OUTLINE	Lattice Paths 00	Generalised Dyck Paths	Results

Counting Generalised Dyck Paths

Anum Khalid and Thomas Prellberg

School of Mathematical Sciences, Queen Mary University of London, UK

Combinatorics Seminar University of Florida, February 2018

Lattice Paths

Generalised Dyck Paths

Results

OUTLINE

Lattice Paths

- Dyck Paths
- Problem Definition

2 Generalised Dyck Paths

- Generating Function
- Elementary Symmetric Functions
- Cramer's Rule
- Jacobi-Trudi Identities

3 Results

OUTLINE	Lattice Paths 00	Generalised Dyck Paths	Results
Lattice Paths			

In Combinatorics, a lattice path is a sequence of points on some regular lattice \mathbb{Z}^n .

Figure 1: Lattice path on \mathbb{Z}^2 .

OUTLINE	Lattice Paths	Generalised Dyck Paths	Results
Lattice Pa	ths		

In Combinatorics, a lattice path is a sequence of points on some regular lattice \mathbb{Z}^n .

Figure 1: Lattice path on \mathbb{Z}^2 .

Directed lattice paths have fixed direction of increase, which we choose to be the positive horizontal axis.

Lattice Paths

Generalised Dyck Paths

Results

Types of Directed Lattice Paths

Figure 2: Types of paths (Banderier and Wallner, 2016).

OUTLINE	Lattice Paths ••	Generalised Dyck Paths	Results
Dyck Paths			

A Dyck path is a staircase walk from (0,0) to (n, n) lying below the diagonal y = x.

OUTLINE	Lattice Paths ●○	Generalised Dyck Paths	Results
Dyck Paths			

A Dyck path is a staircase walk from (0,0) to (n, n) lying below the diagonal y = x.

Figure 3: Dyck Path.

\sim	1.77	 B 11	
0		N	

Problem Definition

The original aim was to consider Dyck paths in strips with rational slope

Lattice Paths

Generalised Dyck Paths

Results

Problem Definition

The original aim was to consider Dyck paths in strips with rational slope

Figure 4: Left: Path below a rational slope 2/5. Right: Bijection to Meanders (Banderier and Wallner, 2015).

Lattice Paths

Generalised Dyck Paths

Results

Problem Definition

The original aim was to consider Dyck paths in strips with rational slope

Figure 4: Left: Path below a rational slope 2/5. Right: Bijection to Meanders (Banderier and Wallner, 2015).

Dyck paths below rational slopes are in bijection with lattice paths with more general step sets.

Lattice Paths

Generalised Dyck Paths

Results

Generalised Dyck Paths

A generalised Dyck path in a slit takes its steps from $S \subset \mathbb{Z}$. It can start and end at any height.

Let $A = S \cap \mathbb{Z}_0^+$ and $B = -(S \setminus A)$ where $\alpha > 0$ is the maximum up step in A and $\beta > 0$ is the maximum down step in B.

Lattice Paths

Generalised Dyck Paths

Results

Generalised Dyck Paths

A generalised Dyck path in a slit takes its steps from $S \subset \mathbb{Z}$. It can start and end at any height.

Let $A = S \cap \mathbb{Z}_0^+$ and $B = -(S \setminus A)$ where $\alpha > 0$ is the maximum up step in A and $\beta > 0$ is the maximum down step in B.

Figure 5: Generalised Dyck path of length n = 16 with north-east steps $A = \{1, 3, 4, 5, 6\}$ and south-east steps $B = \{1, 2, 3, 4\}$.

Lattice Paths

Generalised Dyck Paths

Results

Generating Function

Considering an an n step path in a slit of width w, starting at height u and ending at height v we have the generating function

$$G(t,z)\equiv G_u^{w,\alpha,\beta}(t,z)=\sum_{\nu=0}^w G_{(u,\nu)}^{w,\alpha,\beta}(t)z^{
u},$$

where $G_{(u,v)}^{w,\alpha,\beta}(t)$ is the generating function of paths and t is conjugate to the length n of the path.

