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Two non-crossing partially directed walks



We want to model

o the process of unzipping two strands of DNA
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We want to model

o the process of unzipping two strands of DNA

@ using a pair of partially directed walks
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A Partially directed Walk
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A Partially directed Walk

| - .

o Steps allowed: North, South, East
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A Partially directed Walk

o Steps allowed: North, South, East

@ subject to self-avoiding constraint
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A Partially directed Walk

o Steps allowed: North, South, East
@ subject to self-avoiding constraint

@ Our walks start and end with a step East
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Pair of non-crossing Partially directed Walks

Two non-crossing partially directed walks



Pair of non-crossing Partially directed Walks

NIRRT
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o Top walk: Ny =20, M; =63, L1 =83
o Bottom walk: Np =22, M>, =61, L, =83
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Pair of non-crossing Partially directed Walks
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o Top walk: Ny =20, M; =63, L1 =83
o Bottom walk: Np, =22, M>, =61, L, =83
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Pair of non-crossing Partially directed Walks

NIRRT
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o Top walk: Ny =20, M; =63, [; =83
o Bottom walk: Np, =22, M>, =61, L, =83
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Pair of non-crossing Partially directed Walks
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o Top walk: Ny =20, M; =63, L1 =83
o Bottom walk: Np, =22, M>, =61, L, =83
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Pair of non-crossing Partially directed Walks

RET
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o Top walk: Ny =20, M; =63, L1 =83
o Bottom walk: Np, =22, M>, =61, L, =83
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Pair of non-crossing Partially directed Walks

INEEP

i N
1 L

o Top walk: Ny =20, M; =63, L1 =83
o Bottom walk: Np, =22, M>, =61, L, =83
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Pair of non-crossing Partially directed Walks

INEEE

L |

1 |JL

o Top walk: Ny =20, M; =63, L1 =83
o Bottom walk: Np, =22, M>, =61, L, =83
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Pair of non-crossing Partially directed Walks

| ]

R

1 L[ Chop

_L 1 [ here

o Top walk: Ny =20, M; =63, L; =83
o Bottom walk: N, =20, M> =60, L, =80

L
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Pair of non-crossing Partially directed Walks
L
[

[
i i
1 L

@ is easier to generate combinatorially
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Pair of non-crossing Partially directed Walks

L

Wlw [
W K W f|w
W W |wW
K W lw I w
K | W

w o

w flw

3

o We really want the version with contact weights
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Pair of non-crossing Partially directed Walks

L

Wlw [
W K W f|w
W W |wW
K W lw I w
K | W

w o

w flw

3

o We really want the version with contact weights

o This example has weight x40y63y60n4w18u5
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Pair of non-crossing Partially directed Walks
L
[

gl — 1L

1 L

o We really want the version with contact weights

@ but will do unweighted version first to show method
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Functional Equation

_ 2N My My H
G(pn) = > CN My Mo, H XYy Yo o
N, My, M>,H>0

G(p) =x°
2 ip yi/u >< Yol y2/ 1 >
+x +1+ +1+ G(p
<l—y1u L—yi/pu) \1—yat L—ya/p ()
> yi/p ( Yoy v2/yi >

—X 1+ —"— ]G

1—yi/p \1—=yonn 1—y/n1 )
_X2< nye g yi/y2 ) y2/p
11—y L—yi/yo) L—yo/p

G(y2)
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Kernel Formulation

o G(u) = G(x,y1,y2; 1)

K(1)G(p) = x*(1 = A(n)G(y1) — A2(1) G(x2))
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Kernel Formulation

o G(u) = G(x,y1,y2; 1)

K(1)G(p) = x*(1 = A(n)G(y1) — A2(1) G(x2))

where kernel

K(,u)zl—x2< i g /e )< o[ +1+y2/u>

1—yip L—yi/pn) \1—yap 1—y/u
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Kernel Formulation

o G(u) = G(x,y1,y2; 1)

