Four Ways of Counting Incidence Matrices

Thomas Prellberg

thomas.prellberg@qmul.ac.uk

School of Mathematical Sciences

Queen Mary, University of London

joint work with Peter Cameron and Dudley Stark

Thomas Prellberg, "Counting Incidence Matrices" - p. 1/27

What are Incidence Matrices?

 \checkmark How many zero-one Matrices are there with exactly n ones?

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

 \checkmark How many zero-one Matrices are there with exactly n ones?

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

No zero rows or columns allowed (for finite answer)

How many zero-one Matrices are there with exactly n ones?

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

- No zero rows or columns allowed (for finite answer)
- Counting Function $F_{ijkl}(n)$, $i, j, k, l \in \{0, 1\}$
 - i(k) = 0: count matrices modulo row (column) permutations
 - j(l) = 0: forbid row (column) repetitions

How many zero-one Matrices are there with exactly n ones?

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

- No zero rows or columns allowed (for finite answer)
- Counting Function $F_{ijkl}(n)$, $i, j, k, l \in \{0, 1\}$
 - i(k) = 0: count matrices modulo row (column) permutations
 - j(l) = 0: forbid row (column) repetitions
- **9** By transposition, $F_{klij}(n) = F_{ijkl}(n) \Rightarrow 10$ cases

How many zero-one Matrices are there with exactly n ones?

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

- No zero rows or columns allowed (for finite answer)
- Counting Function $F_{ijkl}(n)$, $i, j, k, l \in \{0, 1\}$

Jeen Mary

University of London

- i(k) = 0: count matrices modulo row (column) permutations
- j(l) = 0: forbid row (column) repetitions
- By transposition, $F_{klij}(n) = F_{ijkl}(n) \Rightarrow$ 10 cases
 - Identify transposed matrices \Rightarrow 4 additional cases, $\Phi_{ij}(n)$

Incidence matrices with two ones, n = 2

$$I_1 = \begin{pmatrix} 1 & 1 \end{pmatrix}$$
, $I_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $I_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $I_4 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Incidence matrices with two ones, n = 2

$$I_1 = \begin{pmatrix} 1 & 1 \end{pmatrix}$$
, $I_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $I_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $I_4 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

- I_1 has repeated columns, I_2 has repeated rows
- I_3 and I_4 are equivalent under row or column permutations
- I_1 and I_2 are equivalent under transposition

Incidence matrices with two ones, n = 2

$$I_1 = \begin{pmatrix} 1 & 1 \end{pmatrix}$$
, $I_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $I_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $I_4 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

 I_1 has repeated columns, I_2 has repeated rows

- I_3 and I_4 are equivalent under row or column permutations
- I_1 and I_2 are equivalent under transposition

For example,

$$F_{0000}(2) = 1$$
, $F_{1010}(2) = 2$, $F_{0101}(2) = 3$, $F_{1111}(2) = 4$,

$$\Phi_{00}(2) = 1$$
, $\Phi_{10}(2) = 2$, $\Phi_{11}(2) = 3$

Some Enumeration Data

n	1	2	3	4	5	6	7	8	9
$F_{0000}(n)$	1	1	2	4	7	16			
$F_{0010}(n)$	1	1	3	11	40	174			
$F_{1010}(n)$	1	2	10	72	624	6522			
$F_{0001}(n)$	1	2	4	9	18	44			
$F_{0011}(n)$	1	2	7	28	134	729	4408	29256	210710
$F_{1001}(n)$	1	2	6	20	73	315			
$F_{1011}(n)$	1	3	17	129	1227	14123			
$F_{0101}(n)$	1	3	6	16	34	90	211	558	1430
$F_{0111}(n)$	1	3	10	41	192	1025	6087	39754	282241
$F_{1111}(n)$	1	4	24	196	2016	24976	361792	5997872	111969552
$\Phi_{00}(n)$	1	1	2	3	5	11			
$\Phi_{10}(n)$	1	2	8	44	340	3368			
$\Phi_{01}(n)$	1	2	4	10	20	50			
$\Phi_{11}(n)$	1	3	15	108	1045	12639	181553	3001997	55999767

Queen Mary University of London

Why are Incidence Matrices interesting?

