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Motivation

We want to model

the process of unzipping two strands of DNA

using a pair of partially directed walks
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A Partially directed Walk

Steps allowed: North, South, East

subject to self-avoiding constraint

Our walks start and end with a step East
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Pair of non-crossing Partially directed Walks

Top walk: N1 = 20, M1 = 63, L1 = 83

Bottom walk: N2 = 22, M2 = 61, L2 = 83
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Pair of non-crossing Partially directed Walks

Chop

here

Top walk: N1 = 20, M1 = 63, L1 = 83

Bottom walk: N2 = 20, M2 = 60, L2 = 80
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Pair of non-crossing Partially directed Walks

is easier to generate combinatorially
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Pair of non-crossing Partially directed Walks

We really want the version with contact weights

This example has weight x40y63
1 y60

2 κ4ω18µ5
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Pair of non-crossing Partially directed Walks

We really want the version with contact weights

but will do unweighted version first to show method
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Functional Equation

G (µ) =
∑

N,M1,M2,H≥0
cN,M1,M2,H x2NyM1

1 yM2
2 µH

G (µ) =x2

+x2

(
y1µ

1− y1µ
+ 1 +

y1/µ

1− y1/µ

)(
y2µ

1− y2µ
+ 1 +

y2/µ

1− y2/µ

)
G (µ)

−x2 y1/µ

1− y1/µ

(
y2y1

1− y2y1
+ 1 +

y2/y1
1− y2/y1

)
G (y1)

−x2

(
y1y2

1− y1y2
+ 1 +

y1/y2
1− y1/y2

)
y2/µ

1− y2/µ
G (y2)
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Kernel Formulation

G (µ) := G (x , y1, y2;µ)

K (µ)G (µ) = x2
(
1− A1(µ)G (y1)− A2(µ)G (y2)

)

where kernel

K (µ) = 1−x2

(
y1µ

1− y1µ
+ 1 +

y1/µ

1− y1/µ

)(
y2µ

1− y2µ
+ 1 +

y2/µ

1− y2/µ

)
and

A1(µ) =
y1/µ

1− y1/µ

(
y2y1

1− y2y1
+ 1 +

y2/y1
1− y2/y1

)
,

A2(µ) =
y2/µ

1− y2/µ

(
y1y2

1− y1y2
+ 1 +

y1/y2
1− y1/y2

)
.
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Classic Kernel Method (in a simpler context)

Classic kernel method. Suppose G (µ) := G (y ;µ), and:

K (µ)G (µ) = 1 + A(µ)G (y)

Set K (µ) = 0

to find ‘correct’ root µ = µ0

Therefore

G (y) =
−1

A(µ0)

Back-substituting gives full solution:

G (µ) =
1− A(µ)/A(µ0)

K (µ)
.
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Kernel Method for our situation

G (µ) := G (x , y1, y2;µ)

K (µ)G (µ) = x2
(
1− A1(µ)G (y1)− A2(µ)G (y2)

)

Set K (µ) = 0

to find ‘correct’ roots µ = µ1, µ2

Therefore

A1(µ1)G (y1) + A2(µ1)G (y2) = 1

A1(µ2)G (y1) + A2(µ2)G (y2) = 1

Solve the set of simultaneous equations for G (y1) and G (y2).
Back-substituting gives full solution for G (µ).
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Exact Solution

G (µ) =
x2

K (µ)

1−
A1(µ)

(
A2(µ1)− A2(µ2)

)
− A2(µ)

(
A1(µ1)− A1(µ2)

)
A1(µ2)A2(µ1)− A2(µ2)A1(µ1)


where

K (µ) = 1− x2

(
y1µ

1− y1µ
+ 1 +

y1/µ

1− y1/µ

)(
y2µ

1− y2µ
+ 1 +

y2/µ

1− y2/µ

)
and

A1(µ) =
y1/µ

1− y1/µ

(
y2y1

1− y2y1
+ 1 +

y2/y1
1− y2/y1

)
,

A2(µ) =
y2/µ

1− y2/µ

(
y1y2

1− y1y2
+ 1 +

y1/y2
1− y1/y2

)
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Exact Solution simplifies to:

