Simulating models of polymer collapse

Thomas Prellberg

School of Mathematical Sciences Queen Mary, University of London

SCS Seminar, Florida State University April 27, 2006

- 4 同 ト 4 三 ト 4 三 ト

Outline

- Polymers in solution:
 - Equilibrium statistical mechanics, lattice models, exponents
- Algorithm:
 - Stochastic growth & flat histogram (PERM/flatPERM)
- Simulations and results:
 - Canonical model: interacting self-avoiding walks (ISAW)
 - Site-weighted random walks (SWRW): a tale of surprises

・ 同 と く ヨ と く ヨ と

Outline

- Polymers in solution:
 - Equilibrium statistical mechanics, lattice models, exponents
- Algorithm:
 - Stochastic growth & flat histogram (PERM/flatPERM)
- Simulations and results:
 - Canonical model: interacting self-avoiding walks (ISAW)
 - Site-weighted random walks (SWRW): a tale of surprises
- Other applications:
 - Bulk vs surface phenomena:
 - confined polymers, force-induced desorption, interplay of collapse and adsorption
 - Polymer collapse in high dimension:
 - pseudo-first-order transition (talk at FSU in 2003)

・ロン ・回 ・ ・ ヨ ・ ・ ・ ・

Polymers in Solution

(ロ) (四) (E) (E) (E) (E)

Modelling of Polymers in Solution

- Polymers: long chains of monomers
- "Coarse-Graining": beads on a chain
- "Excluded Volume": minimal distance between beads
- Contact with solvent: effective short-range interaction
- Good/bad solvent: repelling/attracting interaction

Modelling of Polymers in Solution

- Polymers: long chains of monomers
- "Coarse-Graining": beads on a chain
- "Excluded Volume": minimal distance between beads
- Contact with solvent: effective short-range interaction
- Good/bad solvent: repelling/attracting interaction

伺 ト イヨト イヨト

A Model of a Polymer in Solution

Random Walk + Excluded Volume + Short Range Attraction

Polymer Collapse, Coil-Globule Transition, Θ-Point

length N, spatial extension $R \sim N^{\nu}$

A (1) > A (2) > A (2) >

 $T = T_c$: Θ -polymer

Critical Exponents

Length scale exponent u: $R_N \sim N^{
u}$

d	Coil	Θ	Globule
2	3/4	4/7	1/2
3	0.587	$1/2(\log)$	1/3
4	$1/2(\log)$	1/2	1/4

Э

Critical Exponents

Length scale exponent ν : $R_N \sim N^{
u}$

d	Coil	Θ	Globule
2	3/4	4/7	1/2
3	0.587	$1/2(\log)$	1/3
4	$1/2(\log)$	1/2	1/4

Entropic exponent γ : $Z_N \sim \mu^N N^{\gamma-1}$

dCoil
$$\Theta$$
Globule243/328/7different scaling form31.15...1(log) $Z_N \sim \mu^N \mu_s^{N^{\sigma}} N^{\gamma-1}$ 41(log)1 $\sigma = (d-1)/d$ (surface)

・ロト ・日ト ・ヨト ・ヨト

臣

Crossover Scaling at the Θ -Point

Crossover exponent ϕ

 $R_N \sim N^{\nu} \mathcal{R}(N^{\phi} \Delta T)$ $Z_N \sim \mu^N N^{\gamma-1} \mathcal{Z}(N^{\phi} \Delta T)$

Specific heat of Z_N at $T = T_c$: $C_N \sim N^{\alpha \phi}$

 $2-lpha=1/\phi$ tri-critical scaling relation

(日) (同) (E) (E) (E)

Crossover Scaling at the Θ -Point

Crossover exponent ϕ

 $R_N \sim N^{\nu} \mathcal{R}(N^{\phi} \Delta T)$ $Z_N \sim \mu^N N^{\gamma-1} \mathcal{Z}(N^{\phi} \Delta T)$

Specific heat of Z_N at $T = T_c$: $C_N \sim N^{\alpha \phi}$

 $2-lpha=1/\phi$ tri-critical scaling relation

Poor man's mean field theory of the Θ -Point for $d \geq 3$

Balance between "excluded volume" and attractive interaction \Rightarrow polymer behaves like random walk: $\nu = 1/2$, $\gamma = 1$