Lattice Paths

Generalised Dyck Paths

Results

Generating Function

Considering an an n step path in a slit of width w, starting at height u and ending at height v we have the generating function

$$G(t,z)\equiv G_u^{w,\alpha,\beta}(t,z)=\sum_{\nu=0}^w G_{(u,\nu)}^{w,\alpha,\beta}(t)z^{
u},$$

where $G_{(u,v)}^{w,\alpha,\beta}(t)$ is the generating function of paths and t is conjugate to the length n of the path.

Question

What is the number of paths starting at height u and ending at height v with maximum up step α and maximum down step β ?

0	 -	 10		
U			41	

Functional Equation

$$G(t,z) = z^{u} + t \left(\sum_{a \in A} p_{a} z^{a} + \sum_{b \in B} \frac{q_{b}}{z^{b}} \right) G(t,z)$$
$$- t \sum_{j=1}^{\infty} z^{w+j} \sum_{a \ge j} p_{a} G_{(u,w-a+j)}(t) - t \sum_{j=1}^{\infty} z^{-j} \sum_{b \ge j} q_{b} G_{(u,b-j)}(t)$$

\frown	1	1 1 5		
())				
0			ω,	

Functional Equation

$$G(t,z) = z^{u} + t \left(\sum_{a \in A} p_{a} z^{a} + \sum_{b \in B} \frac{q_{b}}{z^{b}} \right) G(t,z)$$
$$- t \sum_{j=1}^{\infty} z^{w+j} \sum_{a \ge j} p_{a} G_{(u,w-a+j)}(t) - t \sum_{j=1}^{\infty} z^{-j} \sum_{b \ge j} q_{b} G_{(u,b-j)}(t)$$

The kernel K(t, z) of the functional equation is

$$K(t,z) = 1 - t \sum_{a \in A} p_a z^a - t \sum_{b \in B} \frac{q_b}{z^b}.$$

Lattice Paths

Generalised Dyck Paths

Results

Elementary Symmetric Functions

Using

$$\mathcal{K}(t,z) = \xi \prod_{i=1}^{\alpha+\beta} (z-z_i) = \xi \sum_{i=0}^{\alpha+\beta} z^{\alpha+\beta-i} (-1)^i e_i$$

We rewrite our functional equation in terms of elementary symmetric functions instead of weights p_a , q_b and t.

Extracting the coefficients of z^{v} yields a system of w + 1 linear equations.

OUTLINE	Lattice Paths 00	Generalised Dyck Paths	Results
Cramer's	Rule		

$$\sum_{\nu=0}^{w} \left(\sum_{i=0}^{\alpha+\beta} (-1)^{i} e_{i} G_{(u,\nu-\alpha+i)} \right) z^{\nu} = -\frac{z^{u}}{t p_{\alpha}}$$

We evaluate the equation for $v = 0 \cdots w$.

As per Cramer's rule

$$G_{(u,v)} = rac{|A_{(u,v)}|}{|A|}$$

where

$$A = \begin{bmatrix} e_{\alpha} & e_{\alpha+1} & e_{\alpha+2} & \cdots & e_{\alpha+\beta} & \cdots & 0\\ e_{\alpha-1} & e_{\alpha} & e_{\alpha+1} & \cdots & e_{\alpha+\beta-1} & \cdots & 0\\ e_{\alpha-2} & e_{\alpha-1} & e_{\alpha} & \cdots & e_{\alpha+\beta-2} & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots\\ e_0 & e_1 & e_2 & \cdots & e_{\beta} & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & 0 & 0 & \cdots & e_{\alpha} \end{bmatrix}$$

Using similarity transformation we remove negative signs from the alternate entries.

