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Ramanujan’s Function

Aq(x) =
∞∑

n=0

qn2

(−x)n

(q; q)n
=
∞∑

n=0

qn2

(−x)n

(1− q)(1− q2) . . . (1− qn)

Rogers-Ramanujan Identities

Aq(−1) =
∞∑

n=0

qn2

(q; q)n
=
∞∏

n=0

1

(1− q5n+1)(1− q5n+4)

and

Aq(−q) =
∞∑

n=0

qn2+n

(q; q)n
=
∞∏

n=0

1

(1− q5n+2)(1− q5n+3)

Related to partitions of integers into parts mod 5

Thomas Prellberg The combinatorics of the leading root of Ramanujan’s (and related) functions



q-Airy (and related) Functions
Identities for the Leading Roots

Combinatorics
Outlook

Ramanujan’s Function
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Area-weighed Dyck paths

Count Dyck paths with respect to steps and enclosed area

Generating function

G (x , q) =
∑
m,n

cm,nx
nqm =

Aq(x)

Aq(x/q)

x counts pairs of up/down steps, q counts enclosed area
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Painlevé Airy Function
Partial Theta Function

Area-weighed Dyck paths

Count Dyck paths with respect to steps and enclosed area

Generating function

G (x , q) =
∑
m,n

cm,nx
nqm =

Aq(x)

Aq(x/q)

x counts pairs of up/down steps, q counts enclosed area

Thomas Prellberg The combinatorics of the leading root of Ramanujan’s (and related) functions



q-Airy (and related) Functions
Identities for the Leading Roots

Combinatorics
Outlook

Ramanujan’s Function
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Ramanujan’s Lost Notebook, page 57

∞∑
n=0

qn2

(−x)n

(q; q)n
=
∞∏

n=1

(
1− xq2n−1

1− qny1 − q2ny2 − q3ny3 − . . .

)
where

(t; q)n = (1− t)(1− tq)(1− tq2) . . . (1− tqn−1)

with y1, y2, y3, y4 explicitly given

More precisely,

y1 =
1

(1− q)ψ2(q)
, y2 = 0

y3 =
q + q3

(1− q)(1− q2)(1− q3)ψ2(q)
−

∞P
n=0

(2n+1)q2n+1

1−q2n+1

(1− q)3ψ6(q)
, y4 = y1y3

and

ψ(q) =
∞X
n=0

qn(n+1)/2 =

`
q2; q2

´
∞

(q; q2)∞
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The roots of Aq(x)

∞∑
n=0

qn2

(−x)n

(q; q)n
=
∞∏

n=1

(
1− xq2n−1

1− qny1 − q2ny2 − q3ny3 − . . .

)

=
∞∏

n=0

(
1− x

xn(q)

)

Roots are positive, real, and simple (Al-Salam and Ismail, 1983)

Ramanujan’s expansion is an asymptotic series (Andrews, 2005)

Relation to Stieltjes-Wigert polynomials (Andrews, 2005)

Integral equation for roots (Ismail and Zhang, 2007)

Combinatorial interpretation of yk (Huber, 2008, and Huber and
Yee, 2010)
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The aim of this talk

∞∑
n=0

qn2

(−x)n

(q; q)n
=
∞∏

n=0

(
1− x

xn(q)

)

qx0(−q) = 1+q +q2 +2q3 +4q4 +8q5 +16q6 +33q7 +70q8 +151q9 + . . .

Goal

A combinatorial interpretation of the coefficients of the leading root
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Painlevé Airy Function

Aiq(x) =
∞∑

n=0

q(n
2)(−x)n

(q2; q2)n
=
∞∑

n=0

q(n
2)(−x)n

(1− q2)(1− q4) . . . (1− q2n)

x0(q) = 1 + q + q2 + 2q3 + 3q4 + 6q5 + 12q6 + 25q7 + 54q8 + 120q9 + . . .

The coefficients of the leading root also seem to be positive integers
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Painlevé Airy Function

Aiq(x) =
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n=0

q(n
2)(−x)n

(q2; q2)n
=
∞∑

n=0

q(n
2)(−x)n

(1− q2)(1− q4) . . . (1− q2n)

Connection Formula (Morita, 2011)

Aq2

(
−q3

x2

)
=

1

(q; q)∞(−1; q)∞

{
Θ

(
−x

q
, q

)
Aiq(−x) + Θ

(
x

q
, q

)
Aiq(x)

}
with Theta Function

Θ(x , q) =
∞∑

n=−∞
q(n

2)(−x)n
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Partial Theta Function

The Theta Function has roots xk(q) = qk k ∈ Z

Θ(x , q) =
∞∑

n=−∞
q(n

2)(−x)n = (q; q)∞(x ; q)∞(q/x ; q)∞

The Partial Theta Function

Θ0(x , q) =
∞∑

n=0

q(n
2)(−x)n

does not admit a “nice” product formula, but

x0(q) = 1+q+2q2 +4q3 +9q4 +21q5 +52q6 +133q7 +351q8 +948q9 +. . .