 \Rightarrow weak thermodynamic phase transition $\alpha = 0$, i.e. $\phi = 1/2$

・ロト ・ 同ト ・ ヨト ・ ヨト ……

Crossover exponent ϕ

 $R_N \sim N^{\nu} \mathcal{R}(N^{\phi} \Delta T)$ $Z_N \sim \mu^N N^{\gamma-1} \mathcal{Z}(N^{\phi} \Delta T)$

Specific heat of Z_N at $T = T_c$: $C_N \sim N^{\alpha \phi}$

 $2-lpha=1/\phi$ tri-critical scaling relation

Poor man's mean field theory of the Θ -Point for $d \ge 3$

Balance between "excluded volume" and attractive interaction \Rightarrow polymer behaves like random walk: $\nu = 1/2$, $\gamma = 1$

 \Rightarrow weak thermodynamic phase transition $\alpha=$ 0, i.e. $\phi=1/2$

・ 何 ト ・ ヨ ト ・ ヨ ト

The Canonical Lattice Model

Interacting Self-Avoiding Walk (ISAW)

- Physical space \rightarrow simple cubic lattice \mathbb{Z}^3
- Polymer \rightarrow self-avoiding random walk (SAW)
- Quality of solvent \rightarrow short-range interaction ϵ

The Canonical Lattice Model

Interacting Self-Avoiding Walk (ISAW)

- Physical space \rightarrow simple cubic lattice \mathbb{Z}^3
- Polymer \rightarrow self-avoiding random walk (SAW)
- Quality of solvent \rightarrow short-range interaction ϵ

Partition function:

$$Z_N(\omega) = \sum_m C_{N,m} \omega^m$$

 $C_{N,m}$ is the number of SAWs with N steps and m interactions

The Canonical Lattice Model

Interacting Self-Avoiding Walk (ISAW)

- \bullet Physical space \rightarrow simple cubic lattice \mathbb{Z}^3
- Polymer \rightarrow self-avoiding random walk (SAW)
- Quality of solvent \rightarrow short-range interaction ϵ

Partition function:

$$Z_N(\omega) = \sum_m C_{N,m} \omega^m$$

 $C_{N,m}$ is the number of SAWs with N steps and m interactions

Thermodynamic Limit for a dilute solution:

$$V = \infty$$
 and $N \to \infty$

Theory and Models

- Theoretical results from e.g.
 - d = 2: Coulomb gas methods, conformal invariance, SLE, ...
 - $d \ge 3$: self-consistent mean field theory
 - field theory: $\phi^4 \phi^6 O(n)$ -model for $n \to 0$

イロン イヨン イヨン ・

Theory and Models

- Theoretical results from e.g.
 - d = 2: Coulomb gas methods, conformal invariance, SLE, ...
 - $d \ge 3$: self-consistent mean field theory
 - field theory: $\phi^4 \phi^6 O(n)$ -model for $n \to 0$

A Model of a Polymer in Solution

Random Walk + Excluded Volume + Short Range Attraction

Theory and Models

- Theoretical results from e.g.
 - d = 2: Coulomb gas methods, conformal invariance, SLE, ...
 - $d \ge 3$: self-consistent mean field theory
 - field theory: $\phi^4 \phi^6 O(n)$ -model for $n \to 0$

A Model of a Polymer in Solution

Random Walk + Excluded Volume + Short Range Attraction

- Canonical model: interacting self-avoiding walks (ISAW)
- Alternative model: interacting self-avoiding trails (ISAT) vertex avoidance (walks) ⇔ edge avoidance (trails)

nearest-neighbour interaction \Leftrightarrow contact interaction

・ロッ ・四マ ・ヨマ ・ヨマ

◆□ → ◆□ → ◆ 三 → ◆ 三 → の へ ()

- simulations of ISAW confirm the theoretical predictions
- simulations of ISAT confound the theoretical predictions

<ロ> (四) (四) (三) (三)

æ

• simulations of ISAW confirm the theoretical predictions

• simulations of ISAT confound the theoretical predictions Length scale exponent ν for \mathbb{Z}^2 :