Thomas Prellberg, "Counting Incidence Matrices" - p. 6/27

- ... hypergraphs by weight n
 - vertex set $\{x_1, \ldots, x_r\}$
 - \checkmark (hyper)-edges E_1, \ldots, E_s
 - *weight* of the hypergraph: sum of the cardinalities of the edges

- ... hypergraphs by weight n

 - \checkmark (hyper)-edges E_1, \ldots, E_s
 - *weight* of the hypergraph: sum of the cardinalities of the edges
- \bullet $a_{ij} = 1$ if $x_i \in E_j$, 0 else

- ... hypergraphs by weight n
 - vertex set $\{x_1, \ldots, x_r\}$

 - *weight* of the hypergraph: sum of the cardinalities of the edges
- $a_{ij} = 1$ if $x_i \in E_j$, 0 else
- Choose i, k to get labelled/unlabelled vertices/edges, choose j, l to get repeated/no repeated vertices/edges

- ... hypergraphs by weight n
 - vertex set $\{x_1, \ldots, x_r\}$
 - \checkmark (hyper)-edges E_1, \ldots, E_s
 - *weight* of the hypergraph: sum of the cardinalities of the edges
- $a_{ij} = 1$ if $x_i \in E_j$, 0 else
- Choose i, k to get labelled/unlabelled vertices/edges, choose j, l to get repeated/no repeated vertices/edges
- Examples
 - $F_{0101}(n)$ counts simple hypergraphs with no isolated vertices, up to isomorphism
 - $F_{1101}(n)$ is the number of (vertex)-labelled hypergraphs

 \cdots bipartite graphs by number of edges n

▶ partition vertices into sets $\{r_1, ..., r_r\}$ and $\{c_1, ..., c_s\}$

• ... bipartite graphs by number of edges n

- partition vertices into sets $\{r_1, ..., r_r\}$ and $\{c_1, ..., c_s\}$
- $a_{ij} = 1$ if (r_i, c_j) is an edge, 0 else

If the set of the set

- \checkmark partition vertices into sets $\{r_1, \ldots, r_r\}$ and $\{c_1, \ldots, c_s\}$
- $a_{ij} = 1$ if (r_i, c_j) is an edge, 0 else
- Choose i, k to get labelled/unlabelled vertex sets (j = l = 1)

If the set of the set

- \checkmark partition vertices into sets $\{r_1, \ldots, r_r\}$ and $\{c_1, \ldots, c_s\}$
- $a_{ij} = 1$ if (r_i, c_j) is an edge, 0 else
- Choose i, k to get labelled/unlabelled vertex sets (j = l = 1)
- Examples
 - F₀₁₀₁(n) counts unlabelled bipartite graphs with distinguished bipartite block
 - F₁₁₁₁(n) counts labelled bipartite graphs with a distinguished bipartite block

- ... orbits of certain permutation groups
 - Iet S be the symmetric group acting on \mathbb{Q}
 - It A be the group of all order-preserving permutations of \mathbb{Q} (strictly monotone, continuous, and piecewise linear maps)

- orbits of certain permutation groups
 - $\ \ \, {\rm let}\ S\ {\rm be}\ {\rm the}\ {\rm symmetric}\ {\rm group}\ {\rm acting}\ {\rm on}\ {\mathbb Q} \\$
 - Iet A be the group of all order-preserving permutations of \mathbb{Q} (strictly monotone, continuous, and piecewise linear maps)
- First consider the number of orbits of S and A on n-element subsets of Q
 - **both** S and A carry any n-element subset into any other
 - If therefore the number of orbits of S or A is 1