K(1)G(p) = x*(1 = A(n)G(y1) — A2(1) G(x2))

where kernel

K(,u)zl—x2< i g /e )< o[ +1+y2/u>

1—yip L—yi/pn) \1—yap 1—y/u

and

yi/ Yoy o/ y1 )
Ar(p) = +1+ ==,
() 1—yi/p <1—}/2}/1 1—y/n

)’2/# yiye }’1/y2 )
A = + 1+ —"=.
(1) 1—yo/p (1—}’1)/2 L—yi/y
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Classic Kernel Method (in a simpler context)

o Classic kernel method. Suppose G(u) := G(y; p), and:

K(p)G(p) =1+ A(p)G(y)

o Set K(,u) =0
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Classic Kernel Method (in a simpler context)

o Classic kernel method. Suppose G(u) := G(y; p), and:

K(n)G(p) =1+ A(p)G(y)

o Set K(p) = 0 to find ‘correct’ root p = pg
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Classic Kernel Method (in a simpler context)

o Classic kernel method. Suppose G(u) := G(y; p), and:

K(n)G(p) =1+ A(p)G(y)

o Set K(p) = 0 to find ‘correct’ root p = pg

o Therefore
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Classic Kernel Method (in a simpler context)

o Classic kernel method. Suppose G(u) := G(y; p), and:

K(n)G(p) =1+ A(p)G(y)

o Set K(p) = 0 to find ‘correct’ root p = pg

o Therefore

o Back-substituting gives full solution:

_ 1 An)/AG)

&) K(w)
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Kernel Method for our situation

o G(u) = G(x,y1,y2; 1)

K(1)G(p) = x*(1 = A(n)G(y1) — A2(1) G(x2))

o Set K(u) =0
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Kernel Method for our situation

o G(u) = G(x,y1,y2; 1)

K(1)G(p) = x*(1 = A(n)G(y1) — A2(1) G(x2))

o Set K(u) =0 to find ‘correct’ roots = puy, o
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Kernel Method for our situation

o G(u) = G(x,y1,y2; 1)

K(1)G(p) = x*(1 = A(n)G(y1) — A2(1) G(x2))

o Set K(u) =0 to find ‘correct’ roots = puy, o

o Therefore

A1(p1)G(y1) + A2(p1)G(y2) = 1
A1(p2)G(y1) + Ao(p2) G (y2) = 1
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Kernel Method for our situation

o G(u) = G(x,y1,y2; 1)

K(1)G(p) = x*(1 = A(n)G(y1) — A2(1) G(x2))

o Set K(u) =0 to find ‘correct’ roots = puy, o

o Therefore

A1(p1)G(y1) + A2(p1)G(y2) = 1
A1(p2)G(y1) + Ao(p2) G (y2) = 1

o Solve the set of simultaneous equations for G(y1) and G(y2).
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Kernel Method for our situation

o G(u) = G(x,y1,y2; 1)

K(1)G(p) = x*(1 = A(n)G(y1) — A2(1) G(x2))

o Set K(u) =0 to find ‘correct’ roots = puy, o
o Therefore

A1(p1)G(y1) + A2(p1)G(y2) = 1
A1(p2)G(y1) + Ao(p2) G (y2) = 1

o Solve the set of simultaneous equations for G(y1) and G(y2).
o Back-substituting gives full solution for G(u).
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Exact Solution

o2 [ A (Aam) — Aali)) — Aal) (Auom) — Ar(ra))
() = K \ & Ar(p2)A2(p1) — Az(p2)Ar(pa)
where
o np yi/p Vo ya/ 1t
Kl =1-x (1y1u e 1y1/u) (1yzu o 1Y2/“)
and

An(yr) = yi/p ( 237 y2/n )

C1—y/p\1—yn 1—y/n

)/2/M y1y2 }/1/)/2 )
A1) = +14
2(1) 1—y/p (1 —y1y2 L—y1/y>
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Exact Solution simplifies to:

