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Jacobi Theta Function

Jacobi Theta function

ϑ(z ; τ) =
∞∑

n=−∞
exp(πin2τ + 2πinz)

Quasi-periodic function satisfying

ϑ(z + a + bτ ; τ) = exp(−πib2τ − 2πibz)ϑ(z ; τ)

Relation to modular group

ϑ(z/τ ;−1/τ) = (−iτ)1/2 exp(πiz2/τ)ϑ(z ; τ)
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Roots of the Jacobi Theta Function

Jacobi Theta function

ϑ(z ; τ) =
∞∑

n=−∞
qn2

x2n

where q = exp(πiτ) and x = exp(πiz)

Jacobi triple product

∞∑
n=−∞

qn2

x2n =
∞∏

m=1

(1− q2m)(1 + q2m−1x2)(1 + q2m−1/x2)

Roots
xk(q) = −qk+1/2 k ∈ Z
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q-Theta Function

Combinatorialists prefer

Θ(x , q) =
∞∑

n=−∞
q(n

2)(−x)n = (q; q)∞(x ; q)∞(q/x ; q)∞

with q-product notation

(t; q)n =
n−1∏
m=0

(1− tqm)

Roots
xk(q) = qk k ∈ Z
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Partial Theta Function

Partial Theta Function

Θ0(x , q) =
∞∑

n=0

q(n
2)xn

No “nice” product formula

Roots
xk(q) =?

Special case R(x , q, 0) of Rogers-Ramanujan Function

R(x , y , q) =
∞∑

n=0

y(n
2)xn

(q; q)n
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Rogers-Ramanujan Function

Rogers-Ramanujan Function

R(x , y , q) =
∞∑

n=0

y(n
2)xn

(q; q)n

Euler identities

R(x , 1, q) =
∞∑

n=0

xn

(q; q)n
=

1

(x ; q)∞

and

R(x , q, q) =
∞∑

n=0

q(n
2)xn

(q; q)n
= (−x ; q)∞

R(x , 1, q) has no roots, whereas R(x , q, q) has roots

xk(1, q) = −q−k k ∈ N0
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The Leading Root of θ0(x , q)

Consider

Θ0(x , q) =
∞∑

n=0

q(n
2)xn

and solve
Θ0(−ξ0(q), q) = 0 ξ0(q) ∈ R[[q]]

The series starts

ξ0(q) = 1+q+2q2+4q3+9q4+21q5+52q6+133q7+351q8+948q9+. . .

Coefficients are positive up to q6999

Similar functions seem to share such positivity properties, e.g.

∞∑
n=0

q(n
2) xn

n!
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Two identities for Θ0(x , q)

Θ0(x , q) satisfies

Θ0(x , q) = (q; q)∞(−x ; q)∞

∞∑
n=0

qn

(q; q)n(−x ; q)n

= (−x ; q)∞

∞∑
n=0

qn2

(−x)n

(q; q)n(−x ; q)n

The first identity follows from Euler’s identities

The first and second identity follow from Heine’s transformations for
q-deformed hypergeometric functions

Thomas Prellberg The combinatorics of the leading root of the partial theta function
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Proof of the first identity for Θ0(x , q)

∞∑
n=0

q(n
2)xn =

∞∑
n=0

q(n
2)xn (q; q)∞

(q; q)n(qn+1; q)∞

= (q; q)∞

∞∑
n=0

q(n
2) xn

(q; q)n

∞∑
m=0

(qn+1)m

(q; q)m

= (q; q)∞

∞∑
m=0

qm

(q; q)m

∞∑
n=0

q(n
2) (xqm)n

(q; q)n

= (q; q)∞

∞∑
m=0

qm

(q; q)m
(−xqm; q)∞

= (q; q)∞(−x ; q)∞

∞∑
m=0

qm

(q; q)m(−x ; q)m
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Two functional equations for ξ0(q)

Lemma [Sokal]

ξ0(q) satisfies

ξ0(q) = 1 +
∞∑

n=1

qn

(q; q)n(ξ0(q)q; q)n−1

and

ξ0(q) = 1 +
∞∑

n=1

qn2

ξ0(q)n

(q; q)n(ξ0(q)q; q)n−1

This follows directly from the preceding identities for Θ0(x , q)

Thomas Prellberg The combinatorics of the leading root of the partial theta function
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Proof of the first equation for ξ0(q)

From

Θ0(x , q) = (q; q)∞(−x ; q)∞

∞∑
n=0

qn

(q; q)n(−x ; q)n

it follows that

Θ0(x , q) = (q; q)∞(−xq; q)∞

[
1 + x +

∞∑
n=1

qn

(q; q)n(−xq; q)n−1

]

Hence Θ0(−ξ0(q), q) = 0 implies that

0 = 1− ξ0(q) +
∞∑

n=1

qn

(q; q)n(ξ0(q)q; q)n−1
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A Positivity Result

Letting ξ
(0)
0 (q) = 1 and iterating

ξ
(N+1)
0 (q) = 1 +

∞∑
n=1

qn

(q; q)n(ξ
(N)
0 (q)q; q)n−1

Sokal shows coefficient-wise monotonicity of ξ
(N)
0 (q),

and hence positivity of ξ0(q)
[A. Sokal, Adv Math, 2012]
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Stacks and Ferrers diagrams

j

m

h

(a) m

h

n

(b)

(a) A stack polyomino with rise j
(b) a Ferrers diagram with Durfee square of size n
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Why Stack Polyominoes?