- ... orbits of certain permutation groups
 - $\ \ \, {\rm Iet} \ S \ {\rm be} \ {\rm the} \ {\rm symmetric} \ {\rm group} \ {\rm acting} \ {\rm on} \ {\mathbb Q} \\$
 - Iet A be the group of all order-preserving permutations of \mathbb{Q} (strictly monotone, continuous, and piecewise linear maps)
- First consider the number of orbits of S and A on n-element subsets of Q
 - **S** both S and A carry any n-element subset into any other
 - I herefore the number of orbits of S or A is 1
- Solution Now consider the number of orbits of $S \times S$, $S \times A$, and $A \times A$ on *n*-element subsets of $\mathbb{Q} \times \mathbb{Q}$. Then (details later)
 - $F_{0101}(n)$ is the number of orbits of $S \times S$
 - $F_{1101}(n)$ is the number of orbits of $A \times S$

University of London

 $F_{1111}(n)$ is the number of orbits of $A \times A$

... binary block designs

- Solution Solution Structure **block design:** set of *n* plots carrying two partitions $\{B_1, \ldots, B_r\}$ and $\{B'_1, \ldots, B'_s\}$
- Solution Soluti Solution Solution Solution Solution Solution Solution

... binary block designs

- Solution block design: set of n plots carrying two partitions $\{B_1, \ldots, B_r\} \text{ and } \{B'_1, \ldots, B'_s\}$
- Solution Soluti Solution Solution Solution Solution Solution Solution

•
$$a_{ij} = 0$$
 if $B_i \cap B'_j = \emptyset$, 1 else

... binary block designs

- block design: set of n plots carrying two partitions $\{B_1, \ldots, B_r\} \text{ and } \{B'_1, \ldots, B'_s\}$
- *binary*: the intersection of two blocks $B_i \cap B'_j$ contains at most one plot
- $a_{ij} = 0$ if $B_i \cap B'_j = \emptyset$, 1 else
- Choose i, k to get labelled/unlabelled partitions, choose j, l to get repeated/no repeated blocks

- ... binary block designs
 - block design: set of n plots carrying two partitions $\{B_1, \ldots, B_r\} \text{ and } \{B'_1, \ldots, B'_s\}$
 - binary: the intersection of two blocks $B_i \cap B'_j$ contains at most one plot
- $a_{ij} = 0$ if $B_i \cap B'_j = \emptyset$, 1 else
- Choose i, k to get labelled/unlabelled partitions, choose j, l to get repeated/no repeated blocks
- Examples
 - $F_{0101}(n)$ counts binary block designs
 - $F_{1111}(n)$ counts labelled binary block designs
 - $\Phi_{01}(n)$ counts binary block designs up to duality

Focus on $F(n) = F_{1111}(n)$

Thomas Prellberg, "Counting Incidence Matrices" - p. 11/27

 \square m_{ij} the number of $i \times j$ incidence matrices with n ones

$$\sum_{i \le k} \sum_{j \le l} \binom{k}{i} \binom{l}{j} m_{ij} = \binom{kl}{n}$$

 m_{ij} the number of $i \times j$ incidence matrices with n ones

$$\sum_{i \le k} \sum_{j \le l} \binom{k}{i} \binom{l}{j} m_{ij} = \binom{kl}{n}$$

Möbius inversion

$$m_{kl} = \sum_{i \le k} \sum_{j \le l} (-1)^{k+l-i-j} \binom{k}{i} \binom{l}{j} \binom{ij}{n}$$

 m_{ij} the number of $i \times j$ incidence matrices with n ones

$$\sum_{i \le k} \sum_{j \le l} \binom{k}{i} \binom{l}{j} m_{ij} = \binom{kl}{n}$$

