €xpl— uol )/ —exp( — mor o)/1c],
when events coming from the “liquid” sidéevents in which 1)
a rather big fragment is presemtre mixed with events com-
ing from the “gas” side (events which are composed by wherer.=5.4 fm is a cutoff radius an¥,,, is the potential
mainly small fragmenisat 5 MeV. Such a property disap- acting between a neutron and a proton whilg, is the po-
pears when we perform the same analysis at a “noncritical’tential acting between two identical nucleons. The first inter-
temperature. action is attractive at large and repulsive at smatl, while

In Sec. Il, we briefly review the CMD model. In Sect. lll, the latter is purely repulsive. In this way, no bound state of
we define the NVM signal of criticality and show the resultsidentical nucleons can exist. The values of the parameters

IIl. CMD MODEL

Vnp(r)zvr[exp(—,u,r)/r—exp(—,u,rc)/rc]

—Valexp(— uar)/r —expl— uara)/ral,
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FIG. 2. Normalized variance for the random partition model

when the partitioning is performed according to a power law with
in the range 2 7<3 (the physically interesting regigrior, in the
upper part, the system witty,,,= 100 with unrestricted multiplicity
(open squargsand fixed multiplicity (in the most probable value,
open circley and in the lower part the same but fay,=200 and
free multiplicity. In all cases no signal is observed.

entering the Yukawa potentials are given in Rdf.and give
a corresponding equation of state09S of classical matter
with a compressibility of about 250 MeVset M in Ref.
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FIG. 4. Normalized variance for bond percolation in finite sys-
tems as a function of the bond activation probabi@yfor, in the
upper part, lattices of sizes 220X 20 (crossesy 10X 10X 10
(squares and 5<5Xx5 (circles with unrestricted multiplicity. It is
readily seen that the smaller is the size of the lattice the bigger is the
difference of the maximum of the curves from the percolation criti-
cal bond for infinite lattice Q.= 0.23). This is a clear manifestation
of finite size effects. The lower part shows the same as the upper
part but for fixed multiplicity and for lattices of sizes 1A0x 10
(squaresand 5<5x5 (circles.

[4]). This EOS strongly resembles the one expected fowell conserved. The nucleus is initialized in its ground state

nuclear mattefi.e., equilibrium densityp,=0.16 fm 3 and
energyE(pg)=—16 MeV/nucleon]. Furthermore, in Refs.

by using the frictional cooling methofdl8]. These ground
state configurations are excited to a temperaluby giving

[4,16], it was shown that many experimental data on heavya Maxwellian velocity distribution to the nucleons by means
ion collisions are reasonably explained by this classicabf a Metropolis samplind17]. We have studied the disas-
model. Of course this is not accidental but it is due to thesembly of a system with =100 andZ= 50 starting from an
accurate choice of the parameters of the two-body potentialsnitial density p=0.125 fm 2 and with different values of
The classical Hamilton’s equations of motion are solvedthe initial temperature. Coulomb interaction was not taken

using the Taylor method at the ordef (@t)3] where 6t is
the integration time stepl7]. Energy and momentum are
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FIG. 3. Normalized variance for the random partition model

into account.

As a reference we show in Fig. 1 the mass spectra as
already depicted in | for different initial excitation energies
(see figure caption for detajlsThe casel=5 MeV gives a
power law in the mass distribution.

IIl. NVM

It has been suggested that a possible signal of critical
behavior could be the fluctuations in the size of the maxi-
mum fragmen{7]. It is supposed that cluster size distribu-
tions show the maximum of fluctuations around the critical
point where the correlation distanéaliverges. As a result of
mass conservation, the size of the largest cluster should show

TABLE I. Values of the fitting parameter¥,, X, Y, and 7
entering in the formuld4)

T(MeV) 2 3 4 5 7

when the partition is performed according to Fisher's law and theYo 442.8 146.1 30.7 395 69.7

parameters are those displayed in Table |. The point Tor
=3 MeV (open circle is generated imposing the extra condition
that the mass of the biggest fragment should be smaller th&se@0
text for details.

X 0.042 0.10 1.00 1.00 1.00
Y 2.01 1.83 1.012 0.995 0.87
T 2.23 2.23 2.23 2.23 2.23
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FIG. 5. We show the probability distribution of the size of the maximum fragment for six different initial temperatures far the
=100 fragmenting system in the CMD model. We observe that the width of the distribution attains its maximum &t-adolMeV.

in this case large fluctuation8].