2 (L =1/y1)( —1/y2)

) =T ) (i — 1)
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G(p) is not as simple as it looks

We can write the kernel:

K(p) = (1= pa)(p = 1/ pa) (1 = p2) (e — 1/ p2)
(b= y1)(n = 1/y1)(1e = y2) (1 = 1/y2)
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G(p) is not as simple as it looks

We can write the kernel:

K(p) = (1= pa)(p = 1/ pa) (1 = p2) (e — 1/ p2)
(b= y1)(n = 1/y1)(1e = y2) (1 = 1/y2)

where the numerator is the quartic:

(6] y (6]
(o) () i)
yiye yiy2 yiye
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G(p) is not as simple as it looks

We can write the kernel:

K(p) = (1= pa)(p = 1/ pa) (1 = p2) (e — 1/ p2)
(b= y1)(n = 1/y1)(1e = y2) (1 = 1/y2)

where the numerator is the quartic:

(6] y (6]
(o) () i)
yiye yiy2 yiye

with

a=(y1 +y2)(1+ y1y2)
v=2yy, — (i —1)(3 - 1)+ (f +1)(¥3 +1)
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Explicit Generating Function is:

2= 1/y1)(n—1/y2)

G =TT ) (= 1)
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Explicit Generating Function is:

2= 1/y1)(n—1/y2)
(0 =1/ ) (1 = 1/ o)

G(p) =

where
1 0= VBT V@5 5 1678) 20y
! 4y1ys
11 a+VBF V(0?48 - 16y7y3) +2a/B
Mo = 4
Y12
for

a=(yi + )1+ yy)
B=(n—y)(ye — 1) +4<y1ya(yi — 1)(y3 — 1)
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Specializing G(x, y1, y»; 11)

Setting x = y1 = y» = t and . = 0 counts pairs of paths with
combined total length t, which end at a common height.

1
G(t,t,t;0)2@<1+t+t2—t3—\/1+2t—t2—t4—2t5+t6>

X <1—t—|—t2—|—t3—\/1—2t—t2—t4+2t5+t6>

=t +t* +3t% + 118 + 46110 + ...

=: Z ZLtL
L
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2+ 4+ 3% + 1148

= ?

|

e

L
~dbdt
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A critical value of t

G(t,t,t;0)
:412(1+t+t2—t3—\/(t4—1)(t+(1+\/§))(t_(1_\/5))>

x (1—t+t2+t3—\/(t4—1)(t—(—1+\ﬁ))(t—(—1—\f2))>

@ Smallest root under the square-root sign is t. = V2 -1

Two non-crossing partially directed walks



A critical value of t

G(t,t,t;0)
:412(1+t+t2—t3—\/(t4—1)(t+(1+\/§))(t_(1_\/5))>

x (1—t+t2+t3—\/(t4—1)(t—(—1+\ﬁ))(t—(—1—\f2))>

@ Smallest root under the square-root sign is t. = V2 -1

@ Hence number of configurations, Z;, grows like L=3/2 x t-h e
L73/2(ﬁ_'_ 1)L
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A critical value of t

G(t,t,t;0)
:412(1+t+t2—t3—\/(t4—1)(t+(1+\/§))(t_(1_\/5))>

x (1—t+t2+t3—\/(t4—1)(t—(—1+\ﬁ))(t—(—1—\f2))>

@ Smallest root under the square-root sign is t. = V2 -1

@ Hence number of configurations, Z;, grows like L=3/2 x t-h e
L’3/2(\@+ 1)t
o Quartic is:
0=t31-1t)®  —t5(1 - t)3(1 + *)(1 — 2t — t*)G
—265(1 - t)%(1 — t + £3)(1 + 3)(1 — 2t — t*)G?
+ 41— t)°(1 + £2)%(1 — 2t — t?)?G3