G (µ) = x2 (µ− 1/y1)(µ− 1/y2)

(µ− 1/µ1)(µ− 1/µ2)
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G (µ) is not as simple as it looks

We can write the kernel:

K (µ) =
(µ− µ1)(µ− 1/µ1)(µ− µ2)(µ− 1/µ2)

(µ− y1)(µ− 1/y1)(µ− y2)(µ− 1/y2)

where the numerator is the quartic:

µ4 −
(

α

y1y2

)
µ3 +

(
γ

y1y2

)
µ2 −

(
α

y1y2

)
µ+ 1

with

α = (y1 + y2)(1 + y1y2)

γ = 2y1y2 − x2(y2
1 − 1)(y2

2 − 1) + (y2
1 + 1)(y2

2 + 1)
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Explicit Generating Function is:

G (µ) = x2 (µ− 1/y1)(µ− 1/y2)

(µ− 1/µ1)(µ− 1/µ2)

where

µ±1
1 =

α−
√
β ∓

√
(α2 + β − 16y2

1 y2
2 )− 2α

√
β

4y1y2

µ±1
2 =

α +
√
β ∓

√
(α2 + β − 16y2

1 y2
2 ) + 2α

√
β

4y1y2

for

α = (y1 + y2)(1 + y1y2)

β = (y1 − y2)2(y1y2 − 1)2 + 4x2y1y2(y2
1 − 1)(y2

2 − 1)
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Specializing G (x , y1, y2;µ)

Setting x = y1 = y2 = t and µ = 0 counts pairs of paths with
combined total length t, which end at a common height.

G (t, t, t; 0) =
1

4t2

(
1 + t + t2 − t3 −

√
1 + 2t − t2 − t4 − 2t5 + t6

)
×
(

1− t + t2 + t3 −
√

1− 2t − t2 − t4 + 2t5 + t6
)

= t2 + t4 + 3t6 + 11t8 + 46t10 + . . .

=:
∑
L

ZLtL
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Checking . . .
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A critical value of t

G (t, t, t; 0)

=
1

4t2

(
1 + t + t2 − t3 −

√
(t4 − 1)(t + (1 +

√
2))(t − (1−

√
2))

)
×
(

1− t + t2 + t3 −
√

(t4 − 1)(t − (−1 +
√

2))(t − (−1−
√

2))

)

Smallest root under the square-root sign is tc =
√

2− 1

Hence number of configurations, ZL, grows like L−3/2 × t−L
c , i.e.

L−3/2(
√

2 + 1)L

Quartic is:

0 = t8(1− t)8 − t6(1− t)8(1 + t2)(1− 2t − t2)G

− 2t5(1− t)6(1− t + t2)(1 + t2)(1− 2t − t2)G 2

+ t4(1− t)6(1 + t2)2(1− 2t − t2)2G 3

+ t4(1− t)4(1 + t2)2(1− 2t − t2)2G 4
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Contact weights
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Functional Equation, with contact weights

G(µ) =x2 + x2
(

y1µ

1− y1µ
+ 1 +

y1/µ

1− y1/µ

)(
y2µ

1− y2µ
+ 1 +

y2/µ

1− y2/µ

)
G(µ)

− x2
y1/µ

1− y1/µ

(
y2y1

1− y2y1
+ 1 +

y2/y1

1− y2/y1

)
G(y1)

− x2
(

y1y2

1− y1y2
+ 1 +

y1/y2

1− y1/y2

)
y2/µ

1− y2/µ
G(y2)

+ (κ− 1)x2
(

y2y1

1− y2y1
+ 1 +

y2/y1

1− y2/y1

)
G(y1)

+ (κ− 1)x2
(

y1y2

1− y1y2
+ 1 +

y1/y2

1− y1/y2

)
G(y2)

