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regular lattice Z".

In Combinatorics, a lattice path is a sequence of points on some J

Figure 1: Lattice path on Z2.



Lattice Paths

In Combinatorics, a lattice path is a sequence of points on some
regular lattice Z".

Figure 1: Lattice path on Z2.

Directed lattice paths have fixed direction of increase, which we
choose to be the positive horizontal axis.
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Figure 2: Types of paths (Banderier and Wallner, 2016).



A Dyck path is a staircase walk from (0,0) to (n, n) lying below
the diagonal y = x.




A Dyck path is a staircase walk from (0,0) to (n, n) lying below
the diagonal y = x.

Figure 3: Dyck Path.



The original aim was to consider Dyck paths in strips with rational]
slope




The original aim was to consider Dyck paths in strips with rational]
slope

Figure 4: Left: Path below a rational slope 2/5. Right: Bijection to
Meanders (Banderier and Wallner, 2015).
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Problem Definition

The original aim was to consider Dyck paths in strips with rationaIJ

slope

Figure 4: Left: Path below a rational slope 2/5. Right: Bijection to
Meanders (Banderier and Wallner, 2015).

Dyck paths below rational slopes are in bijection with lattice paths
with more general step sets. J
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Generalised Dyck Paths

A generalised Dyck path in a slit takes its steps from S C Z. It can
start and end at any height. J

Let A= SNZ§ and B = —(S\A) where a > 0 is the maximum
up step in A and 8 > 0 is the maximum down step in B.
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Generalised Dyck Paths

A generalised Dyck path in a slit takes its steps from S C Z. It can
start and end at any height.

Let A= SNZ§ and B = —(S\A) where a > 0 is the maximum
up step in A and 8 > 0 is the maximum down step in B.

w=7

v=4
u=2

n=16

Figure 5: Generalised Dyck path of length n = 16 with north-east steps
A=1{1,3,4,5,6} and south-east steps B = {1,2,3,4}.
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Generating Function

Considering an an n step path in a slit of width w, starting at
height u and ending at height v we have the generating function

G(t,z) = G¥*B(t,z) = ZG *B(t)z”

w,a,f3

where G( V) (t) is the generating function of paths and t is
conjugate to the length n of the path.
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Generating Function

Considering an an n step path in a slit of width w, starting at
height u and ending at height v we have the generating function

G(t,z) = G¥*B(t,z) = ZG *B(t)z”

where G(W O‘Sﬁ( ) is the generating function of paths and t is

conjugate to the length n of the path.

Question

What is the number of paths starting at height v and ending at
height v with maximum up step a and maximum down step 57




Functional Equation
G(t,z) =z"
=2t ( e+ T8 e

acA beB

= tZzW‘H -
(u,b—)(1)

Jj=1 b>j




G(t,z)=z"+t (Z paz® + Z %) G(t,z)

acA beB

_tZZW+JZpaG(uw a+j)(t) tZZ "quG(ub—j)(t)
Jj=1

The kernel K(t,z) of the functional equation is

K(t,z) —l—thaz ZZ. J

acA beB
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Elementary Symmetric Functions

Using

a+p a+p

Kt,z2)=¢ [[(z—2)=¢)_ 22 I(-1)q
i=1 i=0

We rewrite our functional equation in terms of elementary
symmetric functions instead of weights p,, g5 and t.

Extracting the coefficients of z yields a system of w + 1 linear
equations.




w a+f

Z Z(_l)ieiG(U,v—a+i) zY =

v=0 i=0

z

tPa

We evaluate the equation for v =0-

s W.

e (-1 eaps (-1 Peqip 0
(—l)a_lea—l (_l)aea (_1)a+ﬁ—1ea+ﬁ_1 2 s 0
(-1)*"2eq_p  (-1)*leq_1 (~1)*+B =26, 5, 0 GEZI;
. . . ° Guay | _ | =2
. : ' ) . = | tha
€ —ej (_1)1365 3 : :
- : . : G :

0 0 0 (—1).aea
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As per Cramer's rule

A
G(u,v) _ ’ (u,v)’
Al
where

-ea €atl €at2 - ea-i—,@ 0-

€a—1 € €a+1 " €Ea4pB-1 0

€2 €1 € °° €app—2 -+ 0

A= | : : : : : :

€ €1 & ... eﬁ e 0
0 0 0 0 0 - e

Using similarity transformation we remove negative signs from the
alternate entries.
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Jacobi Trudi Identities

The second Jacobi-Trudi formula expresses the Schur polynomial as
a determinant in terms of the elementary symmetric polynomials,

Schur polynomial as determinant

ex, EX+1  &+2 M4l

o ex,—1 ex, X1 T e -2

sy =det(exj )iy =| -2 -1 e, T e\ 4-3
X —I1+1  EN—1+2 EN—/+3 Ex,

where ) is the conjugate partition.