Model	Coil	Θ	Globule
ISAW	3/4	4/7	1/2
ISAT	3/4	$1/2(\log)$	1/2

Entropic exponent γ for \mathbb{Z}^2					
Model	Coil	Θ			
ISAW	43/32	8/7			
ISAT	43/32	1(log)			

Crossover exponent ϕ for \mathbb{Z}^2 :

Simulations of ISAT

• At critical T_c , ISAT can be modelled as kinetic growth; simulations up to $N = 10^6$

AL Owczarek and T Prellberg, J. Stat. Phys. 79 (1995) 951-967

• Pruned Enriched Rosenbluth Method enables simulations for $T \neq T_c$; new simulations up to $N = 2 \cdot 10^6$

AL Owczarek and T Prellberg, submitted to Physica A

• On the square lattice, SAW = SAT but ISAW \neq ISAT

◆□> ◆□> ◆豆> ◆豆> ● 豆

- On the square lattice, SAW = SAT but ISAW ≠ ISAT
- On the diamond lattice, ISAT shows a bimodal distribution characteristic of a first-order transition, and at T_c (left peak) one finds purely Gaussian behaviour

T Prellberg and AL Owczarek, Phys. Rev. E 51 (1995) 2142-214

(figure from) P Grassberger and R Hegger, J. Phys. A 29 (1996) 279-288

- On the square lattice, SAW = SAT but ISAW ≠ ISAT
- On the diamond lattice, ISAT shows a bimodal distribution characteristic of a first-order transition, and at T_c (left peak) one finds purely Gaussian behaviour

<ロ> (四) (四) (三) (三)

T Prellberg and AL Owczarek, Phys. Rev. E 51 (1995) 2142-214

(figure from) P Grassberger and R Hegger, J. Phys. A 29 (1996) 279-288

10 years later, this is still not understood!

- ISAW/ISAT contain on-site and nearest-neighbour interactions
- The field-theory is formulated with purely local interactions
- Field theory is equivalent to Edwards model:
 - Brownian motion + suppression of self-intersections + attractive interactions
 - field theory is $\phi^4 \phi^6 \ O(n)$ -model for n
 ightarrow 0

- ISAW/ISAT contain on-site and nearest-neighbour interactions
- The field-theory is formulated with purely local interactions
- Field theory is equivalent to Edwards model:
 - Brownian motion + suppression of self-intersections + attractive interactions
 - field theory is $\phi^4-\phi^6~O(n) ext{-model}$ for n
 ightarrow 0

Formulate a lattice model with purely local interactions

同下 イヨト イヨト

- ISAW/ISAT contain on-site and nearest-neighbour interactions
- The field-theory is formulated with purely local interactions
- Field theory is equivalent to Edwards model:
 - Brownian motion + suppression of self-intersections + attractive interactions
 - field theory is $\phi^4-\phi^6~O(n) ext{-model}$ for n
 ightarrow 0

Formulate a lattice model with purely local interactions

- Site-weighted random walk:
 - lattice random walk weighted by multiple visits of sites
 - few visits to same site are favoured (attractive interaction)
 - too many visits are disfavoured (excluded volume)

() < </p>

- ISAW/ISAT contain on-site and nearest-neighbour interactions
- The field-theory is formulated with purely local interactions
- Field theory is equivalent to Edwards model:
 - Brownian motion + suppression of self-intersections + attractive interactions
 - field theory is $\phi^4-\phi^6~O(n) ext{-model}$ for n
 ightarrow 0

Formulate a lattice model with purely local interactions

- Site-weighted random walk:
 - lattice random walk weighted by multiple visits of sites
 - few visits to same site are favoured (attractive interaction)
 - too many visits are disfavoured (excluded volume)

(technically, this is an extension of a Domb-Joyce model)