Möbius inversion

$$m_{kl} = \sum_{i \le k} \sum_{j \le l} (-1)^{k+l-i-j} \binom{k}{i} \binom{l}{j} \binom{ij}{n}$$

$$F(n) = \sum_{k \le n} \sum_{l \le n} m_{kl}$$

$$F(n) \le \binom{n^2}{n} \sim \frac{1}{\sqrt{2\pi n}} (n\mathrm{e})^n$$

(choose *n* ones in $n \times n$ matrix, remove zero rows/cols)

$$F(n) \le \binom{n^2}{n} \sim \frac{1}{\sqrt{2\pi n}} (n\mathrm{e})^n$$

(choose *n* ones in $n \times n$ matrix, remove zero rows/cols)

Lower bound

$$F(n) \ge n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

(permutation matrices)

$$F(n) \le \binom{n^2}{n} \sim \frac{1}{\sqrt{2\pi n}} (n\mathrm{e})^n$$

(choose n ones in $n \times n$ matrix, remove zero rows/cols)

Lower bound

$$F(n) \ge n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

(permutation matrices)

Theorem

$$F(n) \sim \frac{n!}{4} e^{-\frac{1}{2}(\log 2)^2} \frac{1}{(\log 2)^{2n+2}}$$

$$F(n) \le \binom{n^2}{n} \sim \frac{1}{\sqrt{2\pi n}} (n\mathrm{e})^n$$

(choose n ones in $n \times n$ matrix, remove zero rows/cols)

Lower bound

$$F(n) \ge n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

(permutation matrices)

Theorem

$$F(n) \sim \frac{n!}{4} e^{-\frac{1}{2}(\log 2)^2} \frac{1}{(\log 2)^{2n+2}}$$

Four methods \Longrightarrow four proofs

Construct labelled binary block designs

- partition an *n*-set into two labelled partitions (with blocks B_i resp. B'_i)
- \checkmark this produces a binary block design with probability p

Construct labelled binary block designs

- partition an *n*-set into two labelled partitions (with blocks B_i resp. B'_j)
- \checkmark this produces a binary block design with probability p

Then

$$F(n) = \frac{p}{n!}P(n)^2$$

with P(n) number of labelled partitions of an *n*-set

Construct labelled binary block designs

- partition an *n*-set into two labelled partitions (with blocks B_i resp. B'_j)
- this produces a binary block design with probability p
- Then

$$F(n) = \frac{p}{n!}P(n)^2$$

with P(n) number of labelled partitions of an *n*-set

P(n) are known as ordered Bell numbers, their EGF is

$$\sum_{n=0}^{\infty} \frac{P(n)}{n!} z^n = \frac{1}{2 - e^z} \quad \Rightarrow \quad P(n) \sim \frac{n!}{2} \left(\frac{1}{\log 2}\right)^{n+1}$$

• Calculation of p

- sevent $D_{ij} = \{i \text{ and } j \text{ are in the same block for each preorder}\}$
- Iabelled binary block design if no such D_{ij} occurs

• Calculation of p

sevent $D_{ij} = \{i \text{ and } j \text{ are in the same block for each preorder}\}$

Iabelled binary block design if no such D_{ij} occurs

$$W = \sum_{1 \le i < j \le n} I_{D_{ij}} \qquad \Longrightarrow \qquad p = \mathbb{P}(W = 0)$$

Calculation of p

sevent $D_{ij} = \{i \text{ and } j \text{ are in the same block for each preorder}\}$

Iabelled binary block design if no such D_{ij} occurs

$$W = \sum_{1 \le i < j \le n} I_{D_{ij}} \qquad \Longrightarrow \qquad p = \mathbb{P}(W = 0)$$

 \checkmark one can show that for each $r \ge 0$

$$\mathbb{E}[W(W-1)\cdots(W-r+1)] \sim [(\log 2)^2/2]^r$$

Calculation of p

Jeen Mary

University of London

Sevent $D_{ij} = \{i \text{ and } j \text{ are in the same block for each preorder}\}$

Iabelled binary block design if no such D_{ij} occurs

$$W = \sum_{1 \le i < j \le n} I_{D_{ij}} \qquad \Longrightarrow \qquad p = \mathbb{P}(W = 0)$$