Results

Jacobi Trudi Identities

The second Jacobi-Trudi formula expresses the Schur polynomial as a determinant in terms of the elementary symmetric polynomials,

OUTLINE	Lattice Paths 00	Generalised Dyck Paths	Results

We need to evaluate |A|, which is done by comparison with the second Jacobi-Trudi formula. The conjugate partition λ' is

$$\lambda' = (\overbrace{\alpha, \alpha, \cdots, \alpha}^{\mathsf{w}+1})$$

OUTLINE	Lattice Paths 00	Generalised Dyck Paths	Results

We need to evaluate |A|, which is done by comparison with the second Jacobi-Trudi formula. The conjugate partition λ' is

$$\lambda' = (\overbrace{\alpha, \alpha, \cdots, \alpha}^{\mathsf{w}+1})$$

Determinant of A

$$|A| = S_{(w+1^{\alpha},0^{\beta})}(z_1,z_2,\cdots,z_{\alpha+\beta}).$$

O	JTLINE	Lattice Paths 00	Generalised Dyck Paths	Results
	Next we need	d to find $A_{(u,v)}$ by re	placing the column v of m	natrix A

with B with single non zero entry $-\frac{1}{tp_{\alpha}}$.

\sim	-	 	
0			

Lattice Paths

Next we need to find $A_{(u,v)}$ by replacing the column v of matrix A with B with single non zero entry $-\frac{1}{tp_{\alpha}}$.

OUTLINE	Lattice Paths 00	Generalised Dyck Paths	Results

To evaluate the determinant we expand the matrix by v^{th} column. This gives us a new matrix of size w as follows

	e_{α} $e_{\alpha-1}$ $e_{\alpha-2}$	$e_{\alpha+1}$ e_{α} $e_{\alpha-1}$	$e_{\alpha+2} \\ e_{\alpha+1} \\ e_{\alpha}$	· · · · · · ·	$e_{\alpha+\nu-1}$ $e_{\alpha+\nu-2}$ $e_{\alpha+\nu-3}$	$e_{\alpha+\nu+1}$ $e_{\alpha+\nu}$ $e_{\alpha+\nu-1}$	· · · · · · ·	$e_{\alpha+\beta}$ $e_{\alpha+\beta-1}$ $e_{\alpha+\beta-2}$	· · · · · · ·	0 0 0
	:			:			·	:	·	:
$-\frac{1}{tp_{\alpha}}$	$e_{\alpha-u+1}$ $e_{\alpha-u-1}$ $e_{\alpha-u-2}$	$e_{\alpha-u+2}$ $e_{\alpha-u}$ $e_{\alpha-u-1}$	$e_{\alpha - u+3}$ $e_{\alpha - u+1}$ $e_{\alpha - u}$	· · · · · · ·	$e_{\alpha+v-u}$ $e_{\alpha+v-u-2}$ $e_{\alpha+v-u-3}$	$e_{\alpha+v-u+2}$ $e_{\alpha+v-u-1}$ $e_{\alpha+v-u-1}$		$e_{\alpha+\beta-u+1}$ $e_{\alpha+\beta-u-1}$ $e_{\alpha+\beta-u-2}$	· · · · · · ·	0 0 0
	- - e0	e1	: : e ₂	:	: e _{v-1}	: e _{v+1}	·	: e _ß	·	: : 0
	0	: 0	: 0	: : 0	: : 0	: : 0	·	:	·	ε _α

OUTLINE	Lattice Paths 00	Generalised Dyck Paths	Results

The corresponding Jacobi-Trudi identity expressing Skew Schur polynomials as determinant is

Skew Schur polynomial as determinant

$$s_{\lambda'/\mu'} = \begin{vmatrix} e_{\lambda'_1 - \mu'_1} & e_{\lambda'_1 - \mu'_2 + 1} & e_{\lambda'_1 - \mu'_3 + 2} & \cdots & e_{\lambda'_1 - \mu'_1 + l - 1} \\ e_{\lambda'_2 - \mu'_1 - 1} & e_{\lambda'_2 - \mu'_2} & e_{\lambda'_2 - \mu'_3 + 1} & \cdots & e_{\lambda'_1 - \mu'_1 + l - 2} \\ e_{\lambda'_3 - \mu'_1 - 2} & e_{\lambda'_3 - \mu'_2 - 1} & e_{\lambda'_3 - \mu'_3} & \cdots & e_{\lambda'_1 - \mu'_1 + l - 3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ e_{\lambda'_l - \mu'_1 - l + 1} & e_{\lambda'_l - \mu'_2 - l + 2} & e_{\lambda'_1 - \mu'_3 - l + 3} & \cdots & e_{\lambda'_l - \mu'_l} \end{vmatrix}$$