Site-Weighted Random Walk

• An *N*-step random walk $\xi = (\vec{\xi_0}, \vec{\xi_1}, \dots, \vec{\xi_N})$ induces a density-field ϕ_{ξ} on the lattice sites \vec{x} via

$$\phi_{\xi}(\vec{x}) = \sum_{i=0}^{N} \delta_{\vec{\xi}_i, \vec{x}}$$

▲ □ → ▲ 三 → ▲ 三 →

Site-Weighted Random Walk

• An *N*-step random walk $\xi = (\vec{\xi_0}, \vec{\xi_1}, \dots, \vec{\xi_N})$ induces a density-field ϕ_{ξ} on the lattice sites \vec{x} via

$$\phi_{\xi}(\vec{x}) = \sum_{i=0}^{N} \delta_{\vec{\xi}_i, \vec{x}}$$

• Define the energy as a functional of the field $\phi = \phi_{\xi}$

$$E(\xi) = \sum_{\vec{x}} f(\phi(\vec{x}))$$

・ 回 と ・ ヨ と ・ ヨ と

Site-Weighted Random Walk

• An *N*-step random walk $\xi = (\vec{\xi_0}, \vec{\xi_1}, \dots, \vec{\xi_N})$ induces a density-field ϕ_{ξ} on the lattice sites \vec{x} via

$$\phi_{\xi}(\vec{x}) = \sum_{i=0}^{N} \delta_{\vec{\xi}_i, \vec{x}}$$

• Define the energy as a functional of the field $\phi=\phi_{\xi}$

$$E(\xi) = \sum_{\vec{x}} f(\phi(\vec{x}))$$

• Incorporate self-avoidance and attraction via choice of f(t). For example, f(0) = f(1) = 0,

$$f(2) = \varepsilon_1$$
, $f(3) = \varepsilon_2$,

and $f(t \ge 4) = \infty$.

伺 ト イヨ ト イヨ ト

Site-Weighted Random Walk (ctd)

(ロ) (四) (E) (E) (E) (E)

Site-Weighted Random Walk (ctd)

Partition function

$$Z_N(\beta) = \sum_{m_1,m_2} C_{N,m_1,m_2} e^{-\beta(m_1\varepsilon_1 + m_2\varepsilon_2)}$$

with density of states C_{N,m_1,m_2}

<ロ> (四) (四) (三) (三) (三) (三)

Site-Weighted Random Walk (ctd)

Partition function

$$Z_N(\beta) = \sum_{m_1,m_2} C_{N,m_1,m_2} e^{-\beta(m_1\varepsilon_1 + m_2\varepsilon_2)}$$

with density of states C_{N,m_1,m_2}

- Simulate two variants of the model on the square and simple cubic lattice
 - random walks with immediate reversal allowed (RA2, RA3)
 - random walks with immediate reversal forbidden (RF2, RF3)

<ロ> (四) (四) (三) (三) (三) (三)

The Algorithm

◆□> ◆□> ◆豆> ◆豆> ● 豆
PERM: "Go With The Winners"

PERM = Pruned and Enriched Rosenbluth Method

Grassberger, Phys Rev E 56 (1997) 3682

イロン イヨン イヨン ・

臣

• Rosenbluth Method: kinetic growth

PERM: "Go With The Winners"

PERM = Pruned and Enriched Rosenbluth Method

Grassberger, Phys Rev E 56 (1997) 3682

• Rosenbluth Method: kinetic growth

- \bullet Enrichment: weight too large \rightarrow make copies of configuration
- Pruning: weight too small → remove configuration occasionally

PERM = **P**runed and **E**nriched **R**osenbluth **M**ethod

Grassberger, Phys Rev E 56 (1997) 3682

• Rosenbluth Method: kinetic growth

- \bullet Enrichment: weight too large \rightarrow make copies of configuration
- Pruning: weight too small → remove configuration occasionally

Current work: flatPERM = flat histogram PERM

T Prellberg and J Krawczyk, PRL 92 (2004) 120602

・ロト ・ 同ト ・ ヨト ・ ヨト

- flatPERM samples a generalised multicanonical ensemble
- Determines the whole density of states in one simulation!

View kinetic growth as approximate enumeration

< □ > < □ > < □ > < □ > < □ > < □ > = □

View kinetic growth as approximate enumeration

- Exact enumeration: choose *all a* continuations with equal weight
- Kinetic growth: chose one continuation with a-fold weight

View kinetic growth as approximate enumeration

- Exact enumeration: choose *all a* continuations with equal weight
- Kinetic growth: chose one continuation with a-fold weight
 - An N step configuration gets assigned a weight

$$W = \prod_{k=0}^{N-1} a_k$$

・ 同 ト ・ 臣 ト ・ 臣 ト

View kinetic growth as approximate enumeration

- Exact enumeration: choose *all a* continuations with equal weight
- Kinetic growth: chose one continuation with a-fold weight
 - An N step configuration gets assigned a weight

$$W = \prod_{k=0}^{N-1} a_k$$

• S growth chains with weights $W_N^{(i)}$ give an estimate of the total number of configurations, $C_N^{est} = \langle W \rangle_N = \frac{1}{S} \sum_i W_N^{(i)}$