We need to evaluate |A|, which is done by comparison with the
second Jacobi-Trudi formula. The conjugate partition )\ is

w—+1
——
N=(0,a, - ,Q)




We need to evaluate |A|, which is done by comparison with the
second Jacobi-Trudi formula. The conjugate partition )\ is

w—+1
——
N=(0,a, - ,Q)

|Al = S(wy1e,08) (21,22, -+, Zat8)-




1

tha

Next we need to find A, ) by replacing the column v of matrix A
with B with single non zero entry —




Next we need to find A, ) by replacing the column v of matrix A

with B with single non zero entry _tp%'

Au,v) =

et
€a—1
€o—2

€a—u+l
Co—u

€a—u—1

Ca+1

€a—1

€a—u+2
€o—u+1

Co—u

€1

€a+2
Ca+1
€a

€a—u+3
Co—u+2
Co—u+1

€a+v—1 0

€a+v—2 0

€a+v—3 0

Catv—u 01

Catv—u—1 ~ e

Catv—u—2 0

e,—1 0

0 0

Ca+p
Ca+B—1
Ca+B—2

€a+B—u+l
Ca+B—u
€a+pB—u—1

s

€a

[w+1]



To evaluate the determinant we expand the matrix by v column.
This gives us a new matrix of size w as follows

eq eat1 eq 42 s eqtv—1 €atvtl s €a+B 0

ea—1 ea €at1 e eatv_2 eatv e €atp—1 0

eq—2 eq—1 eq B eqtv—3 €atv—1 B eat+p—2 s 0

€ —u+1 o —u+2 o —u+3 c Catv—u Catv—ut2 c €a+B—u+l 0

_ 1 leq—uy—1 €a—u €o—ut1 c Catv—u—2  Catv—u—1 c Ca+B—u—1 0
tpe |Sax—u—2 Ca—u—1 Ca—u c €at+v—u—3  Catv—u—1 c Ca+B—u—2 0
e e ) s ev—1 evtl s eg cee 0

0 0 0 0 0 0 0 eq




The corresponding Jacobi-Trudi identity expressing Skew Schur
polynomials as determinant is

X —u} X —ph+l BN —pi+2 T X —pitl-1
e\, —uf—1 N, —u) ENj—pi+1 T N -2
SN = e)\'3—u'1—2 ekg—ué—l e)\g—p,é U e)xi—/l.;+l—3

X —pf—1+1  ON—pb—142 N —pt—1+3 X/ — ]




Comparing the matrix with the Jacobi identity for skew functions,
we get the conjugate partitions

U w-u
N=(@+1l,a+1,---,a+ 1,00, -,0)

and




The partitions A\ and p are given by

A= (w® u,0°71)

and
p=(v,00A71)




The partitions A\ and p are given by

A= (w® u,0°71)

and
p=(v,00A71)

S(Wa7u’0ﬂ—1)/(v,oa+,6—1)(zl> 22, 7zoc+5)




We have

1
|Au)| = _;5(w°‘,u,05—1)/(v,0°‘+ﬁ_1)(Zl7227 e Zatp) J
(0%

and



We have

1
|Au)| = _gs(wa,u,oﬁ—l)/(v,oa"'ﬁ_l)(217227 e Zatp)
(0%

and

|A| = S(W-i-lo‘,oﬁ)(zl? Zy, " ,Za+l[3).




The generating function of generalised Dyck paths in a slit of
width w is

1 S(we,u00-1)/(v,0008-1)(2)

Guv t)=—
() (1) tPa S(w+12,08)(2)

Here z are the roots of kernel 1 —t 3" ) p.z® —t ) ,cp 2.




B-1

w

Figure 6: Schur diagram for the skew Schur function.
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Result

Schur functions form a linear basis for symmetric polynomials. An
equivalent result in terms of Schur functions is as follows:

Theorem

The generating function of generalised Dyck paths in a slit of
width w is

1 me A== S(WO‘*l,W—(v—u)Jr—/,(u—v)Jr—i-/,OB*I)(Z)

tPa S(w12,09)(2)

where z are the roots of kernel 0 =1 —t Y 1 paz® —t> g %.




B-1
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w-(v-u)-I
a-1
< ” >

Figure 7: Schur diagram for the terms in summation.



The proof is based on

Let \/v be a partition with v a horizontal strip of size v. Then

S\ =S
"

where the sum runs over all partitions p such than \/pu is a
horizontal strip of size v.




Thank
You.
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