Simulating models of polymer collapse

Thomas Prellberg

School of Mathematical Sciences Queen Mary, University of London

with Jarek Krawczyk, Aleks Owczarek, Andrew Rechnitzer

Dynamical Systems and Statistical Physics Seminar Queen Mary, April 1, 2008

A (10) A (10)

Outline

- Polymers in solution:
 - Equilibrium statistical mechanics, lattice model
- Algorithm:
 - Stochastic growth & flat histogram (PERM/flatPERM)
- Simulation of the canonical model:
 - Interacting self-avoiding walks (ISAW)

・ 回 と ・ ヨ と ・ ヨ と

Outline

- Polymers in solution:
 - Equilibrium statistical mechanics, lattice model
- Algorithm:
 - Stochastic growth & flat histogram (PERM/flatPERM)
- Simulation of the canonical model:
 - Interacting self-avoiding walks (ISAW)
- Applications:
 - Protein groundstates (HP model)
 - Bulk vs surface phenomena:
 - confined polymers, force-induced desorption, interplay of collapse and adsorption
 - Hydrogen-bond type interactions
- Comparison with alternative lattice models

Polymers in Solution

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Э

Modelling of Polymers in Solution

- Polymers: long chains of monomers
- "Coarse-Graining": beads on a chain
- "Excluded Volume": minimal distance between beads
- Contact with solvent: effective short-range interaction
- Good/bad solvent: repelling/attracting interaction

Modelling of Polymers in Solution

- Polymers: long chains of monomers
- "Coarse-Graining": beads on a chain
- "Excluded Volume": minimal distance between beads
- Contact with solvent: effective short-range interaction
- Good/bad solvent: repelling/attracting interaction

伺 ト イヨト イヨト

A Model of a Polymer in Solution

Random Walk + Excluded Volume + Short Range Attraction

Polymer Collapse, Coil-Globule Transition, Θ-Point

length N, spatial extension $R \sim N^{\nu}$

 $T < T_c$: bad solvent collapsed phase (globule)

The Canonical Lattice Model

Interacting Self-Avoiding Walk (ISAW)

- \bullet Physical space \rightarrow simple cubic lattice \mathbb{Z}^3
- Polymer \rightarrow self-avoiding random walk (SAW)
- Quality of solvent \rightarrow short-range interaction ϵ

The Canonical Lattice Model

Interacting Self-Avoiding Walk (ISAW)

- Physical space \rightarrow simple cubic lattice \mathbb{Z}^3
- Polymer \rightarrow self-avoiding random walk (SAW)
- Quality of solvent \rightarrow short-range interaction ϵ

Partition function:

$$Z_N(\omega) = \sum_m C_{N,m} \omega^m$$

 $C_{N,m}$ is the number of SAWs with N steps and m interactions

The Canonical Lattice Model

Interacting Self-Avoiding Walk (ISAW)

- Physical space \rightarrow simple cubic lattice \mathbb{Z}^3
- Polymer \rightarrow self-avoiding random walk (SAW)
- Quality of solvent \rightarrow short-range interaction ϵ

Partition function:

$$Z_N(\omega) = \sum_m C_{N,m} \omega^m$$

 $C_{N,m}$ is the number of SAWs with N steps and m interactions

Thermodynamic Limit for a dilute solution:

$$V = \infty$$
 and $N \to \infty$

Extensions of the Model

- In addition to
 - solvent modelling (bulk interaction)
- add
 - adsorption (surface interaction)
 - micromechanical deformations
 e.g. force on chain end (optical tweezers)

A (10) A (10)

• Complete description through three-dimensional density of states:

(a) bulk energy, (b) surface energy, (c) position of chain end

The Algorithm

(ロ) (回) (E) (E) (E)

PERM: "Go With The Winners"

PERM = Pruned and Enriched Rosenbluth Method

P Grassberger, Phys Rev E 56 (1997) 3682

3

• Rosenbluth Method: kinetic growth

PERM = **P**runed and **E**nriched **R**osenbluth **M**ethod

P Grassberger, Phys Rev E 56 (1997) 3682

• Rosenbluth Method: kinetic growth

- \bullet Enrichment: weight too large \rightarrow make copies of configuration
- Pruning: weight too small → remove configuration occasionally

PERM = **P**runed and **E**nriched **R**osenbluth **M**ethod

P Grassberger, Phys Rev E 56 (1997) 3682

• Rosenbluth Method: kinetic growth

- \bullet Enrichment: weight too large \rightarrow make copies of configuration
- Pruning: weight too small → remove configuration occasionally

Current work: flatPERM = flat histogram PERM

T Prellberg and J Krawczyk, PRL 92 (2004) 120602

・ロト ・ 同ト ・ ヨト ・ ヨト

- flatPERM samples a generalised multicanonical ensemble
- Determines the whole density of states in one simulation!