・ 同 ト ・ ヨ ト ・ ヨ ト

View kinetic growth as approximate enumeration

- Exact enumeration: choose *all a* continuations with equal weight
- Kinetic growth: chose one continuation with a-fold weight
 - An N step configuration gets assigned a weight

$$W = \prod_{k=0}^{N-1} a_k$$

- S growth chains with weights $W_N^{(i)}$ give an estimate of the total number of configurations, $C_N^{\text{est}} = \langle W \rangle_N = \frac{1}{5} \sum_i W_N^{(i)}$
- Add pruning/enrichment with respect to ratio $r = W_N^{(S+1)}/C_N^{est}$

(1日) (日) (日)

View kinetic growth as approximate enumeration

- Exact enumeration: choose *all a* continuations with equal weight
- Kinetic growth: chose one continuation with a-fold weight
 - An N step configuration gets assigned a weight

$$W = \prod_{k=0}^{N-1} a_k$$

- S growth chains with weights $W_N^{(i)}$ give an estimate of the total number of configurations, $C_N^{est} = \langle W \rangle_N = \frac{1}{S} \sum_i W_N^{(i)}$
- Add pruning/enrichment with respect to ratio

$$r = W_N^{(S+1)}/C_N^{est}$$

- Number of samples generated for each N is roughly constant
- We have a flat histogram algorithm in system size

・ 回 ト ・ ヨ ト ・ ヨ ト ・

From PERM to flatPERM

• Consider athermal case

• PERM: estimate number of configurations C_N

•
$$C_N^{est} = \langle W \rangle_N$$

•
$$r = W_N^{(i)}/C_N^{es}$$

<ロ> (四) (四) (三) (三) (三)

From PERM to flatPERM

- Consider athermal case
 - PERM: estimate number of configurations C_N

•
$$C_N^{est} = \langle W \rangle_N$$

• $r = W_N^{(i)} / C_N^{es}$

- Consider energy E, temperature $\beta = 1/k_BT$
 - thermal PERM: estimate partition function $Z_N(\beta)$

•
$$Z_N^{est}(\beta) = \langle W \exp(-\beta E) \rangle_N$$

• $r = W_N^{(i)} \exp(-\beta E^{(i)}) / Z_N^{est}(\beta)$

・ 同 ト ・ 臣 ト ・ 臣 ト

From PERM to flatPERM

- Consider athermal case
 - PERM: estimate number of configurations C_N

•
$$C_N^{est} = \langle W \rangle_N$$

• $r = W_N^{(i)} / C_N^{es}$

- Consider energy E, temperature $\beta = 1/k_B T$
 - thermal PERM: estimate partition function $Z_N(\beta)$

•
$$Z_N^{est}(\beta) = \langle W \exp(-\beta E) \rangle_N$$

- $r = W_N^{(i)} \exp(-\beta E^{(i)})/Z_N^{est}(\beta)$
- Consider parametrisation \vec{m} of configuration space
 - flatPERM: estimate density of states $C_{N,\vec{m}}$

•
$$C_{N,\vec{m}}^{est} = \langle W \rangle_{N,\vec{m}}$$

•
$$r = W_{N,\vec{m}}^{(i)} / C_{N,\vec{m}}^{est}$$

Simulations and Results

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

To stabilise algorithm (avoid initial overflow/underflow): Delay growth of large configurations Here: after t tours growth up to length 10t

Total sample size: 1,000,000

▲□ > < □ >

Total sample size: 10,000,000

A I > A E >

Total sample size: 20,000,000

▲□ > < □ >

Total sample size: 30,000,000

A I > A E >

Total sample size: 40,000,000

Image: A = A = A

Total sample size: 50,000,000

▲ □ > < □ >

Total sample size: 60,000,000

▲ □ > < □ >

Total sample size: 70,000,000

Image: A = A = A

Total sample size: 80,000,000

Total sample size: 90,000,000

▲ □ > < □ >

Total sample size: 100,000,000

▲ 同 ▶ → モ 臣 ▶

A □ > < □ >

Total sample size: 120,000,000

□ > < E >

□ > < E >

□ > < E >

□ > < E >

ISAW simulations

- 2d ISAW up to n = 1024
- One simulation suffices
- 400 orders of magnitude (only 2d shown, 3d similar)