For the following, we thus propose to study the normal-
ized variance of the size of maximum fragment, NVM, as a
signal of criticality. This normalized variance is defined as

where

U%\maxz <A§1ax> - <Ama><>za

3

< Amax >

/< Brpax >

2
Amex

g

80

60

40

R0

T

e

e

AR AR

ARNEARAN

S B P SN B ST WU U

=]

ol
5

T (MeV)

10

The bracketg -) indicate an ensemble averaging.

As mentioned in the Introduction, one has to be sure that
the signal that one is using to analyze a phenomenon as-
sumed to be critical is not triggered by spurious fluctuations
induced by conservation laws or finite size effects.

In order to test the NVM as a signal of critical behavior
we adopt the following strategy.

(1) We test NVM in a simple random partition model
[13]. In this model mass spectra are generated via a simple
Monte Carlo procedure. Given a mass distribution of the
form Y(A)=Y,A" 7 where the exponent is bounded be-
tween 2 and 3, & <3 [19], we generate events with fixed
total massA,;, having fragments of madsand multiplicity
m, such that for each evert,,= E’i\kmk. It is obvious that
with this procedure the only fluctuations in the resulting
spectra are of statistical type plus spurious effects related to
the mass conservation. In such a process no signatures of
phase transition should readily be observed.

The results of the NVM for this simple toy model are

)

FIG. 6. The upper part shows the average mass of the maximuisplayed in Fig. 2. In the upper part, we show the results for
fragment while the lower part the NVM as a function of the initial 2<7<3, with A;=100 and for free multiplicity(open
temperatures displayed in Fig. 5. It can be seen that the NvMsquares and fixed multiplicity (fixed to the most probable
displays a sharp maximum for events with initial temperature ofone for each value of, open circleg It can be seen that no

T=4 MeV.

maximum appears. The general picture is the same when we
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FIG. 7. In the upper panels we show the multiplicity distributions for the expansion of the systel®0 when different ranges of
multiplicities are chosen and in the lower panels the corresponding intermittency sighal JatMeV. Left part: the multiplicity and
intermittency when the complete set of 10 000 events is considered. Central part: in the upper panel we show the effect of retaining just one
multiplicity (the most probable onéhat involves 748 events; in the lower panel we see that the intermittency signal is gone. In the right
panels we show the effect on the IS of using only the central events of the multiplicity distribution.

take A= 200 shown in the lower part of the figure for the the bond percolation modgtl9]. In this case we take a
case where the multiplicity is fixed. simple cubic grid of different sizes,»65X5, 10X 10X 10,

As an illustrative example we show the results of NVM and 20< 20X 20 . Although true scaling can only be verified
when the simple power law distribution used in the randomin the asymptotic limit, the well-known theory of renormal-
partition procedure for generating the mass spectra is rdzation group shows that even in small lattices the essential

placed by the Fisher’'s law, which reads features of the phase transition can be verifi2d].
s The results of this analysis are displayed in Fig. 4. The
Y(A)=YoA XATYA (4)  upper part of this figure shows the resulting NVM for the

three lattices as a function of the bond activation probability

whereY,, 7, X, andY are parameters which have been ob-Q for unrestricted total multiplicityM, while the lower part
tained by fitting Eq(4) to the asymptotic spectra of molecu- shows the same quantity but for fixed multiplicitpnce
lar dynamics simulations at various initial temperatui@se  again taken as the most probable one for each valu@)of
| for detailg. The values of these parameters are summarizednd for lattice sizes 85X5 and 10< 10X 10. A maximum
in Table | for different initial temperatures. It is worth em- can be readily observed in all the cases. This maximum has a
phasizing that the value obtained feiis 2.23, in agreement location which depends on the size of the lattice, which is
with Fisher droplet model prediction for a liquid-gas phaseusually attributed to a manifestation of finite size effects.
transition at the critical point. In Fig. 3 we show the results From these results it is immediate to see that NVM is a
of the NVM analysis for the randomly generated spectragood candidate for a criticality signal that is not triggered by
Once again no signal is obtained. It must be mentioned thainphysical fluctuations superimposed on arbitrary distribu-
for the caseT=3 MeV the resulting parameters only fit ap- tions.
propriately the region of mass<lA<#60, so we introduced We now calculate the NVM for the results of CMD simu-
an artificial cut at mas®=60 to get spectra close to the lations of the evolution of systems with 100 particled (
results of the CMD calculatiofil4]. =50, N=50) and no Coulomb interaction. We have chosen