View kinetic growth as approximate enumeration

View kinetic growth as approximate enumeration

- Exact enumeration: choose *all a* continuations with equal weight
- Kinetic growth: chose one continuation with a-fold weight

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

View kinetic growth as approximate enumeration

- Exact enumeration: choose *all a* continuations with equal weight
- Kinetic growth: chose one continuation with a-fold weight
 - An N step configuration gets assigned a weight

$$W = \prod_{k=0}^{N-1} a_k$$

・ 同 ト ・ ヨ ト ・ ヨ ト

View kinetic growth as approximate enumeration

- Exact enumeration: choose *all a* continuations with equal weight
- Kinetic growth: chose one continuation with a-fold weight
 - An N step configuration gets assigned a weight

$$W = \prod_{k=0}^{N-1} a_k$$

• S growth chains with weights $W_N^{(i)}$ give an estimate of the total number of configurations, $C_N^{est} = \langle W \rangle_N = \frac{1}{S} \sum_i W_N^{(i)}$

View kinetic growth as approximate enumeration

- Exact enumeration: choose *all a* continuations with equal weight
- Kinetic growth: chose one continuation with a-fold weight
 - An N step configuration gets assigned a weight

$$W = \prod_{k=0}^{N-1} a_k$$

- S growth chains with weights $W_N^{(i)}$ give an estimate of the total number of configurations, $C_N^{est} = \langle W \rangle_N = \frac{1}{5} \sum_i W_N^{(i)}$
- Add pruning/enrichment with respect to ratio $r = W_N^{(S+1)}/C_N^{est}$

View kinetic growth as approximate enumeration

- Exact enumeration: choose *all a* continuations with equal weight
- Kinetic growth: chose one continuation with a-fold weight
 - An N step configuration gets assigned a weight

$$W = \prod_{k=0}^{N-1} a_k$$

- S growth chains with weights $W_N^{(i)}$ give an estimate of the total number of configurations, $C_N^{est} = \langle W \rangle_N = \frac{1}{S} \sum_i W_N^{(i)}$
- Add pruning/enrichment with respect to ratio

$$r = W_N^{(S+1)} / C_N^{est}$$

- Number of samples generated for each N is roughly constant
- We have a flat histogram algorithm in system size

From PERM to flatPERM

• Consider athermal case

• PERM: estimate number of configurations C_N

•
$$C_N^{est} = \langle W \rangle_N$$

•
$$r = W_N^{(i)}/C_N^{es}$$

・ロン ・回 ・ ・ ヨ ・ ・ ヨ ・

From PERM to flatPERM

- Consider athermal case
 - PERM: estimate number of configurations C_N

•
$$C_N^{est} = \langle W \rangle_N$$

• $r = W_N^{(i)} / C_N^{es}$

- Consider energy E, temperature $\beta = 1/k_BT$
 - thermal PERM: estimate partition function $Z_N(\beta)$

•
$$Z_N^{est}(\beta) = \langle W \exp(-\beta E) \rangle_N$$

• $r = W_N^{(i)} \exp(-\beta E^{(i)}) / Z_N^{est}(\beta)$

・ 回 と ・ ヨ と ・ ヨ と

From PERM to flatPERM

- Consider athermal case
 - PERM: estimate number of configurations C_N

•
$$C_N^{est} = \langle W \rangle_N$$

• $r = W_N^{(i)} / C_N^{es}$

- Consider energy E, temperature $\beta = 1/k_BT$
 - thermal PERM: estimate partition function $Z_N(\beta)$

•
$$Z_N^{est}(\beta) = \langle W \exp(-\beta E) \rangle_N$$

• $r = W_N^{(i)} \exp(-\beta E^{(i)}) / Z_N^{est}(\beta)$

- Consider parametrisation \vec{m} of configuration space
 - flatPERM: estimate density of states $C_{N,\vec{m}}$