OUTLINE	Lattice Paths 00	Generalised Dyck Paths	Results

Comparing the matrix with the Jacobi identity for skew functions, we get the conjugate partitions

OUTLINE	Lattice Paths	Generalised Dyck Paths	Results
	00	00000000000000000	

The partitions λ and μ are given by

Partitions

$$\lambda = (w^{\alpha}, u, 0^{\beta-1})$$

 $\quad \text{and} \quad$

$$\mu = (\mathbf{v}, \mathbf{0}^{\alpha + \beta - 1})$$

OUTLINE	Lattice Paths	Generalised Dyck Paths	Results
	00	0000000000000000	

The partitions λ and μ are given by

Partitions

$$\lambda = (w^{\alpha}, u, 0^{\beta-1})$$

and

$$\mu = (\mathbf{v}, \mathbf{0}^{\alpha + \beta - 1})$$

Skew Schur Function

$$S_{(w^{\alpha},u,0^{\beta-1})/(v,0^{\alpha+\beta-1})}(z_1,z_2,\cdots,z_{\alpha+\beta})$$

OUTLINE	Lattice Paths	Generalised Dyck Paths	Results
	00	00000000000	

We have

$$|A_{(u,v)}| = -\frac{1}{t \rho_{\alpha}} S_{(w^{\alpha}, u, 0^{\beta-1})/(v, 0^{\alpha+\beta-1})}(z_1, z_2, \cdots, z_{\alpha+\beta})$$

 $\quad \text{and} \quad$

OUTLINE	Lattice Paths	Generalised Dyck Paths	Results
	00	00000000000	

We have

$$|A_{(u,v)}| = -rac{1}{t p_lpha} S_{(w^lpha, u, 0^{eta-1})/(v, 0^{lpha+eta-1})}(z_1, z_2, \cdots, z_{lpha+eta})$$

and

$$|A| = S_{(w+1^{\alpha},0^{\beta})}(z_1,z_2,\cdots,z_{\alpha+\beta}).$$

Lattice Paths

Generalised Dyck Paths

Results

Result

Theorem

The generating function of generalised Dyck paths in a slit of width w is

$$G_{(u,v)}(t) = -rac{1}{t p_lpha} rac{S_{(w^lpha, u, 0^{eta-1})/(v, 0^{lpha+eta-1})}(z)}{S_{(w+1^lpha, 0^eta)}(z)}.$$

Here z are the roots of kernel $1 - t \sum_{a \in A} p_a z^a - t \sum_{b \in B} \frac{q_b}{z^b}$.

Figure 6: Schur diagram for the skew Schur function.

W

V

α

OUTLINE	Lattice Paths 00	Generalised Dyck Paths	Results
Result			

Schur functions form a linear basis for symmetric polynomials. An equivalent result in terms of Schur functions is as follows:

Theorem

The generating function of generalised Dyck paths in a slit of width w is

$$-\frac{1}{tp_{\alpha}}\frac{\sum_{l=0}^{\min(u,v,w-u,w-v)}S_{(w^{\alpha-1},w-(v-u)_{+}-l,(u-v)_{+}+l,0^{\beta-1})}(z)}{S_{(w+1^{\alpha},0^{\beta})}(z)}.$$

where z are the roots of kernel $0 = 1 - t \sum_{a \in A} p_a z^a - t \sum_{b \in B} \frac{q_b}{z^b}$.

Figure 7: Schur diagram for the terms in summation.

Results

Proof

The proof is based on

Lemma

Let λ/ν be a partition with ν a horizontal strip of size ν . Then

$$S_{\lambda/
u} = \sum_{\mu} S_{\mu}$$

where the sum runs over all partitions μ such than λ/μ is a horizontal strip of size v.

Thank You.