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Signals of critical behavior in fragmenting finite systems
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By studying the disassembly of excited drops within the framework of the classical molecular dynamics
~CMD! model, a critical review of observables which can give a signature of a critical behavior is performed.
In particular we look at the normalized variance of the mass of the largest fragment~NVM ! and to the
intermittency signal~IS!. It is found the NVM displays a maximum in the critical region for CMD and
percolation models, while it is not triggered in ‘‘noncritical’’ data like the one resulting from the random
partition model. On the other hand, the IS displays a maximum when events with a big fragment are mixed
with events composed mainly of small clusters.@S0556-2813~99!00408-2#

PACS number~s!: 25.70.2z, 24.10.Lx, 25.75.2q, 64.70.2p
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I. INTRODUCTION

The possibility of observing a phase transition in nucle
collisions at intermediate energies has attracted the atten
of nuclear physicists for a long time now. This possibili
was initially fueled by the observation that fragment spec
resulting from heavy-ion collisions at energies around
Fermi energy followed a power law distribution of the for
Y(A)5Y0A2t @1#. This is precisely what is predicted by th
Fisher’s droplet model for liquid-gas phase transitions in
vicinity of the critical point@2#. Moreover, this is a common
feature of processes that satisfy scaling relations, for
ample, percolation, Ising model, lattice gas, etc.@3#. From
the theoretical point of view such a behavior would be co
sistent with the predicted properties of the equation of s
of infinite nuclear matter which is supposed to be similar
that of van der Waals@4,5#. Nevertheless, a power law dis
tribution of mass fragments is not enough to characterize
underlying physical process as a phase transition; for
ample, such a distribution is obtained when analyzing
fragment size distribution resulting from the impact of hig
velocity projectiles on basalt rocks@6#. In order to properly
characterize the process of a phase transition around the
cal region other signals should be found. It should be kep
mind that because we are dealing with a finite system,
cannot talk about a sharp critical point, but instead of a rat
fuzzy critical region. In this sense, a well-known property
such a phase transition is that fluctuations of all sizes sho
be present, and such a behavior gives rise to the phenom
of critical opalescence@3#. The main efforts towards a prope
characterization of the criticality of the process conside
can be arbitrarily classified in two main groups.

~i! The first comprises those that explore the extraction
critical exponents from the analysis of combination of m
ments of the mass distribution under study@7–9#.

~ii ! The second comprises those approaches that aim
analysis of the scaling properties of the other-than-statist
fluctuations of the population of the mass bins, i.e., the
termittency analysis@10–12#.

Several criticisms have been put forward on both
proaches. The analysis according to approach~i! relies basi-
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cally on the properties of the distribution as a whole and
on the fluctuations of the population of each fragment m
around its mean value@8#. In the case of~ii ! it has been
shown that an intermittency signal~IS! can be obtained even
for simple models~i.e., the random population of mass bin
with a power law distribution! in which the only nonstatisti-
cal source of fluctuations is a conservation law, i.e., m
conservation@13#. Moreover, it has been shown that whe
total multiplicity is fixed the IS is washed away even f
percolating networks in which fluctuations are of nontriv
origin @8#. In fact, a property of the scaled factorial momen
applied to size distributions is that the signal is given mai
by the particles located in the first bin, i.e., the lightest p
ticles @8,11#, but the multiplicity distribution is also mainly
determined by the lightest particles. So fixing the total m
tiplicity is equivalent to fixing the multiplicity of the lightes
particles; thus fluctuations are severely constrained and
intermittency signal is suppressed.

In a recent paper@14# ~hereafter referred as I! an extensive
analysis of signals of criticality was performed on th
asymptotic mass spectra resulting from the microsco
simulation of the dynamical evolution of classical excit
drops. In the model used, the Hamiltonian, generator of
evolution, had been carefully tailored in order to reprodu
general properties of both finite nuclei and nuclear ma
@4#. In I, the behavior of the IS and moments of the resulti
distributions were analyzed, finding that they were consist
with critical behavior, for systems excited to an initial tem
perature of about 4.5–5 MeV~see Sec. III for details!. Such
a value of the initial temperature for a critical behavior w
also obtained from an analysis of the largest Lyapunov
ponents@15#.