•
$$C_{N,\vec{m}}^{est} = \langle W \rangle_{N,\vec{m}}$$

•
$$r = W_{N,\vec{m}}^{(r)} / C_{N,\vec{m}}^{est}$$

• Most interesting open questions for dense and geometrically restricted configurations

臣

• Most interesting open questions for dense and geometrically restricted configurations

There is little theory and this is notoriously difficult to simulate

- 4 E k 4 E k

Simulations and Results

(□) (圖) (E) (E) (E)

To stabilise algorithm (avoid initial overflow/underflow): Delay growth of large configurations Here: after t tours growth up to length 10t

・ 同 ト ・ ヨ ト ・ ヨ ト

Total sample size: 1,000,000

Total sample size: 10,000,000

▲ 同 ▶ ▲ 三 ▶

Total sample size: 20,000,000

▲ 同 ▶ ▲ 三 ▶

Total sample size: 30,000,000

▲ 同 ▶ ▲ 三 ▶

Total sample size: 40,000,000

・ 同・ ・ ヨ・

Total sample size: 50,000,000

▲ 同 ▶ ▲ 三 ▶

Total sample size: 60,000,000

▲ 同 ▶ ▲ 三 ▶

Total sample size: 70,000,000

・ 同・ ・ ヨ・
Total sample size: 80,000,000

▲ 同 ▶ ▲ 三 ▶

Total sample size: 90,000,000

< **₩** > < **≥** >

A P

A ₽

A ₽

A P

A P

Thomas Prellberg Simulating models of polymer collapse

ISAW simulations

T Prellberg and J Krawczyk, PRL 92 (2004) 120602

- 2d ISAW up to n = 1024
- One simulation suffices
- 400 orders of magnitude (only 2d shown, 3d similar)

A (1) > (1) > (1)

Simulation results: SAW in a strip

T Prellberg et al, in: Computer Simulation Studies in Condensed Matter Physics XVII, Springer Verlag, 2006

• 2d SAW in a strip: strip width 64, up to n = 1024

Scaled endpoint density

HP model simulations

T Prellberg et al, in: Computer Simulation Studies in Condensed Matter Physics XVII, Springer Verlag, 2006

• Engineered sequence HPHPHHPHPHPH in d = 3:

- Investigated other sequences up to $N \approx 100$ in d = 2 and d = 3
- Collapsed regime accessible
- Reproduced known ground state energies
- Obtained density of states $C_{n,m}$ over large range (pprox 10³⁰)

2-Dimensional Density of States

J Krawczyk et al, JSTAT (2004) P10004

- Force-induced desorption of adsorbed polymers
 - Relevance: optical tweezers, AFM; related to DNA unzipping
- 3-dim polymer in a half space, one simulation, up to n = 256
 - Fluctuations of surface coverage

2-Dimensional Density of States

J Krawczyk et al, Europhys Lett 70 (2005) 726-732

AL Owczarek et al, J Phys A 40 (2007) 13257-13267

• Layering transitions of adsorbed polymers in poor solvents

- whole phase diagram at once
- low temperatures accessible
- hierarchy of layering transitions
- resolved controversy over "surface attached globule"

3-Dimensional Density of States

J Krawczyk et al, JSTAT (2005) P05008

・ロト ・ 同ト ・ ヨト ・ ヨト

Pulling adsorbing and collapsing polymers off a surface

- simulations up to n = 91 (4-dimensional histogram)
- interplay of (both force-induced and thermal) desorption $(\alpha = 1)$ and stretching $(\alpha = 0)$

Hydrogen-bond type interactions

J Krawczyk et al, Phys. Rev. E 76 (2007) 051904 Hydrogen-like interactions between *straight* segments of the walk

Distinguish parallel and orthogonal interactions: layering of β -sheets

Hydrogen-bond type interactions (ctd.)

 < 注 → 注

Hydrogen-bond type interactions (ctd.)