The generating function G (x , y , a, q) of stack polyominoes enumerated
with respect to width (x), height (y), rise (a), and total area (q), is given
by

G (x , y , a, q) =
∞∑

n=1

x(yq)n

(xq; q)n(axq; q)n−1

Compare with

ξ0(q) = 1 +
∞∑

n=1

qn

(q; q)n(ξ0(q)q; q)n−1

to get
ξ0(q) = 1 + G (1, 1, ξ0(q), q)

Thomas Prellberg The combinatorics of the leading root of the partial theta function
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Enumerating Stack Polyominoes

The result

G (x , y , a, q) =
∞∑

n=1

x(yq)n

(xq; q)n(axq; q)n−1

follows from iteration of

= +

G (x) =
xyq

1− xq
+

y

(1− xq)(1− axq)
G (xq)
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Trees decorated with Stacks

The functional equation

ξ0(q) = 1 + G (1, 1, ξ0(q), q)

admits a combinatorial interpretation using the “theory of species”:

Theorem 1

Let Sq be the species of stack polyominoes augmented by the ‘empty
polyomino’, weighted by area (q), with size given by the rise. Then ξ0(q)
enumerates Sq-enriched rooted trees, weighted with respect to the total
area of the stack polyominoes at the vertices of the tree.
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A Refined Enumeration

The two-variable generating function A(t, q) for Sq-enriched rooted trees
satisfies

A(t, q) = t[1 + G (1, 1,A(t, q), q)]

where t is the generating variable for the number of vertices in the tree.
One finds

A(t, q) = t+tq+2tq2+(t2+3t)q3+(t3+3t2+5t)q4+(t4+4t3+9t2+7t)q5

+(t5+5t4+15t3+20t2+11t)q6+(t6+6t5+23t4+44t3+44t2+15t)q7+. . .
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All six stack-enriched rooted trees with 5 vertices and total
area 7
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Monototicity of ξ0(q)

The coefficients of the power series ξ0(q) are monotonically increasing.

Increase the area of a tree by appending a square to the bottom row
of the stack at its root

This gives an injection of trees with total area A to trees with total
area A + 1
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Stacks and Ferrers diagrams

j

m

h

(a) m

h

n

(b)

(a) A stack polyomino with rise j
(b) a Ferrers diagram with Durfee square of size n
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Why Ferrers Diagrams?

The generating function G̃ (x , y , q) of Ferrers diagrams with n-th largest
row having length n for some positive integer n, enumerated with respect
to width (x), height (y), and total area (q), is given by

G̃ (x , y , q) =
∞∑

n=1

(xy)nqn2

(yq; q)n(xq; q)n−1

Compare with

ξ0(q) = 1 +
∞∑

n=1

qn2

ξ0(q)n

(q; q)n(ξ0(q)q; q)n−1

to get
ξ0(q) = 1 + G̃ (ξ0(q), 1, q)
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Why Ferrers Diagrams?

The generating function G̃ (x , y , q) of Ferrers diagrams with n-th largest
row having length n for some positive integer n, enumerated with respect
to width (x), height (y), and total area (q), is given by

G̃ (x , y , q) =
∞∑

n=1

(xy)nqn2

(yq; q)n(xq; q)n−1

Compare with

ξ0(q) = 1 +
∞∑
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qn2
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Enumerating Ferrers Diagrams

The n-th term in the sum

G̃ (x , y , q) =
∞∑

n=1

(xy)nqn2

(yq; q)n(xq; q)n−1

corresponds to a Ferrers diagram with Durfee square of size n, to which
Ferrers diagrams of width ≤ n are appended at the top, and Ferrers
diagrams of height ≤ n − 1 are appended at the right.
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Trees Decorated with Ferrers Diagrams

The functional equation

ξ0(q) = 1 + G̃ (ξ0(q), 1, q)

admits a combinatorial interpretation using the “theory of species”:

Theorem 2

Let Fq be the species of Ferrers diagrams with n-th largest row having
length n for some integer n, weighted by area (q), with size given by the
width of the Ferrers diagram, augmented by the ‘empty polyomino’.
Then ξ0(q) enumerates Fq-enriched rooted trees with respect to the total
area of the Ferrers diagrams at the vertices of the tree.
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A Refined Enumeration

The two-variable generating function Ã(t, q) for F̃q-enriched rooted trees
satisfies

Ã(t, q) = t[1 + G̃ (Ã(t, q), 1, q)]

where t is the generating variable for the number of vertices in the tree.
One finds

Ã(t, q) = t +t2q+(t3 +t2)q2 +(t4 +2t3 +t2)q3 +(t5 +3t4 +4t3 +t2)q4

+ (t6 + 4t5 + 10t4 + 5t3 + t2)q5 + (t7 + 5t6 + 21t5 + 17t4 + 7t3 + t2)q6

+ (t8 + 6t7 + 41t6 + 47t5 + 29t4 + 8t3 + t2)q7 + . . .