+ 41 — t)*(1 + t2)?(1 - 2t — t*)G*



Contact weights

L

SRS

sEc e eE &

=
=€ € &
S

I
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Functional Equation, with contact weights

G(M):X2+X2< ne L /e )( 1z B vo/u )G(u)
1—yp 1—yi/p 1—yop 1—y/p

n/p y2y1 2/y1
—x2 + 1+ G(y1)
1—yi/p \1=yn1 1=y /n

y1y2 1/y2 2/
—x? + 1+ / / G(y2)
1—y1y l=wi/y2) 1=y/n

b= 1) ( noo 2/ ) 6n)
1—yon 1—y2/n1

+(N71)X2< ywe Ly y1/y2 >G(y2)

1—y1y2 1—yi/y2
wy1y2 yiy2 Yol
+x° ( - ) ( + 1) G(y1)
1—wyiyp 1—=yiy 1—yop

yip wy2y1 yay1
+ X ( + 1) ( - > G(y2)
1—yip 1—wyyr 11—y

w
e — 1)K ( yiy2 iy ) Gn)
1-wyiya  1—=yy2
w.
b — 1) ( iy oy ) Glyn) -
1—wyyy 1—yy
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Functional Equation, with contact weights

G(#):X2+X2( ne_ L /e )( LB vo/u )G(#)
1—yp 1—yi/p 1—yop 1—y/n

n/p Yoy1 v2/v1
—x? + 1+ G(y1)
1=yi/p \1—yan1 1-y/n1

y1y2 yi/y2 y2/
s + 1+ / / G(y2)
1—y1y2 1-=yi/y2) 1=y2/n

Fr— 1) ( o 2/ ) 6n)
1—yon 1—y2/n1

+(N71)X2< ywe Ly y1/y2 >G(y2)

1—y1y2 1—yi/y2
wy1y2 yiy2 Yol
+x° ( - ) ( + 1) G(y1)
1—wyiyp 1—=yiy 1—yop

yip wy2y1 yay1
+ X ( + 1) ( - > G(y2)
1—yip 1—wyyr 11—y

w
e — 1)K ( yiy2 iy ) Gn)
1-wyiya  1—=yy2
w.
b — 1) ( iy oy ) Glyn) -
1—wyyy 1—yy
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2-roots Kernel Method again:

° G(lu) = G(X7y1ay2a’%7w;/i)

K(1)G (1) = x*(1 = A(1) G(y1) — A2(11) G(y2))

]

Set K(u) = 0 to find ‘correct’ roots = puy, o
Therefore

A1(p1)G(y1) + A2(pa)G(y2) = 1
A1(12) G (y1) + Aa(p2)G(y2) = 1

©

(]

Solve the set of simultaneous equations for G(y1) and G(y»).
o Back-substituting gives full solution for G(u)
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2-roots Kernel Method again:

o G(n) == G(x,y1,y2, i, w; 1)

K(1)G(p) = x*(1 = A(n)G(y1) — A2(1) G(x2))

o Set K(u) =0 to find ‘correct’ roots p1 = pui1, fio
o Therefore

Ar(p1)G(y1) + A2(p1)G(y2) =1
At(p12) G (y1) + Aa(p2)G(y2) = 1

o Solve the set of simultaneous equations for G(y1) and G(y2).
o Back-substituting gives full solution for G(u), where functions
A1 and A now depend on x and w.
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Exact Solution, with contact weights

o2 [ A (Aa) — Aali)) — Aal) (Auim) — Ar(ra))

() = K\~ A1(p2)Az(p11) — Az(p2)A1 (1)
where

(ot 1-y3
Ailu) = <1—}’1/M ) (1—}’2)/1)(1—}/2/)/1)
Yo [ yiy2 wy1y?2
- <1 — Y2 " K) (1 —yye 1 —wy1y2>

and

_ 1 —K Loy
Ax(p) = <1 — o/ > (1= y1y2)(1 = y1/y2)