Thomas Prellberg Simulating models of polymer collapse

Hydrogen-bond vs. isotropic interactions

J Krawczyk et al, JSTAT (2007) P09016

Interplay of hydrogen-bond interactions (equal strength parallel and orthogonal) with isotropic interactions

First-order globule-crystal transition

Alternative Lattice Models

・ロン ・回 と ・ ヨン ・ ヨン … ヨ

Alternative lattice models

General "universality" assumption:

A Model of a Polymer in Solution

Random Walk + Excluded Volume + Short Range Attraction

・ロン ・四 ・ ・ ヨン ・ ヨン

臣

Alternative lattice models

General "universality" assumption:

A Model of a Polymer in Solution

Random Walk + Excluded Volume + Short Range Attraction

- Canonical model: interacting self-avoiding walks (ISAW)
- Alternative model: interacting self-avoiding trails (ISAT) vertex avoidance (walks) ⇔ edge avoidance (trails)

nearest-neighbour interaction \Leftrightarrow contact interaction
Alternative lattice models

General "universality" assumption:

A Model of a Polymer in Solution

Random Walk + Excluded Volume + Short Range Attraction

- Canonical model: interacting self-avoiding walks (ISAW)
- Alternative model: interacting self-avoiding trails (ISAT) vertex avoidance (walks) ⇔ edge avoidance (trails)

nearest-neighbour interaction \Leftrightarrow contact interaction

simulations of ISAW confirm predictions from theory

同下 イヨト イヨト

Alternative lattice models

General "universality" assumption:

A Model of a Polymer in Solution

Random Walk + Excluded Volume + Short Range Attraction

- Canonical model: interacting self-avoiding walks (ISAW)
- Alternative model: interacting self-avoiding trails (ISAT) vertex avoidance (walks) ⇔ edge avoidance (trails)

nearest-neighbour interaction \Leftrightarrow contact interaction

- simulations of ISAW confirm predictions from theory
- simulations of ISAT confound predictions from theory: SAW = SAT, but ISAW ≠ ISAT (different collapse exponents)

Simulations of ISAT

• At critical T_c , ISAT can be modelled as kinetic growth; simulations up to $N = 10^6$

AL Owczarek and T Prellberg, J. Stat. Phys. 79 (1995) 951-967

• Pruned Enriched Rosenbluth Method enables simulations for $T \neq T_c$; new simulations up to $N = 2 \cdot 10^6$

AL Owczarek and T Prellberg, Physica A 373 (2007) 433-438

- ISAW/ISAT contain on-site and nearest-neighbour interactions
- The field-theory is formulated with purely local interactions
- Field theory is equivalent to Edwards model:
 - Brownian motion + suppression of self-intersections + attractive interactions
 - field theory is $\phi^4 \phi^6 O(n)$ -model for $n \to 0$

(4月) (4日) (4日)

- ISAW/ISAT contain on-site and nearest-neighbour interactions
- The field-theory is formulated with purely local interactions
- Field theory is equivalent to Edwards model:
 - Brownian motion + suppression of self-intersections + attractive interactions
 - field theory is $\phi^4 \phi^6 O(n)$ -model for $n \to 0$

Formulate a lattice model with purely local interactions

・ロト ・同ト ・ヨト ・ヨト

- ISAW/ISAT contain on-site and nearest-neighbour interactions
- The field-theory is formulated with purely local interactions
- Field theory is equivalent to Edwards model:
 - Brownian motion + suppression of self-intersections + attractive interactions
 - field theory is $\phi^4 \phi^6 O(n)$ -model for $n \to 0$

Formulate a lattice model with purely local interactions

- Site-weighted random walk:
 - lattice random walk weighted by multiple visits of sites
 - few visits to same site are favoured (attractive interaction)
 - too many visits are disfavoured (excluded volume)

・ロン ・回 ・ ・ ヨン ・ ヨン

- ISAW/ISAT contain on-site and nearest-neighbour interactions
- The field-theory is formulated with purely local interactions
- Field theory is equivalent to Edwards model:
 - Brownian motion + suppression of self-intersections + attractive interactions
 - field theory is $\phi^4 \phi^6 \ {\cal O}(n)$ -model for n
 ightarrow 0

Formulate a lattice model with purely local interactions

- Site-weighted random walk:
 - lattice random walk weighted by multiple visits of sites
 - few visits to same site are favoured (attractive interaction)
 - too many visits are disfavoured (excluded volume)

(technically, this is an extension of a Domb-Joyce model)