Asymptotic estimation of p

• one can show that for each $r \ge 0$

$$\mathbb{E}[W(W-1)\cdots(W-r+1)] \sim [(\log 2)^2/2]^r$$

If thus W converges weakly to $Poisson[(\log 2)^2/2]$

$$\mathbb{P}(W=0) \sim e^{-\frac{1}{2}(\log 2)^2}$$

The identity

$$F(n) = \frac{1}{n!} \mathbb{P}(W=0) P(n)^2$$

The identity

$$F(n) = \frac{1}{n!} \mathbb{P}(W=0) P(n)^2$$

together with

$$P(n) \sim \frac{n!}{2} \left(\frac{1}{\log 2}\right)^{n+1}$$

The identity

$$F(n) = \frac{1}{n!} \mathbb{P}(W=0) P(n)^2$$

together with

$$P(n) \sim \frac{n!}{2} \left(\frac{1}{\log 2}\right)^{n+1}$$

and

$$\mathbb{P}(W=0) \sim e^{-\frac{1}{2}(\log 2)^2}$$

The identity

$$F(n) = \frac{1}{n!} \mathbb{P}(W=0) P(n)^2$$

together with

$$P(n) \sim \frac{n!}{2} \left(\frac{1}{\log 2}\right)^{n+1}$$

and

$$\mathbb{P}(W=0) \sim e^{-\frac{1}{2}(\log 2)^2}$$

implies

$$F(n) \sim \frac{n!}{4} e^{-\frac{1}{2}(\log 2)^2} \frac{1}{(\log 2)^{2n+2}}$$

 \checkmark Consider permutation group G acting on X (not necessarily finite)

- Consider permutation group G acting on X (not necessarily finite)
- Denote
 - ▶ $F_n^*(G)$ the number of orbits on ordered *n*-tuples
 - Image: $F_n(G)$ the number of orbits on ordered *n*-tuples of distinct elements
 - $f_n(G)$ the number of orbits on *n*-element subsets

- Consider permutation group G acting on X (not necessarily finite)
- Denote
 - $F_n^*(G)$ the number of orbits on ordered *n*-tuples
 - $F_n(G)$ the number of orbits on ordered *n*-tuples of distinct elements
 - $f_n(G)$ the number of orbits on *n*-element subsets
- Examples
 - \square G = S symmetric group acting on a countably infinite set X

 $f_n(S) = 1$ $F_n(S) = 1$ $F_n^*(S) = B(n)$ Bell numbers

- Consider permutation group G acting on X (not necessarily finite)
- Denote
 - $F_n^*(G)$ the number of orbits on ordered *n*-tuples
 - $F_n(G)$ the number of orbits on ordered *n*-tuples of distinct elements
 - $f_n(G)$ the number of orbits on *n*-element subsets
- Examples

Jeen Mary

University of London

 \square G = S symmetric group acting on a countably infinite set X

 $f_n(S) = 1$ $F_n(S) = 1$ $F_n^*(S) = B(n)$ Bell numbers

■ G = A group of all order preserving permutations on $X = \mathbb{Q}$

 $f_n(A) = 1$ $F_n(A) = n!$ $F_n^*(S) = P(n)$ ordered Bell numbers

Stirling transforms

$$F_n^*(G) = \sum_{k=1}^n S(n,k)F_k(G)$$
 and $F_n(G) = \sum_{k=1}^n s(n,k)F_k^*(G)$

where s(n,k) and S(n,k) are Stirling numbers of the first and second kind

Stirling transforms

$$F_n^*(G) = \sum_{k=1}^n S(n,k)F_k(G)$$
 and $F_n(G) = \sum_{k=1}^n s(n,k)F_k^*(G)$