< **∂** > < ∃ >

∢ ≣ ≯

• Four simulations: reversal allowed/forbidden, 2d/3d

<ロ> (四) (四) (三) (三) (三) (三)

- Four simulations: reversal allowed/forbidden, 2d/3d
- Density of states C_{N,m_1,m_2} accessible up to N = 256

- Four simulations: reversal allowed/forbidden, 2d/3d
- Density of states C_{N,m_1,m_2} accessible up to N = 256
- Perform partial summation, e.g. over m₂

$$\bar{C}_{N,m_1}(\beta_2) = \sum_{m_2} C_{N,m_1,m_2} e^{\beta_2 m_2}$$

- Four simulations: reversal allowed/forbidden, 2d/3d
- Density of states C_{N,m_1,m_2} accessible up to N = 256
- Perform partial summation, e.g. over m₂

$$\bar{C}_{N,m_1}(\beta_2) = \sum_{m_2} C_{N,m_1,m_2} e^{\beta_2 m_2}$$

 Density of states C
_{N,m1}(β₂) accessible up to N = 1024 (for β₂ fixed)

《曰》 《圖》 《臣》 《臣》

SWRW in 3d, reversal forbidden (RF3)

Phase diagram

御 と く ヨ と く ヨ と …

E.

SWRW in 3d, reversal forbidden (RF3)

Phase diagram

2nd order transition

1st order transition

・ロト ・同ト ・ヨト ・ヨト

臣

SWRW in 3d, reversal forbidden (RF3)

bimodal distribution

2nd order transition

1st order transition

・ロト ・日ト ・ヨト ・ヨト

臣

SWRW in 2d, reversal allowed (RA2)

Both 1st order and 2nd order transitions have disappeared!

* ヨト - ヨ

< 🗇 > < 🗆 >

Both 1st order and 2nd order transitions have disappeared!

RA3 and RF2

2nd order transition disappears as in RA2

1st order transition weakens

SWRW summarised

Model	2d	3d
RA	no transitions	one transition
RF	one transition	two transitions

◆□ > ◆□ > ◆臣 > ◆臣 > 臣 の < @

SWRW summarised

Model	2d	3d
RA	no transitions	one transition
RF	one transition	two transitions

Unexpected and intriguing behaviour

Changing the dimension and/or allowing reversals removes the phase transition

・ロッ ・四マ ・ヨマ ・ヨマ

臣

SWRW summarised

Model	2d	3d
RA	no transitions	one transition
RF	one transition	two transitions

Unexpected and intriguing behaviour

Changing the dimension and/or allowing reversals removes the phase transition

Many open Questions remain ...

(1日) (日) (日)

- Polymers in solution:
 - Random Walk + Excluded Volume + Attraction?

Э

- Polymers in solution:
 - Random Walk + Excluded Volume + Attraction?
- Algorithm:
 - Stochastic growth & flat histogram (PERM/flatPERM)

æ

- Polymers in solution:
 - Random Walk + Excluded Volume + Attraction?
- Algorithm:
 - Stochastic growth & flat histogram (PERM/flatPERM)
- Simulations and results:
 - Canonical model: interacting self-avoiding walks (ISAW)
 - Site-weighted random walks (SWRW)

- Polymers in solution:
 - Random Walk + Excluded Volume + Attraction?
- Algorithm:
 - Stochastic growth & flat histogram (PERM/flatPERM)
- Simulations and results:
 - Canonical model: interacting self-avoiding walks (ISAW)
 - Site-weighted random walks (SWRW)

An unfinished story!