+ x2
(

ωy1y2

1− ωy1y2
−

y1y2

1− y1y2

)(
y2µ

1− y2µ
+ 1

)
G(y1)

+ x2
(

y1µ

1− y1µ
+ 1

)(
ωy2y1

1− ωy2y1
−

y2y1

1− y2y1

)
G(y2)

+ (κ− 1)x2
(

ωy1y2

1− ωy1y2
−

y1y2

1− y1y2

)
G(y1)

+ (κ− 1)x2
(

ωy1y2

1− ωy1y2
−

y1y2

1− y1y2

)
G(y2) .
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1− y1/µ

)(
y2µ

1− y2µ
+ 1 +

y2/µ

1− y2/µ

)
G(µ)

− x2
y1/µ

1− y1/µ

(
y2y1

1− y2y1
+ 1 +

y2/y1

1− y2/y1

)
G(y1)

− x2
(

y1y2

1− y1y2
+ 1 +

y1/y2

1− y1/y2

)
y2/µ

1− y2/µ
G(y2)

+ (κ− 1)x2
(

y2y1

1− y2y1
+ 1 +

y2/y1

1− y2/y1

)
G(y1)

+ (κ− 1)x2
(

y1y2

1− y1y2
+ 1 +

y1/y2

1− y1/y2

)
G(y2)

+ x2
(

ωy1y2

1− ωy1y2
−

y1y2

1− y1y2

)(
y2µ

1− y2µ
+ 1

)
G(y1)

+ x2
(

y1µ

1− y1µ
+ 1

)(
ωy2y1

1− ωy2y1
−

y2y1

1− y2y1

)
G(y2)

+ (κ− 1)x2
(

ωy1y2

1− ωy1y2
−

y1y2

1− y1y2

)
G(y1)

+ (κ− 1)x2
(

ωy1y2

1− ωy1y2
−

y1y2

1− y1y2

)
G(y2) .
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2-roots Kernel Method again:

G (µ) := G (x , y1, y2, κ, ω;µ)

K (µ)G (µ) = x2
(
1− A1(µ)G (y1)− A2(µ)G (y2)

)

Set K (µ) = 0 to find ‘correct’ roots µ = µ1, µ2

Therefore

A1(µ1)G (y1) + A2(µ1)G (y2) = 1

A1(µ2)G (y1) + A2(µ2)G (y2) = 1

Solve the set of simultaneous equations for G (y1) and G (y2).
Back-substituting gives full solution for G (µ)
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2-roots Kernel Method again:

G (µ) := G (x , y1, y2, κ, ω;µ)

K (µ)G (µ) = x2
(
1− A1(µ)G (y1)− A2(µ)G (y2)

)

Set K (µ) = 0 to find ‘correct’ roots µ = µ1, µ2

Therefore

A1(µ1)G (y1) + A2(µ1)G (y2) = 1

A1(µ2)G (y1) + A2(µ2)G (y2) = 1

Solve the set of simultaneous equations for G (y1) and G (y2).
Back-substituting gives full solution for G (µ), where functions
A1 and A2 now depend on κ and ω.
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Exact Solution, with contact weights

G (µ) =
x2

K (µ)

1−
A1(µ)

(
A2(µ1)− A2(µ2)

)
− A2(µ)

(
A1(µ1)− A1(µ2)

)
A1(µ2)A2(µ1)− A2(µ2)A1(µ1)


where

A1(µ) =

(
1

1− y1/µ
− κ
)

1− y2
2

(1− y2y1)(1− y2/y1)

+

(
y2µ

1− y2µ
+ κ

)(
y1y2

1− y1y2
− ωy1y2

1− ωy1y2

)
and

A2(µ) =

(
1

1− y2/µ
− κ
)

1− y2
1

(1− y1y2)(1− y1/y2)

+

(
y1µ

1− y1µ
+ κ

)(
y2y1

1− y2y1
− ωy2y1

1− ωy2y1

)
.
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Structure of Generating Function