We first explore a signal of critical behavior that has n
been fully analyzed, to our knowledge, so far. This is, t
normalized variance of the size of the maximum fragm
~NVM !. In order to check the validity of the proposed a
proach when used to study the results of our classical
lecular dynamics~CMD! simulations, we first perform the
calculations of the NVM on two simple systems for whic
the existence or not of critical behavior is known. First w
used a random partitioning model in which the population
©1999 The American Physical Society06-1
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FIG. 1. Mass distributions obtained in the expansion of the systemA5100 with six different initial energies, namely, 2, 3, 4, 5, 7, a
15 MeV g from 2 to 15 MeV~begining at the upper left corner!.
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the different mass numbers is obtained by randomly cho
ing values ofA following a prescribed mass distribution@13#.
In this case the fluctuations in the populations are of sta
tical origin or related to the fact that the total massAtot is
fixed and one should not obtain a signal of criticality. Afte
wards we explore bond percolation model on a finite latt
which displays true critical behavior. We find that the NV
peaks close to the critical bond activation probability cor
sponding to the infinite system. This is a well-known res
@9#, and it is usually stated that for finite systems the criti
point is shifted towards higher values of the bond proba
ity.

We then analyze the NVM from the outcome of micr
scopic simulations of the evolution of excited classical dro
in the framework of CMD. Again, we find that NVM peak
close to the value at which the maximum IS is found.

We then reanalyze the IS in the CMD simulations. W
focus on the effect of performing different selections
events according to cuts in the multiplicity distribution o
the resulting IS. We demonstrate that the signal is stron
when events coming from the ‘‘liquid’’ side~events in which
a rather big fragment is present! are mixed with events com
ing from the ‘‘gas’’ side ~events which are composed b
mainly small fragments! at 5 MeV. Such a property disap
pears when we perform the same analysis at a ‘‘noncritic
temperature.

In Sec. II, we briefly review the CMD model. In Sect. II
we define the NVM signal of criticality and show the resu
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of the analysis as obtained from the simple random partit
model, for percolation, and in CMD models.

In Sec. IV we show the results of an intermittency ana
sis for simulations of finite expanding systems. We pay s
cial attention to the sources of intermittent behavior. Fina
conclusions are drawn in Sec. V.

II. CMD MODEL

In the classical molecular dynamics model it is assum
that the nucleus is made up ofA nucleons that behave clas
sically. These particles move under the influence of a p
wise spherical interaction potentialV given by @4#

Vnp~r !5Vr@exp~2m r r !/r 2exp~2m r r c!/r c#

2Va@exp~2mar !/r 2exp~2mar a!/r a#,

Vnn~r !5Vpp~r !5V0@exp~2m0r !/r 2exp~2m0r c!/r c#,

~1!

wherer c55.4 fm is a cutoff radius andVnp is the potential
acting between a neutron and a proton whileVnn is the po-
tential acting between two identical nucleons. The first int
action is attractive at larger and repulsive at smallr, while
the latter is purely repulsive. In this way, no bound state
identical nucleons can exist. The values of the parame
6-2
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SIGNALS OF CRITICAL BEHAVIOR IN FRAGMENTING . . . PHYSICAL REVIEW C60 034606
entering the Yukawa potentials are given in Ref.@4# and give
a corresponding equation of state~EOS! of classical matter
with a compressibility of about 250 MeV~set M in Ref.
@4#!. This EOS strongly resembles the one expected
nuclear matter@i.e., equilibrium densityr050.16 fm23 and
energyE(r0)5216 MeV/nucleon]. Furthermore, in Refs
@4,16#, it was shown that many experimental data on hea
ion collisions are reasonably explained by this class
model. Of course this is not accidental but it is due to
accurate choice of the parameters of the two-body potent

The classical Hamilton’s equations of motion are solv
using the Taylor method at the order O@(dt)3# wheredt is
the integration time step@17#. Energy and momentum ar

FIG. 2. Normalized variance for the random partition mod
when the partitioning is performed according to a power law witt
in the range 2,t,3 ~the physically interesting region! for, in the
upper part, the system withAtot5100 with unrestricted multiplicity
~open squares! and fixed multiplicity~in the most probable value
open circles!, and in the lower part the same but forAtot5200 and
free multiplicity. In all cases no signal is observed.