The coefficients of the leading root are positive integers (Sokal, 2012)
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Painlevé Airy Function Aiq(x) =
∑∞

n=0 q(n
2)(−x)n/(q2; q2)n

Aiq(x) = 0

x = 1 + q + q2 + 2q3 + 3q4 + 6q5 + 12q6 + 25q7 + 54q8 + 120q9 + . . .

Thomas Prellberg The combinatorics of the leading root of Ramanujan’s (and related) functions



q-Airy (and related) Functions
Identities for the Leading Roots

Combinatorics
Outlook

The Leading Roots
Key Identities
Positivity

The Leading Roots

Partial Theta Function Θ0(x , q) =
∑∞

n=0 q(n
2)(−x)n

Θ0(x , q) = 0

x = 1 + q + 2q2 + 4q3 + 9q4 + 21q5 + 52q6 + 133q7 + 351q8 + 948q9 + . . .

Ramanujan Function Aq(x) =
∑∞

n=0 qn2

(−x)n/(q; q)n

A−q(x/q) = 0

x = 1 + q + q2 + 2q3 + 4q4 + 8q5 + 16q6 + 33q7 + 70q8 + 151q9 + . . .

Painlevé Airy Function Aiq(x) =
∑∞

n=0 q(n
2)(−x)n/(q2; q2)n

Aiq(x) = 0

x = 1 + q + q2 + 2q3 + 3q4 + 6q5 + 12q6 + 25q7 + 54q8 + 120q9 + . . .

Thomas Prellberg The combinatorics of the leading root of Ramanujan’s (and related) functions



q-Airy (and related) Functions
Identities for the Leading Roots

Combinatorics
Outlook

The Leading Roots
Key Identities
Positivity

Key Identities

Θ0(x , q) satisfies (Andrews and Warnaar, 2007)

Θ0(x , q) = (x ; q)∞

∞∑
n=0

qn2

xn

(q; q)n(x ; q)n

Aq(x) satisfies (Gessel and Stanton, 1983)

A−q(x/q) = (xq; q2)∞

∞∑
n=0

qn2−nxn

(q2; q2)n(xq; q2)n

Aiq(x) satisfies (Gessel and Stanton, 1983)

Aiq(x) = (x ; q)∞

∞∑
n=0

qn2+(n
2)xn

(q2; q2)n(x ; q)n

Thomas Prellberg The combinatorics of the leading root of Ramanujan’s (and related) functions



q-Airy (and related) Functions
Identities for the Leading Roots

Combinatorics
Outlook

The Leading Roots
Key Identities
Positivity

Key Identities

Θ0(x , q) satisfies (Andrews and Warnaar, 2007)

Θ0(x , q) = (x ; q)∞

∞∑
n=0

qn2

xn

(q; q)n(x ; q)n

Aq(x) satisfies (Gessel and Stanton, 1983)

A−q(x/q) = (xq; q2)∞

∞∑
n=0

qn2−nxn

(q2; q2)n(xq; q2)n

Aiq(x) satisfies (Gessel and Stanton, 1983)

Aiq(x) = (x ; q)∞

∞∑
n=0

qn2+(n
2)xn

(q2; q2)n(x ; q)n

Thomas Prellberg The combinatorics of the leading root of Ramanujan’s (and related) functions



q-Airy (and related) Functions
Identities for the Leading Roots

Combinatorics
Outlook

The Leading Roots
Key Identities
Positivity

Key Identities

Θ0(x , q) satisfies (Andrews and Warnaar, 2007)

Θ0(x , q) = (x ; q)∞

∞∑
n=0

qn2

xn

(q; q)n(x ; q)n

Aq(x) satisfies (Gessel and Stanton, 1983)

A−q(x/q) = (xq; q2)∞

∞∑
n=0

qn2−nxn

(q2; q2)n(xq; q2)n

Aiq(x) satisfies (Gessel and Stanton, 1983)