Site-Weighted Random Walk

An N-step random walk ξ = (ξ₀, ξ₁,..., ξ_N) induces a density-field φ_ξ on the lattice sites x via

$$\phi_{\xi}(\vec{x}) = \sum_{i=0}^{N} \delta_{\vec{\xi}_i, \vec{x}}$$

臣

Site-Weighted Random Walk

• An *N*-step random walk $\xi = (\vec{\xi_0}, \vec{\xi_1}, \dots, \vec{\xi_N})$ induces a density-field ϕ_{ξ} on the lattice sites \vec{x} via

$$\phi_{\xi}(\vec{x}) = \sum_{i=0}^{N} \delta_{\vec{\xi}_i, \vec{x}}$$

• Define the energy as a functional of the field $\phi = \phi_{\xi}$

$$E(\xi) = \sum_{\vec{x}} f(\phi(\vec{x}))$$

Site-Weighted Random Walk

• An *N*-step random walk $\xi = (\vec{\xi_0}, \vec{\xi_1}, \dots, \vec{\xi_N})$ induces a density-field ϕ_{ξ} on the lattice sites \vec{x} via

$$\phi_{\xi}(\vec{x}) = \sum_{i=0}^{N} \delta_{\vec{\xi}_i, \vec{x}}$$

• Define the energy as a functional of the field $\phi=\phi_{\xi}$

$$E(\xi) = \sum_{\vec{x}} f(\phi(\vec{x}))$$

• Incorporate self-avoidance and attraction via choice of f(t). For example, f(0) = f(1) = 0,

$$f(2) = \varepsilon_1 , \quad f(3) = \varepsilon_2 ,$$

and $f(t \ge 4) = \infty$.

Site-Weighted Random Walk (ctd)

Site-Weighted Random Walk (ctd)

Partition function

$$Z_N(\beta) = \sum_{m_1,m_2} C_{N,m_1,m_2} e^{-\beta(m_1\varepsilon_1 + m_2\varepsilon_2)}$$

with density of states C_{N,m_1,m_2}

Site-Weighted Random Walk (ctd)

Partition function

$$Z_N(\beta) = \sum_{m_1,m_2} C_{N,m_1,m_2} e^{-\beta(m_1\varepsilon_1 + m_2\varepsilon_2)}$$

with density of states C_{N,m_1,m_2}

- Simulate two variants of the model on the square and simple cubic lattice
 - random walks with immediate reversal allowed (RA2, RA3)
 - random walks with immediate reversal forbidden (RF2, RF3)

イロン イ団ン イヨン イヨン 三日

SWRW in 3d, reversal forbidden (RF3)

Phase diagram

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

æ

SWRW in 3d, reversal forbidden (RF3)

Phase diagram

2nd order transition

1st order transition

イロン イヨン イヨン イヨン

Э

SWRW in 3d, reversal forbidden (RF3)

bimodal distribution

2nd order transition

1st order transition

イロン イヨン イヨン イヨン

臣

SWRW in 2d, reversal allowed (RA2)

Both 1st order and 2nd order transitions have disappeared!

→ Ξ →

< 1[™] >

→ 프 → - 프

Both 1st order and 2nd order transitions have disappeared!

RA3 and RF2

2nd order transition disappears as in RA2

1st order transition weakens

SWRW summarised

Model	2d	3d
RA	no transitions	one transition
RF	one transition	two transitions

SWRW summarised

Model	2d	3d
RA	no transitions	one transition
RF	one transition	two transitions

Unexpected and intriguing behaviour

Changing the dimension and/or allowing reversals removes the phase transition

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

臣

SWRW summarised

Model	2d	3d
RA	no transitions	one transition
RF	one transition	two transitions

Unexpected and intriguing behaviour

Changing the dimension and/or allowing reversals removes the phase transition

Many open questions remain ...

・ 同 ト ・ ヨ ト ・ ヨ ト

- T. Prellberg and J. Krawczyk, "Flat histogram version of the pruned and enriched Rosenbluth method," Phys. Rev. Lett. 92 (2004) 120602
- T. Prellberg, J. Krawczyk, and A. Rechnitzer, "Polymer simulations with a flat histogram stochastic growth algorithm," Computer Simulation Studies in Condensed Matter Physics XVII, pages 122-135, Springer Verlag, 2006

- T. Prellberg and J. Krawczyk, "Flat histogram version of the pruned and enriched Rosenbluth method," Phys. Rev. Lett. 92 (2004) 120602
- T. Prellberg, J. Krawczyk, and A. Rechnitzer, "Polymer simulations with a flat histogram stochastic growth algorithm," Computer Simulation Studies in Condensed Matter Physics XVII, pages 122-135, Springer Verlag, 2006