Yip Yoy1 wya2y1
() (P25 )
1—y1u l—yy1 1—wyyn
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Structure of Generating Function

o We want to understand singularities of G
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Structure of Generating Function

o We want to understand singularities of G

o but the general case doesn't simplify nicely as before
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Structure of Generating Function

o We want to understand singularities of G
o but the general case doesn't simplify nicely as before

o Saving grace:
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Structure of Generating Function

o We want to understand singularities of G
o but the general case doesn't simplify nicely as before

o Saving grace: it turns out G(x, y1, 2, k,w; 1) has structure

_ 2 =1/n)(u—1/y) B C
T (=1 ) — 1/ p2) <A - p—1/y1 * e 1/yz>
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Structure of Generating Function

o We want to understand singularities of G
o but the general case doesn't simplify nicely as before

e Saving grace: it turns out G(x,y1, y2, K, w; ) has structure

_ 2 (1 —1/y1)(e —1/y2) B C
=1/ (e — 1) (“ i1y e 1/y2>

o the prefactor comes from the non-interacting case and
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Structure of Generating Function

o We want to understand singularities of G
@ but the general case doesn't simplify nicely as before

e Saving grace: it turns out G(x,y1, y2, Kk, w; i) has structure

_ 2 u=1/y)(n—1/y) B C
T (=1 ) — 1/ p2) <A+ p=1/y1 = 1/y2)

o the prefactor comes from the non-interacting case and
o A, B, C are complicated-looking.
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Structure of Generating Function

o We want to understand singularities of G
o but the general case doesn't simplify nicely as before

o Saving grace: it turns out G(x,y1, y2, K, w; i) has structure

_ 2 (= 1/y1)(u—1/y) B C
T (m =Y m) (e =1/ me) <A+ 1y ao 1/y2>

o the prefactor comes from the non-interacting case and
o A, B, C are complicated-looking.

o Moral:

o same singularities as non-interacting case, and
o other singularities arising as poles from A, B, C
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Specializing G(x, y1, y», k,w; 1), keeping interactions

o Setting x = y; = y» = t and u = 0 counts pairs of paths with
combined total length t, which end at a common height.
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Specializing G(x, y1, y», k,w; 1), keeping interactions

o Setting x = y; = y» = t and u = 0 counts pairs of paths with
combined total length t, which end at a common height.

o Look at G(t,t,t,k,w;0) =", Z/(k,w)th
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Specializing G(x, y1, y», k,w; 1), keeping interactions

o Setting x = y; = y» = t and u = 0 counts pairs of paths with
combined total length t, which end at a common height.

o Look at G(t,t,t,k,w;0) =", Z/(k,w)th

@ Use insight from “one sticky walk above a wall”

K K

pin

solved previously: G(t,t,0,k,-;0)
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Singularities

o We expect significant singularities of G(t,t,t, k,w;0) to be
o an algebraic singularity (where generating function is finite)

o a simple pole (where generating function diverges)

@ Where the singularities collide: phase transition
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Singularities

o We expect significant singularities of G(t,t,t, k,w;0) to be
o an algebraic singularity (where generating function is finite)

o a simple pole (where generating function diverges)

@ Where the singularities collide: phase transition

o ‘Sit on algebraic singularity’ by substituting t = v/2 — 1. Get
G(t,t,t,k,w;0)[ 51 =

(=1/47) (=4 +4V2 + (4 + 3v2)V10 — 7v/2) (—47w + 73 + 50v/2 + (136 + 88v/2)V/10 — 77/2)
4w(V2+ 1+ k) — 28 — 20v2 + 4K + 85V2 + (24w + 17w/2 — 100 — 71V/2 + 32k + 24kV/2)V/10 — 7/2
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Singularities

o We expect significant singularities of G(t,t,t, k,w;0) to be
o an algebraic singularity (where generating function is finite)

o a simple pole (where generating function diverges)