where s(n,k) and S(n,k) are Stirling numbers of the first and second kind

- Examples
 - G = S symmetric group acting on a countably infinite set X

$$F_n^*(S) = \sum_{k=1}^n S(n,k)F_k(S) = \sum_{k=1}^n S(n,k)\mathbf{1} = B(n)$$

Stirling transforms

$$F_n^*(G) = \sum_{k=1}^n S(n,k)F_k(G)$$
 and $F_n(G) = \sum_{k=1}^n s(n,k)F_k^*(G)$

where s(n,k) and S(n,k) are Stirling numbers of the first and second kind

Examples

University of London

G = S symmetric group acting on a countably infinite set X

$$F_n^*(S) = \sum_{k=1}^n S(n,k)F_k(S) = \sum_{k=1}^n S(n,k)\mathbf{1} = B(n)$$

• G = A group of all order preserving permutations on $X = \mathbb{Q}$ $F_n^*(A) = \sum_{k=1}^n S(n,k)F_k(S) = \sum_{k=1}^n S(n,k)k! = P(n)$ Ueen Mary

Proof 2: Orbits and Product Action

- **Solution** Consider $G \times H$ acting on $X \times Y$
 - Key observation

 $F_n^*(G \times H) = F_n^*(G)F_n^*(H)$

Proof 2: Orbits and Product Action

- **Solution** Consider $G \times H$ acting on $X \times Y$
 - Key observation

$$F_n^*(G \times H) = F_n^*(G)F_n^*(H)$$

• Apply to $A \times A$ acting on $\mathbb{Q} \times \mathbb{Q}$

$$F_n^*(A \times A) = P(n)^2$$

• $F_n(A \times A) = \sum_{k=1}^n s(n,k) F_k^*(A \times A) = \sum_{k=1}^n s(n,k) P(k)^2$

$$f_n(A \times A) = F_n(A \times A)/n!$$

Proof 2: Orbits and Product Action

- **Consider** $G \times H$ acting on $X \times Y$
- Key observation

$$F_n^*(G \times H) = F_n^*(G)F_n^*(H)$$

• Apply to $A \times A$ acting on $\mathbb{Q} \times \mathbb{Q}$

- $F_n(A \times A) = \sum_{k=1}^n s(n,k) F_k^*(A \times A) = \sum_{k=1}^n s(n,k) P(k)^2$
- $f_n(A \times A) = F_n(A \times A)/n!$
- ✓ For *n* distinct elements $(x_1, y_1), \ldots, (x_n, y_n)$ of $\mathbb{Q} \times \mathbb{Q}$, form incidence matrix by indexing rows and columns by the sets $\{x_1, \ldots, x_n\}$ and $\{y_1, \ldots, y_n\}$

$$F(n) = f_n(A \times A) = \frac{1}{n!} \sum_{k=1}^n s(n,k) P(k)^2$$

$$F(n) = \frac{1}{n!} \sum_{k=1}^{n} s(n,k) P(k)^2 \sim \frac{1}{4n!} \sum_{k=1}^{n} s(n,k) (k!)^2 (\log 2)^{-2n-2}$$

$$F(n) = \frac{1}{n!} \sum_{k=1}^{n} s(n,k) P(k)^2 \sim \frac{1}{4n!} \sum_{k=1}^{n} s(n,k) (k!)^2 (\log 2)^{-2n-2}$$

$$F(n) = \frac{1}{n!} \sum_{k=1}^{n} s(n,k) P(k)^2 \sim \frac{1}{4n!} \sum_{k=1}^{n} s(n,k) (k!)^2 (\log 2)^{-2n-2}$$

- The sum is dominated by involutions ($\sigma^2 = 1$) and evaluates asymptotically to

$$F(n) \sim \frac{n!}{4} e^{-\frac{1}{2}(\log 2)^2} \frac{1}{(\log 2)^{2n+2}}$$

$$F(n) = \frac{1}{n!} \sum_{k=1}^{n} s(n,k) P(k)^2 \sim \frac{1}{4n!} \sum_{k=1}^{n} s(n,k) (k!)^2 (\log 2)^{-2n-2}$$