(2) We test our NVM in a system that displays true criti- initial temperatures of 2, 3, 4, 4.5, 5, 5.5, 7, 10, and 15 MeV.
cal behavior. For this, we choose again, due to its simplicityJn | it was found via intermittency analysis that the critical
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FIG. 8. Same as Fig. 7 but we show the effect of retaining only the liquidlikéright), the vaporlike tail(centej, and when the two

above mentioned are retained at the same {igf®. It is clearly seen that for this last case not only intermittency is again present, but also
it gets stronger.

region should be around the range of initial temperaturegdea to study the dynamical fluctuations in rapidity distribu-
4.5-5 MeV, the same region where the final spectra are dfons of particles from high-multiplicity events produced in
pure power law type. Within the same model it was alsoultrarelativistic reactiong10]. More recently Ploszajczak
found from an analysis of the Lyapunov exponents that th@&nd Tucholski suggested looking for intermittency in the
maximum value for these exponents is obtained at an initiafragment distributions in nuclear multifragmentation at inter-
temperature of about 4.5-5 Me\t5]. mediate energies. They were able to see evidence for inter-
In Fig. 5, we show the probability distribution of the mass Mittent pattern of fluctuations in the fragment charge distri-
of the maximum fragment for different initial temperatures Putions both in data and in modglsl]. Furthermore, lots of
(see caption for detailsFigure 6 displays the average mass €fforts have been devoted to find evidence for the occurrence
of the maximum fragmentupper pait and the normalized of a phase transition of nuclear matter in the intermittent
variance NVM(lower part versus the infial temperatue  *c210 Bl 18 OB IEEY SSEOORNERCRR e
llfl_s 4sehjg\ah\?vthti2ﬁ ngitﬂgcqgls:rlgvﬁea\gﬁﬂrgggiLc;cftf?grftvmh the existence of large nonstatistical fluctuations which
th_e IS and from theq Lyapunov exponents of 4.5-5 MeV. have self-similarity over a broad range of scales. This signal
- ) . R T "can be deduced from the scaled factorial moments which, for
This is completely consistent with the findings from the Peflat distributions, measure the properties of dynamical fluc-

Co'a“‘?f.‘ analy_S|s_: the NVM ShOV.VS a peak but the value fortuations without the bias of statistical fluctuatidd®,11]:
the critical point is somewhat shifted.

Xmax! 6

IV. INTERMITTENCY SIGNAL IN CMD SIMULATIONS Zl (X (me=1) XX (=i +1))
Fi(5S):

» _ X 55 - 9
In order to look for critical behavior, one of the most

widespread approaches is to make an intermittency analysis. gl (i)’

Intermittency is a statistical concept used to analyze the fluc-

tuations and correlations of a distribution. This concept haslere X« iS an upper characteristic value of the sysi@en,
been widely used in various fields of physics such as turbutotal mass or charge, maximum transverse energy or momen-
lent flow [21], astrophysics, and magnetohydrodynamicstum, etc) andi is the order of the moment. The total interval
among otherd22]. Bialas and Peschanski introduced this0— X ax (1 —Amax» Zmax iN the case of mass or charge dis-
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FIG. 9. Same as Fig. 7 but for tHe=15 MeV case.

tributions is divided in M =X,/ 8s bins of sizess, n, is  tially determined by the fluctuations of the lightest particles,
the number of particles in thith bin for an event, and the and if we fix the total multiplicity, we impose a strong self-
brackets(-) denote the average over many events. If self-correlation that destroys the IS.
similar fluctuations exist at all scalés, the scaled factorial We now further explore the properties of the IS when the
moments(SFM’s) follow the power lawF;(8s)x(8s) M total multiplicity is not fixed. In order to see the physical
where); are called intermittency exponents. So the intermit-origin of the slope in the SFM’s, see Fig. 8, we made cuts in
tent behavior is defined as a linear rise in a plot ofFlR(  the multiplicity distributions by selecting all the events with
versus—In(5s). multiplicity M <22, i.e., events where a big size fragment is
In order to explore the properties of the IS we calculate itpresent(mostly liguid than gasand events withtM > 35, i.e.,
for the asymptotic mass spectra of the already describegith many small particleémostly gas than liquid(right pan-
fragmentation experiments in the CMD model. In Fig. 7 weglg). The signal becomes stronger. Thus the physical origin
plot the total multiplicity distributionstop panel and the  of the slope is the mixing of events where sometimes there is
SFM's (bottom panelfor this T=5 MeV. In the left-upper  mqstly liquid and sometimes there is mostly vapor. In other
panel the multiplicity distribution oall the particles is given. \\ords the IS is stronger when the initial temperature of the