@ Where the singularities collide: phase transition

o ‘Sit on algebraic singularity’ by substituting t = v/2 — 1. Get
G(t,t,t,k,w;0)[ 51 =

(=1/47) (=4 +4V2 + (4 + 3v2)V10 — 7v/2) (—47w + 73 + 50v/2 + (136 + 88v/2)V/10 — 77/2)
4w(V2+ 1+ k) — 28 — 20v2 + 4K + 85V2 + (24w + 17w/2 — 100 — 71V/2 + 32k + 24kV/2)V/10 — 7/2

o This finite generating function must diverge: denominator = 0
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Singularities

o Denominator (G(t, t,t,k,w; 0)|t:ﬁ71> is a5 X

Kw + <1+2\f2+(6\/§+8)\/10—7\@>/£
+ <1 + V24 (6+17v2/4)1/10 — 7\@) w
— 7 —5V2— (25 +71V2/4)\/10 — V2
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Curve of Singularities

o This curve of singularities is, numerically, approximately
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Curve of Singularities

o This curve of singularities is, numerically, approximately

Kw + 9.05468K + 6.22182w — 29.9548 = 0
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Thermal Unbinding

o Below curve: unbound state and t. = v2 — 1
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Thermal Unbinding

o Below curve: unbound state and t. = v2 — 1

@ Above curve: bound state and t. = “complicated” (k,w)
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Interested in case: K = w

@ Unbinding occurs below:

Kk =w = 1.75843
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Curious Observation:

o We can bind more effectively using horizontal binding only,
compared with vertical binding only
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Curious Observation:

o We can bind more effectively using horizontal binding only,
compared with vertical binding only

=
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Curious Observation:

o We can bind more effectively using horizontal binding only,
compared with vertical binding only

=

o Why would this be?
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Summary

o Previous literature:

o Pairs of interacting Dyck paths — less configurationally rich
than Pairs of Partially Directed Walks, or
o One partially directed walk above a straight line
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o Previous literature:

o Pairs of interacting Dyck paths — less configurationally rich
than Pairs of Partially Directed Walks, or
o One partially directed walk above a straight line

o Configurationally richer model defined and solved for first time
(including, to our knowledge, the non-interacting case)
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o Previous literature:

o Pairs of interacting Dyck paths — less configurationally rich
than Pairs of Partially Directed Walks, or
o One partially directed walk above a straight line

o Configurationally richer model defined and solved for first time
(including, to our knowledge, the non-interacting case)

o Quartic (compared with ‘usual’ quadratic) functional equation
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o Previous literature:

o Pairs of interacting Dyck paths — less configurationally rich
than Pairs of Partially Directed Walks, or
o One partially directed walk above a straight line

o Configurationally richer model defined and solved for first time
(including, to our knowledge, the non-interacting case)

o Quartic (compared with ‘usual’ quadratic) functional equation

o Kernel method works, with care!l
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o Previous literature:

o Pairs of interacting Dyck paths — less configurationally rich
than Pairs of Partially Directed Walks, or
o One partially directed walk above a straight line

(7]

Configurationally richer model defined and solved for first time
(including, to our knowledge, the non-interacting case)

(+]

Quartic (compared with ‘usual’ quadratic) functional equation

(]

Kernel method works, with care!

(*]

Thermal unbinding as expected
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o Previous literature:

o Pairs of interacting Dyck paths — less configurationally rich
than Pairs of Partially Directed Walks, or
o One partially directed walk above a straight line

(7]

Configurationally richer model defined and solved for first time
(including, to our knowledge, the non-interacting case)

(+]

Quartic (compared with ‘usual’ quadratic) functional equation

(]

Kernel method works, with care!

(*]

Thermal unbinding as expected

(]

Full solution allows pulling to be analyzed ...
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o We are in the process of completing analysis of the full model
with pulling:

Force 1

/

~

Force 2
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THE END
(for now)
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