FIG. 3. Normalized variance for the random partition mod
when the partition is performed according to Fisher’s law and
parameters are those displayed in Table I. The point forT
53 MeV ~open circle! is generated imposing the extra conditio
that the mass of the biggest fragment should be smaller than 60~see
text for details!.
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well conserved. The nucleus is initialized in its ground st
by using the frictional cooling method@18#. These ground
state configurations are excited to a temperatureT by giving
a Maxwellian velocity distribution to the nucleons by mea
of a Metropolis sampling@17#. We have studied the disas
sembly of a system withA5100 andZ550 starting from an
initial density r50.125 fm23 and with different values of
the initial temperature. Coulomb interaction was not tak
into account.

As a reference we show in Fig. 1 the mass spectra
already depicted in I for different initial excitation energie
~see figure caption for details!. The caseT55 MeV gives a
power law in the mass distribution.

III. NVM

It has been suggested that a possible signal of crit
behavior could be the fluctuations in the size of the ma
mum fragment@7#. It is supposed that cluster size distrib
tions show the maximum of fluctuations around the critic
point where the correlation distancej diverges. As a result of
mass conservation, the size of the largest cluster should s

TABLE I. Values of the fitting parametersY0 , X, Y, and t
entering in the formula~4!

T(MeV) 2 3 4 5 7

Y0 442.8 146.1 30.7 39.5 69.7
X 0.042 0.10 1.00 1.00 1.00
Y 2.01 1.83 1.012 0.995 0.87
t 2.23 2.23 2.23 2.23 2.23

l

l
e

FIG. 4. Normalized variance for bond percolation in finite sy
tems as a function of the bond activation probabilityQ, for, in the
upper part, lattices of sizes 20320320 ~crosses!, 10310310
~squares!, and 53535 ~circles! with unrestricted multiplicity. It is
readily seen that the smaller is the size of the lattice the bigger is
difference of the maximum of the curves from the percolation cr
cal bond for infinite lattice (Qc50.23). This is a clear manifestatio
of finite size effects. The lower part shows the same as the up
part but for fixed multiplicity and for lattices of sizes 10310310
~squares! and 53535 ~circles!.
6-3
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FIG. 5. We show the probability distribution of the size of the maximum fragment for six different initial temperatures forA
5100 fragmenting system in the CMD model. We observe that the width of the distribution attains its maximum at aboutT54 MeV.
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in this case large fluctuations@3#.
For the following, we thus propose to study the norm

ized variance of the size of maximum fragment, NVM, as
signal of criticality. This normalized variance is defined a

sNV5
sAmax

2

^Amax&
, ~2!

FIG. 6. The upper part shows the average mass of the maxim
fragment while the lower part the NVM as a function of the initi
temperatures displayed in Fig. 5. It can be seen that the N
displays a sharp maximum for events with initial temperature
T54 MeV.
03460
-
where

sAmax

2 5^Amax
2 &2^Amax&

2, ~3!

The bracketŝ •& indicate an ensemble averaging.
As mentioned in the Introduction, one has to be sure t

the signal that one is using to analyze a phenomenon
sumed to be critical is not triggered by spurious fluctuatio
induced by conservation laws or finite size effects.

In order to test the NVM as a signal of critical behavi
we adopt the following strategy.