Aiq(x) = (x ; q)∞

∞∑
n=0

qn2+(n
2)xn

(q2; q2)n(x ; q)n

Thomas Prellberg The combinatorics of the leading root of Ramanujan’s (and related) functions



q-Airy (and related) Functions
Identities for the Leading Roots

Combinatorics
Outlook

The Leading Roots
Key Identities
Positivity

Identities for the Roots

Partial Theta Function (Sokal, 2012)

Θ0(x , q) = 0 if
x = 1 +

∞∑
n=1

qn2

xn

(q; q)n(qx ; q)n−1

Ramanujan Function

A−q(x/q) = 0 if

x = 1 +
∞∑

n=1

qn2

xn

(q2; q2)n(q2x ; q2)n−1

Painlevé Airy Function

Aiq(x) = 0 if
x = 1 +

∞∑
n=1

qn2+(n
2)xn

(q2; q2)n(qx ; q)n−1
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Positivity

Letting x (0) = 1 and iterating

x (N+1) = 1 +
∞∑

n=1

qn2

(q; q)n(qx (N); q)n−1

Sokal (2012) shows coefficient-wise monotonicity of x (N), and hence
positivity for the leading root of the Partial Theta Function

The proof is easily adapted to the two other identities

Is there an underlying combinatorial structure?
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Ferrers Diagrams

n
a Ferrers diagram with Durfee square of size n
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Why Ferrers Diagrams?

The generating function G (x , y , q) of Ferrers diagrams with n-th largest
row having length n for some positive integer n, enumerated with respect
to width (x), height (y), and total area (q), is given by

G (x , y , q) =
∞∑

n=1

(xy)nqn2

(qy ; q)n(qx ; q)n−1

Compare with

x = 1 +
∞∑

n=1

qn2

xn

(q; q)n(qx ; q)n−1

to get
x = 1 + G (x , 1, q)
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Enumerating Ferrers Diagrams

G (x , y , q) =
∞∑

n=1

(xy)nqn2 1

(yq; q)n

1

(xq; q)n−1

n

must be width n

The sum is over all sizes n of Durfee squares
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Trees Decorated with Ferrers Diagrams

The functional equation

x = 1 + G (x , 1, q)

admits a combinatorial interpretation using the “theory of species”

Theorem (TP, 2012)

Let Fq be the species of Ferrers diagrams with n-th largest row having
length n for some integer n, weighted by area (q), with size given by the
width of the Ferrers diagram, augmented by the ‘empty polyomino’.
Then x enumerates Fq-enriched rooted trees (trees decorated such that
the out-degree of the vertex matches the width of the Ferrers diagram)
with respect to the total area of the Ferrers diagrams at the vertices of
the tree.
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Trees Decorated with Ferrers Diagrams

Tree with area 15, contributing q15 to the Partial Theta Function root
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The Same Trees, But Different Area Weights

Partial Theta Function (TP, 2012)

x = 1 +
∞∑

n=1

qn2

xn

(q; q)n(qx ; q)n−1
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The Same Trees, But Different Area Weights

Ramanujan Function (TP, 2013)

x = 1 +
∞∑

n=1

qn2

xn

(q2; q2)n(q2x ; q2)n−1

Count dark area twice
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The Same Trees, But Different Area Weights

Painlevé Airy Function (TP, 2013)

x = 1 +
∞∑

n=1

qn2+(n
2)xn

(q2; q2)n(qx ; q)n−1

Count dark area twice
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Why are Θ, Aq, Aiq special?

Can we understand and generalise?

N∑
n=0

(−1)nq(n+1
2 )

(q; q)n(q; q)N−n
= 1

follows from the q-binomial theorem

N∑
n=0

qn

(q2; q2)n(q2; q2)N−n
=

(−q, q)N

(q2; q2)N
,

is given by Andrews (1976) and, more explicitly, by Cigler (1982)

N∑
n=0

(−1)nqn2

(q2; q2)n(q; q)N−n
=

1

(q2; q2)N
,

follows from an identity by Cauchy

These look similar, but their proofs have nothing in common!
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Higher Roots for Aq(x)

Let x = y/q2m in

x = 1 +
∞∑

n=1

qn2

xn

(q2; q2)n(q2x ; q2)n−1

Then

A−q(y/q2m+1) = 0 if

y = 1 +
(−1)mqm

m∑
n=0

(−1)nynqn

(q2;q2)n

m−n∏
k=1

(y − q2k)

∞∑
n=1

qn2

ym+n

(q2; q2)m+n(q2y ; q2)n−1

Numerically, the m-th root seems to satisfy

1

q2m+1
(1 + (−1)mqm+1(positive terms))
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