Bulk vs surface:

- J. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, "Stretching of a chain polymer adsorbed at a surface," Journal of Statistical Mechanics: theory and experiment, JSTAT (2004) P10004
- J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, "Layering transitions for adsorbing polymers in poor solvents," Europhys. Lett. 70 (2005) 726-732
- J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, "Pulling absorbing and collapsing polymers off a surface," Journal of Statistical Mechanics: theory and experiment, JSTAT (2005) P05008
- A. L. Owczarek, A. Rechnitzer, J. Krawczyk, and T. Prellberg, On the location of the surface-attached globule phase in collapsing polymers, J. Phys. A 40 (2007) 13257-13267

- T. Prellberg and J. Krawczyk, "Flat histogram version of the pruned and enriched Rosenbluth method," Phys. Rev. Lett. 92 (2004) 120602
- T. Prellberg, J. Krawczyk, and A. Rechnitzer, "Polymer simulations with a flat histogram stochastic growth algorithm," Computer Simulation Studies in Condensed Matter Physics XVII, pages 122-135, Springer Verlag, 2006

Bulk vs surface:

- J. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, "Stretching of a chain polymer adsorbed at a surface," Journal of Statistical Mechanics: theory and experiment, JSTAT (2004) P10004
- J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, "Layering transitions for adsorbing polymers in poor solvents," Europhys. Lett. 70 (2005) 726-732
- J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, "Pulling absorbing and collapsing polymers off a surface," Journal of Statistical Mechanics: theory and experiment, JSTAT (2005) P05008
- A. L. Owczarek, A. Rechnitzer, J. Krawczyk, and T. Prellberg, On the location of the surface-attached globule phase in collapsing polymers, J. Phys. A 40 (2007) 13257-13267

• Hydrogen-bond type interactions:

- J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, A Lattice Model for Parallel and Orthogonal Beta-Sheets using Hydrogen-Like Bonding, Phys. Rev. E 76 (2007) 051904
- J. Krawczyk, A. L. Owczarek, and T. Prellberg, The competition of hydrogen-like and isotropic interactions in polymer collapse, Journal of Statistical Mechanics: theory and experiment, JSTAT (2007) P09016

イロン イヨン イヨン イヨン

- T. Prellberg and J. Krawczyk, "Flat histogram version of the pruned and enriched Rosenbluth method," Phys. Rev. Lett. 92 (2004) 120602
- T. Prellberg, J. Krawczyk, and A. Rechnitzer, "Polymer simulations with a flat histogram stochastic growth algorithm," Computer Simulation Studies in Condensed Matter Physics XVII, pages 122-135, Springer Verlag, 2006

Bulk vs surface:

- J. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, "Stretching of a chain polymer adsorbed at a surface," Journal of Statistical Mechanics: theory and experiment, JSTAT (2004) P10004
- J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, "Layering transitions for adsorbing polymers in poor solvents," Europhys. Lett. 70 (2005) 726-732
- J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, "Pulling absorbing and collapsing polymers off a surface," Journal of Statistical Mechanics: theory and experiment, JSTAT (2005) P05008
- A. L. Owczarek, A. Rechnitzer, J. Krawczyk, and T. Prellberg, On the location of the surface-attached globule phase in collapsing polymers, J. Phys. A 40 (2007) 13257-13267

• Hydrogen-bond type interactions:

- J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, A Lattice Model for Parallel and Orthogonal Beta-Sheets using Hydrogen-Like Bonding, Phys. Rev. E 76 (2007) 051904
- J. Krawczyk, A. L. Owczarek, and T. Prellberg, The competition of hydrogen-like and isotropic interactions in polymer collapse, Journal of Statistical Mechanics: theory and experiment, JSTAT (2007) P09016

Alternative lattice models:

- A. L. Owczarek and T. Prellberg, "Collapse transition of self-avoiding trails on the square lattice," Physica A 373 (2007) 433-438
- J. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, "On a type of self-avoiding random walk with multiple site weightings and restrictions," Phys. Rev. Lett. 96 (2006) 240603

The End

Thomas Prellberg Simulating models of polymer collapse

(□) (□) (Ξ) (Ξ) (Ξ) Ξ