Thomas Prellberg The combinatorics of the leading root of the partial theta function



Theta and Partial Theta Functions
Key Identities
Combinatorics

Many Enriched Trees
Outlook

Stack Polyominoes
Trees Decorated with Stacks
Monotonicity
Ferrers Diagrams
Trees Decorated with Ferrers Diagrams

All eight Fq-enriched rooted trees with 3 vertices and total
area 7
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Two Equinumerous Sets of Trees

Sq-enriched rooted trees with fixed total area A and Fq-enriched rooted
trees with fixed total area A are equinumerous.

This follows from

ξ0(q) = F (ξ0(q), q) F (a, q) = 1 + G (1, 1, a, q)

ξ0(q) = F̃ (ξ0(q), q) F̃ (a, q) = 1 + G̃ (a, 1, q)

We clearly also have

ξ0(q) = F (F (ξ0(q), q), q) = F (F̃ (ξ0(q), q), q)

= F̃ (F (ξ0(q), q), q) = F̃ (F̃ (ξ0(q), q), q)

etc.
Iteration of each of these leads to a different combinatorial model
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Two Equinumerous Sets of Trees

Sq-enriched rooted trees with fixed total area A and Fq-enriched rooted
trees with fixed total area A are equinumerous.

This follows from

ξ0(q) = F (ξ0(q), q) F (a, q) = 1 + G (1, 1, a, q)

ξ0(q) = F̃ (ξ0(q), q) F̃ (a, q) = 1 + G̃ (a, 1, q)

We clearly also have

ξ0(q) = F (F (ξ0(q), q), q) = F (F̃ (ξ0(q), q), q)

= F̃ (F (ξ0(q), q), q) = F̃ (F̃ (ξ0(q), q), q)

etc.
Iteration of each of these leads to a different combinatorial model
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Two Equinumerous Sets of Trees

Sq-enriched rooted trees with fixed total area A and Fq-enriched rooted
trees with fixed total area A are equinumerous.

This follows from

ξ0(q) = F (ξ0(q), q) F (a, q) = 1 + G (1, 1, a, q)

ξ0(q) = F̃ (ξ0(q), q) F̃ (a, q) = 1 + G̃ (a, 1, q)

We clearly also have

ξ0(q) = F (F (ξ0(q), q), q) = F (F̃ (ξ0(q), q), q)

= F̃ (F (ξ0(q), q), q) = F̃ (F̃ (ξ0(q), q), q)

etc.
Iteration of each of these leads to a different combinatorial model
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Mixed Iterations

Theorem 3

Let σ = {σ0, . . . , σN} ∈ {0, 1}N+1 for N ≥ 0. Then

ξσ0 (q) = F (σ0)
q ◦ F (σ1)

q ◦ . . . ◦ F (σN )
q (0)

enumerates rooted trees of height at most N, enriched by Sq at level i if
σi = 0 and enriched by Fq at level i if σi = 1, weighted with respect to
area (level 0 is the root).
Moreover, given σ ∈ {0, 1}N, ξ0(q) enumerates rooted trees enriched by
Sq at level i if σi = 0 and enriched by Fq at level i if σi = 1, weighted
with respect to area. In particular, sets of trees enriched with respect to
any σ ∈ {0, 1}N are equinumerous for fixed total area A.
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All possible trees with total area 3

(a) σ=(0,...)

(b) σ=(1,0,...)

(c) σ=(1,1,0,...)

(d) σ=(1,1,1,...)

σ0=0

σ1=0 or 1

σ0=1

σ1=0

σ0=1

σ1=1

σ2=0 

σ0=1

σ1=1

σ2=1 

σ3=0 or 1 
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Comments and Open Problems

Find an explicit bijection between trees decorated with stack
polyominoes and Ferrers diagrams?

Find explicit bijections between trees generated by any two different
choices of σ?

While only monotonicity is proved rigorously, one expects a
square-root singularity for ξ0(q)

Numerics indicates that the n-th coefficient of ξ0(q) grows
asymptotically as

[qn]ξ0(q) ∼ Aµnn−3/2 as n→∞

with µ = 3.233636665245076316364692529387 . . .
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