;I'Shel Cﬁrreipondinhg SFM’S ar:e g_iven bglow and show a Cleaﬁnite fragmenting system allows the presence of big fluctua-
. It has been shown if8] that intermittency is a property . tions in the multiplicity of the asymptotic mass distribution.

of the distribution function describing the process. EXpe”'Note that when selecting only one of the tails of the distri-

Bution (the liquid part or the gas paror when selecting the
central part of the multiplicity distribution(i.e., 22<M
=<35), the IS does not show up. To confirm this feature, we
p=my(n). have performed calculations at a much higher temperature
In accordance with to this relation we fix the multiplicity to, T=15 MeV. In this case the mass distribution is exponen-
say, the most probable valld =29 in order to have more tially decreasing, i.e., vaporization evefsgge Fig. 1 In Fig.
events, the corresponding IS completely disappears, and a8-we plot the total multiplicity distributiongtop panels and
tually the slopes become negatiteentral panels We also  the SFM’s (bottom panels In the first column one sees a
found that if we perform the analysis by considering the firstGaussian-type multiplicity distribution, similar to th&
bin only, the SFM’s remain essentially the same in agree=5 MeV case, but centered at multiplicityl =66. Thus
ment with what was found if8]. Thus the SFM’s are essen- many small fragments are formed as a result of the large

tities can only be related if we fix the multiplicity, in such a
case
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FIG. 10. Same as Fig. 7 but for percolation on@%x5 lattice for a value of the bond paramet@r0.24.

initial excitation energy, and the corresponding fluctuationdng of “liquid’-like events and ‘“vapor” like ones is ex-
of the lightest fragments are small as is revealed by theected. In this way, the IS could signal the presence of such
SFM’s (bottom panel Also in this case if we fix the multi- a mixing. Nevertheless, its serious drawbafiks example,
plicity of the events to the average value of 66, we get flattebeing triggered by trivial fluctuations as in the random par-
and more negative SFM's, since the self-correlation is detition mode) disqualify it as a useful signature of criticality.
stroying the small fluctuations present in these events. If we
repeat the game of choosing the events in the tails of the
multiplicity distribution, we still get no signal in the SFM'’s.
This is so because all the events have high multiplicity; i.e., In conclusion, we have studied the intermittency signal
we are always in the gas side. and the normalized variance of the size of the largest frag-
In order to confirm our findings, we have performed simi-ment in the framework of the bond percolation model and
lar calculations in a simple cubic bond percolation model ofmolecular dynamics model. According to the obtained re-
size 5x5X5 [19]. In Fig. 10 we plot our results for values sults the following aspects clearly emerge.
of the bond parametdd: Q=0.24 close to the critical point; The NVM displays a clear maximum in the critical region
we have also calculated f@=0.44 “evaporation” events for all the truly critical models analyzed, while it is not trig-
andQ=0.08 “vaporization” events. We have found exactly gered by the unphysical fluctuations emerging in the random
the same behavior as in CMD even for the evaporatiorpartition model
events. Note, however, some differences in the average val- On the other hand, the IS, which is ill defined theoreti-
ues(for instance, at the respective critical point§ the mul-  cally, displays a maximum when liquidlike events are mixed
tiplicity and the slopes of the IS which cannot be recoveredvith vaporlike events; moreover, its occurrence in some
even after a simple scaling to take into account the slightlata, as for example, in the random partition model described
different masse$100 in CMD and 125 in percolationWe  above, is not a sufficient condition for criticality.
would like to stress that the value for which the IS is ob-
tained is very close to the critical value for an infinite system
Q.=0.23, thus suggesting that IS can give information about
the true critical point. A.B. and V.C.L. thank Professor Ploszajczak for stimulat-
To summarize the findings of this section, we have showring discussions. C.O.D. acknowledges partial financial sup-
that the the maximum of the IS is found for the events inport from University of Buenos Aires research Grant No.
which stronger fluctuations are expected, i.e., those foex-070. He is also grateful to INFN-LNS for partial financial
which the spectra is power like and for which stronger mix-support and kind hospitality.
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