A (10) A (10)

Joined work with A.L. Owczarek, A. Rechnitzer, J. Krawczyk

• The algorithm:

- T. Prellberg and J. Krawczyk, "Flat histogram version of the pruned and enriched Rosenbluth method," Phys. Rev. Lett. 92 (2004) 120602; selected for Virt. J. Biol. Phys. Res. 7 (2004)
- T. Prellberg, J. Krawczyk, and A. Rechnitzer, "Polymer simulations with a flat histogram stochastic growth algorithm," Computer Simulation Studies in Condensed Matter Physics XVII, pages 122-135, Springer Verlag, 2006

Joined work with A.L. Owczarek, A. Rechnitzer, J. Krawczyk

• The algorithm:

- T. Prellberg and J. Krawczyk, "Flat histogram version of the pruned and enriched Rosenbluth method," Phys. Rev. Lett. 92 (2004) 120602; selected for Virt. J. Biol. Phys. Res. 7 (2004)
- T. Prellberg, J. Krawczyk, and A. Rechnitzer, "Polymer simulations with a flat histogram stochastic growth algorithm," Computer Simulation Studies in Condensed Matter Physics XVII, pages 122-135, Springer Verlag, 2006

Some applications: bulk vs surface

- J. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, "Stretching of a chain polymer adsorbed at a surface," Journal of Statistical Mechanics: theory and experiment, JSTAT (2004) P10004
- J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, "Layering transitions for adsorbing polymers in poor solvents," Europhys. Lett. 70 (2005) 726-732
- J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, "Pulling absorbing and collapsing polymers off a surface," Journal of Statistical Mechanics: theory and experiment, JSTAT (2005) P05008

Joined work with A.L. Owczarek, A. Rechnitzer, J. Krawczyk

• The algorithm:

- T. Prellberg and J. Krawczyk, "Flat histogram version of the pruned and enriched Rosenbluth method," Phys. Rev. Lett. 92 (2004) 120602; selected for Virt. J. Biol. Phys. Res. 7 (2004)
- T. Prellberg, J. Krawczyk, and A. Rechnitzer, "Polymer simulations with a flat histogram stochastic growth algorithm," Computer Simulation Studies in Condensed Matter Physics XVII, pages 122-135, Springer Verlag, 2006

Some applications: bulk vs surface

- J. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, "Stretching of a chain polymer adsorbed at a surface," Journal of Statistical Mechanics: theory and experiment, JSTAT (2004) P10004
- J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, "Layering transitions for adsorbing polymers in poor solvents," Europhys. Lett. 70 (2005) 726-732
- J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, "Pulling absorbing and collapsing polymers off a surface," Journal of Statistical Mechanics: theory and experiment, JSTAT (2005) P05008

This talk:

- A. L. Owczarek and T. Prellberg, "Collapse transition of self-avoiding trails on the square lattice," submitted to Physica A
- J. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, "On a type of self-avoiding random walk with multiple site weightings and restrictions," submitted to Phys. Rev. Lett.

Joined work with A.L. Owczarek, A. Rechnitzer, J. Krawczyk

• The algorithm:

- T. Prellberg and J. Krawczyk, "Flat histogram version of the pruned and enriched Rosenbluth method," Phys. Rev. Lett. 92 (2004) 120602; selected for Virt. J. Biol. Phys. Res. 7 (2004)
- T. Prellberg, J. Krawczyk, and A. Rechnitzer, "Polymer simulations with a flat histogram stochastic growth algorithm," Computer Simulation Studies in Condensed Matter Physics XVII, pages 122-135, Springer Verlag, 2006

Some applications: bulk vs surface

- J. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, "Stretching of a chain polymer adsorbed at a surface," Journal of Statistical Mechanics: theory and experiment, JSTAT (2004) P10004
- J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, "Layering transitions for adsorbing polymers in poor solvents," Europhys. Lett. 70 (2005) 726-732
- J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, "Pulling absorbing and collapsing polymers off a surface," Journal of Statistical Mechanics: theory and experiment, JSTAT (2005) P05008

This talk:

- A. L. Owczarek and T. Prellberg, "Collapse transition of self-avoiding trails on the square lattice," submitted to Physica A
- J. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, "On a type of self-avoiding random walk with multiple site weightings and restrictions," submitted to Phys. Rev. Lett.

Things to come:

 J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, "Simulation of Lattice Polymers with Hydrogen-Like Bonding," preprint

(日) (同) (E) (E) (E)

The End

(ロ) (四) (主) (主) (三)