~1! We test NVM in a simple random partition mode
@13#. In this model mass spectra are generated via a sim
Monte Carlo procedure. Given a mass distribution of t
form Y(A)5Y0A2t where the exponentt is bounded be-
tween 2 and 3, 2<t<3 @19#, we generate events with fixe
total massAtot , having fragments of massk and multiplicity
mk such that for each eventAtot5(1

Akmk . It is obvious that
with this procedure the only fluctuations in the resulti
spectra are of statistical type plus spurious effects relate
the mass conservation. In such a process no signature
phase transition should readily be observed.

The results of the NVM for this simple toy model ar
displayed in Fig. 2. In the upper part, we show the results
2<t<3, with Atot5100 and for free multiplicity~open
squares! and fixed multiplicity ~fixed to the most probable
one for each value oft, open circles!. It can be seen that no
maximum appears. The general picture is the same when

m

f
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SIGNALS OF CRITICAL BEHAVIOR IN FRAGMENTING . . . PHYSICAL REVIEW C60 034606
FIG. 7. In the upper panels we show the multiplicity distributions for the expansion of the systemA5100 when different ranges o
multiplicities are chosen and in the lower panels the corresponding intermittency signal atT55 MeV. Left part: the multiplicity and
intermittency when the complete set of 10 000 events is considered. Central part: in the upper panel we show the effect of retainin
multiplicity ~the most probable one! that involves 748 events; in the lower panel we see that the intermittency signal is gone. In the
panels we show the effect on the IS of using only the central events of the multiplicity distribution.
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takeAtot5200 shown in the lower part of the figure for th
case where the multiplicity is fixed.

As an illustrative example we show the results of NV
when the simple power law distribution used in the rand
partition procedure for generating the mass spectra is
placed by the Fisher’s law, which reads

Y~A!5Y0A2tXA2/3
YA, ~4!

whereY0 , t, X, andY are parameters which have been o
tained by fitting Eq.~4! to the asymptotic spectra of molecu
lar dynamics simulations at various initial temperatures~see
I for details!. The values of these parameters are summar
in Table I for different initial temperatures. It is worth em
phasizing that the value obtained fort is 2.23, in agreemen
with Fisher droplet model prediction for a liquid-gas pha
transition at the critical point. In Fig. 3 we show the resu
of the NVM analysis for the randomly generated spec
Once again no signal is obtained. It must be mentioned
for the caseT53 MeV the resulting parameters only fit ap
propriately the region of mass 1<A<60, so we introduced
an artificial cut at massA560 to get spectra close to th
results of the CMD calculation@14#.

~2! We test our NVM in a system that displays true cri
cal behavior. For this, we choose again, due to its simplic
03460
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d
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,

the bond percolation model@19#. In this case we take a
simple cubic grid of different sizes, 53535, 10310310,
and 20320320 . Although true scaling can only be verifie
in the asymptotic limit, the well-known theory of renorma
ization group shows that even in small lattices the essen
features of the phase transition can be verified@20#.

The results of this analysis are displayed in Fig. 4. T
upper part of this figure shows the resulting NVM for th
three lattices as a function of the bond activation probabi
Q for unrestricted total multiplicityM, while the lower part
shows the same quantity but for fixed multiplicity~once
again taken as the most probable one for each value ofQ)
and for lattice sizes 53535 and 10310310. A maximum
can be readily observed in all the cases. This maximum h
location which depends on the size of the lattice, which
usually attributed to a manifestation of finite size effects.

From these results it is immediate to see that NVM is
good candidate for a criticality signal that is not triggered
unphysical fluctuations superimposed on arbitrary distri
tions.

We now calculate the NVM for the results of CMD simu
lations of the evolution of systems with 100 particlesZ
550, N550) and no Coulomb interaction. We have chos
initial temperatures of 2, 3, 4, 4.5, 5, 5.5, 7, 10, and 15 Me
In I it was found via intermittency analysis that the critic
6-5
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FIG. 8. Same as Fig. 7 but we show the effect of retaining only the liquidlike tail~right!, the vaporlike tail~center!, and when the two
above mentioned are retained at the same time~left!. It is clearly seen that for this last case not only intermittency is again present, bu
it gets stronger.
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region should be around the range of initial temperatu
4.5–5 MeV, the same region where the final spectra are
pure power law type. Within the same model it was a
found from an analysis of the Lyapunov exponents that
maximum value for these exponents is obtained at an in
temperature of about 4.5–5 MeV@15#.