We want to understand singularities of G

but the general case doesn’t simplify nicely as before

Saving grace: it turns out G (x , y1, y2, κ, ω;µ) has structure

= x2 (µ− 1/y1)(µ− 1/y2)

(µ− 1/µ1)(µ− 1/µ2)

(
A +

B

µ− 1/y1
+

C

µ− 1/y2

)
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Structure of Generating Function

We want to understand singularities of G

but the general case doesn’t simplify nicely as before

Saving grace: it turns out G (x , y1, y2, κ, ω;µ) has structure

= x2 (µ− 1/y1)(µ− 1/y2)

(µ− 1/µ1)(µ− 1/µ2)

(
A +

B

µ− 1/y1
+

C

µ− 1/y2

)

the prefactor comes from the non-interacting case and
A, B, C are complicated-looking.

Moral:

same singularities as non-interacting case, and
other singularities arising as poles from A, B, C
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Specializing G (x , y1, y2, κ, ω;µ), keeping interactions

Setting x = y1 = y2 = t and µ = 0 counts pairs of paths with
combined total length t, which end at a common height.

Look at G (t, t, t, κ, ω; 0) =
∑

L ZL(κ, ω)tL

Use insight from “one sticky walk above a wall”

solved previously: G (t, t, 0, κ, ·; 0)
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Singularities

We expect significant singularities of G (t, t, t, κ, ω; 0) to be

an algebraic singularity (where generating function is finite)

a simple pole (where generating function diverges)

Where the singularities collide: phase transition

‘Sit on algebraic singularity’ by substituting t =
√

2− 1. Get
G (t, t, t, κ, ω; 0)|t=√2−1 =

(−1/47)
(
−4 + 4

√
2 + (4 + 3

√
2)
√

10− 7
√
2
) (
−47ω + 73 + 50

√
2 + (136 + 88

√
2)
√

10− 7
√

2
)

4ω(
√
2 + 1 + κ)− 28− 20

√
2 + 4κ + 8κ

√
2 + (24ω + 17ω

√
2− 100− 71

√
2 + 32κ + 24κ

√
2)
√

10− 7
√
2

This finite generating function must diverge: denominator = 0
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Singularities

Denominator
(

G (t, t, t, κ, ω; 0)|t=√2−1
)

is 1
188×

κω +

(
1 + 2

√
2 + (6

√
2 + 8)

√
10− 7

√
2

)
κ

+

(
1 +
√

2 + (6 + 17
√

2/4)

√
10− 7

√
2

)
ω

− 7− 5
√

2− (25 + 71
√

2/4)

√
10− 7

√
2
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Curve of Singularities

This curve of singularities is, numerically, approximately

κω + 9.05468κ+ 6.22182ω − 29.9548 = 0

0 1 2 3 4 5

0

1

2

3

4

5

Κ

Ω
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Thermal Unbinding

0 1 2 3 4 5

0

1

2

3

4

5

Κ

Ω

Below curve: unbound state and tc =
√

2− 1

Above curve: bound state and tc = “complicated”(κ, ω)
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Interested in case: κ = ω

0 1 2 3 4 5

0

1

2

3

4

5

Κ

Ω

Unbinding occurs below:

κ = ω = 1.75843
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Curious Observation:

We can bind more effectively using horizontal binding only,
compared with vertical binding only

0 1 2 3 4 5

0

1

2

3

4

5

Κ

Ω

Why would this be?
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Summary

Previous literature:

Pairs of interacting Dyck paths – less configurationally rich
than Pairs of Partially Directed Walks, or
One partially directed walk above a straight line

Configurationally richer model defined and solved for first time
(including, to our knowledge, the non-interacting case)

Quartic (compared with ‘usual’ quadratic) functional equation

Kernel method works, with care!

Thermal unbinding as expected

Full solution allows pulling to be analyzed ...
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Outlook

We are in the process of completing analysis of the full model
with pulling:
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THE END
(for now)
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