In Fig. 5, we show the probability distribution of the ma
of the maximum fragment for different initial temperatur
~see caption for details!. Figure 6 displays the average ma
of the maximum fragment~upper part! and the normalized
variance NVM~lower part! versus the initial temperatureT.
It is seen that the NVM signal shows a maximum located
T54 MeV which is quite close to the value obtained fro
the IS and from the Lyapunov exponents of 4.5–5 Me
This is completely consistent with the findings from the p
colation analysis: the NVM shows a peak but the value
the critical point is somewhat shifted.

IV. INTERMITTENCY SIGNAL IN CMD SIMULATIONS

In order to look for critical behavior, one of the mo
widespread approaches is to make an intermittency anal
Intermittency is a statistical concept used to analyze the fl
tuations and correlations of a distribution. This concept
been widely used in various fields of physics such as tur
lent flow @21#, astrophysics, and magnetohydrodynami
among others@22#. Bialas and Peschanski introduced th
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idea to study the dynamical fluctuations in rapidity distrib
tions of particles from high-multiplicity events produced
ultrarelativistic reactions@10#. More recently Ploszajczak
and Tucholski suggested looking for intermittency in t
fragment distributions in nuclear multifragmentation at inte
mediate energies. They were able to see evidence for in
mittent pattern of fluctuations in the fragment charge dis
butions both in data and in models@11#. Furthermore, lots of
efforts have been devoted to find evidence for the occurre
of a phase transition of nuclear matter in the intermitte
behavior of the multiplicity distributions@12,14,23–25#.

Generally, the occurrence of intermittency is associa
with the existence of large nonstatistical fluctuations wh
have self-similarity over a broad range of scales. This sig
can be deduced from the scaled factorial moments which
flat distributions, measure the properties of dynamical fl
tuations without the bias of statistical fluctuations@10,11#:

Fi~ds!5

(
k51

Xmax/ds

^nk3~nk21!3•••3~nk2 i 11!&

(
k51

Xmax/ds

^nk&
i

. ~5!

HereXmax is an upper characteristic value of the system~i.e.,
total mass or charge, maximum transverse energy or mom
tum, etc.! andi is the order of the moment. The total interv
02Xmax (12Amax, Zmax in the case of mass or charge di
6-6
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FIG. 9. Same as Fig. 7 but for theT515 MeV case.
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tributions! is divided in M5Xmax/ds bins of sizeds, nk is
the number of particles in thekth bin for an event, and the
brackets^•& denote the average over many events. If se
similar fluctuations exist at all scalesds, the scaled factoria
moments~SFM’s! follow the power lawFi(ds)}(ds)2l i

wherel i are called intermittency exponents. So the interm
tent behavior is defined as a linear rise in a plot of ln(Fi)
versus2 ln(ds).

In order to explore the properties of the IS we calculat
for the asymptotic mass spectra of the already descr
fragmentation experiments in the CMD model. In Fig. 7 w
plot the total multiplicity distributions~top panel! and the
SFM’s ~bottom panel! for this T55 MeV. In the left-upper
panel the multiplicity distribution ofall the particles is given.
The corresponding SFM’s are given below and show a c
IS. It has been shown in@8# that intermittency is a property
of the distribution function describing the process. Expe
mentally we can calculate the event frequencies. Both qu
tities can only be related if we fix the multiplicity, in such
case

p[m0^n&.
In accordance with to this relation we fix the multiplicity to
say, the most probable valueM529 in order to have more
events, the corresponding IS completely disappears, and
tually the slopes become negative~central panels!. We also
found that if we perform the analysis by considering the fi
bin only, the SFM’s remain essentially the same in agr
ment with what was found in@8#. Thus the SFM’s are essen
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tially determined by the fluctuations of the lightest particle
and if we fix the total multiplicity, we impose a strong sel
correlation that destroys the IS.

We now further explore the properties of the IS when t
total multiplicity is not fixed. In order to see the physic
origin of the slope in the SFM’s, see Fig. 8, we made cuts
the multiplicity distributions by selecting all the events wi
multiplicity M,22, i.e., events where a big size fragment
present~mostly liquid than gas! and events withM.35, i.e.,
with many small particles~mostly gas than liquid! ~right pan-
els!. The signal becomes stronger. Thus the physical or
of the slope is the mixing of events where sometimes ther
mostly liquid and sometimes there is mostly vapor. In oth
words the IS is stronger when the initial temperature of
finite fragmenting system allows the presence of big fluct
tions in the multiplicity of the asymptotic mass distributio
Note that when selecting only one of the tails of the dis
bution ~the liquid part or the gas part! or when selecting the
central part of the multiplicity distribution~i.e., 22<M
<35), the IS does not show up. To confirm this feature,
have performed calculations at a much higher tempera
T515 MeV. In this case the mass distribution is expone
tially decreasing, i.e., vaporization events~see Fig. 1!. In Fig.
9 we plot the total multiplicity distributions~top panels! and
the SFM’s ~bottom panels!. In the first column one sees
Gaussian-type multiplicity distribution, similar to theT
55 MeV case, but centered at multiplicityM566. Thus
many small fragments are formed as a result of the la
6-7
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FIG. 10. Same as Fig. 7 but for percolation on a 53535 lattice for a value of the bond parameterQ50.24.
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initial excitation energy, and the corresponding fluctuatio
of the lightest fragments are small as is revealed by
SFM’s ~bottom panel!. Also in this case if we fix the multi-
plicity of the events to the average value of 66, we get fla
and more negative SFM’s, since the self-correlation is
stroying the small fluctuations present in these events. If
repeat the game of choosing the events in the tails of
multiplicity distribution, we still get no signal in the SFM’s
This is so because all the events have high multiplicity; i
we are always in the gas side.

In order to confirm our findings, we have performed sim
lar calculations in a simple cubic bond percolation model
size 53535 @19#. In Fig. 10 we plot our results for value
of the bond parameterQ: Q50.24 close to the critical point
we have also calculated forQ50.44 ‘‘evaporation’’ events
andQ50.08 ‘‘vaporization’’ events. We have found exact
the same behavior as in CMD even for the evaporat
events. Note, however, some differences in the average
ues~for instance, at the respective critical points! of the mul-
tiplicity and the slopes of the IS which cannot be recove
even after a simple scaling to take into account the sli
different masses~100 in CMD and 125 in percolation!. We
would like to stress that the value for which the IS is o
tained is very close to the critical value for an infinite syste
Qc50.23, thus suggesting that IS can give information ab
the true critical point.

To summarize the findings of this section, we have sho
that the the maximum of the IS is found for the events
which stronger fluctuations are expected, i.e., those
which the spectra is power like and for which stronger m
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ing of ‘‘liquid’’-like events and ‘‘vapor’’ like ones is ex-
pected. In this way, the IS could signal the presence of s
a mixing. Nevertheless, its serious drawbacks~for example,
being triggered by trivial fluctuations as in the random p
tition model! disqualify it as a useful signature of criticality

V. CONCLUSIONS

In conclusion, we have studied the intermittency sign
and the normalized variance of the size of the largest fr
ment in the framework of the bond percolation model a
molecular dynamics model. According to the obtained
sults the following aspects clearly emerge.

The NVM displays a clear maximum in the critical regio
for all the truly critical models analyzed, while it is not trig
gered by the unphysical fluctuations emerging in the rand
partition model

On the other hand, the IS, which is ill defined theore
cally, displays a maximum when liquidlike events are mix
with vaporlike events; moreover, its occurrence in so
data, as for example, in the random partition model descri
above, is not a sufficient condition for criticality.
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