- The sum is dominated by involutions ($\sigma^2 = 1$) and evaluates asymptotically to

$$F(n) \sim \frac{n!}{4} e^{-\frac{1}{2}(\log 2)^2} \frac{1}{(\log 2)^{2n+2}}$$

This is $e^{-\frac{1}{2}(\log 2)^2}$ times the contribution of the identity (k = n)

• Reconsider
$$F(n) = \sum_{k \le n} \sum_{l \le n} m_{kl}$$
 with

$$\sum_{i \le k} \sum_{j \le l} \binom{k}{i} \binom{l}{j} m_{ij} = \binom{kl}{n}$$

• Reconsider
$$F(n) = \sum_{k \le n} \sum_{l \le n} m_{kl}$$
 with

$$\sum_{i \le k} \sum_{j \le l} \binom{k}{i} \binom{l}{j} m_{ij} = \binom{kl}{n}$$

Insert

$$1 = \sum_{k=i}^{\infty} \frac{1}{2^{k+1}} \binom{k}{i} = \sum_{l=j}^{\infty} \frac{1}{2^{l+1}} \binom{l}{j}$$

into $F(n) = \sum_{k \le n} \sum_{l \le n} m_{kl}$ and resum

Reconsider
$$F(n) = \sum_{k \le n} \sum_{l \le n} m_{kl}$$
 with

$$\sum_{i \le k} \sum_{j \le l} \binom{k}{i} \binom{l}{j} m_{ij} = \binom{kl}{n}$$

Insert

$$1 = \sum_{k=i}^{\infty} \frac{1}{2^{k+1}} \binom{k}{i} = \sum_{l=j}^{\infty} \frac{1}{2^{l+1}} \binom{l}{j}$$

into $F(n) = \sum_{k \le n} \sum_{l \le n} m_{kl}$ and resum

$$F(n) = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{1}{2^{k+l+2}} \binom{kl}{n}$$

The sum

$$F(n) = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{1}{2^{k+l+2}} \binom{kl}{n}$$

is dominated by terms with $kl \gg n$, where $\binom{kl}{n} \sim \frac{(kl)^n}{n!} e^{-\frac{n^2}{2kl}}$

The sum

$$F(n) = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{1}{2^{k+l+2}} \binom{kl}{n}$$

is dominated by terms with $kl \gg n$, where $\binom{kl}{n} \sim \frac{(kl)^n}{n!} e^{-\frac{n^2}{2kl}}$

Replace the sum by an integral

$$F(n) \sim \frac{1}{4n!} \int dk \int dl \, \frac{(kl)^n}{2^{k+l}} e^{-\frac{n^2}{2kl}}$$
$$= \frac{n^{2n+2}}{4n!} \int d\kappa \int d\lambda \, e^{n(\log \kappa - \kappa \log 2)} e^{n(\log \lambda - \lambda \log 2)} e^{-\frac{1}{2\kappa\lambda}}$$

The sum

Jeen Mary

University of London

$$F(n) = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{1}{2^{k+l+2}} \binom{kl}{n}$$

is dominated by terms with $kl \gg n$, where $\binom{kl}{n} \sim \frac{(kl)^n}{n!} e^{-\frac{n^2}{2kl}}$

Replace the sum by an integral

$$F(n) \sim \frac{1}{4n!} \int dk \int dl \, \frac{(kl)^n}{2^{k+l}} e^{-\frac{n^2}{2kl}}$$
$$= \frac{n^{2n+2}}{4n!} \int d\kappa \int d\lambda \, e^{n(\log \kappa - \kappa \log 2)} e^{n(\log \lambda - \lambda \log 2)} e^{-\frac{1}{2\kappa\lambda}}$$

Standard saddle point asymptotics using w(\kappa) = log \kappa - \kappa log 2
w'(\kappa_s) = 0 implies saddle \kappa_s = 1/log 2

Use a Gaussian approximation around $\kappa_s = \lambda_s = 1/\log 2$ to get

$$F(n) \sim \frac{n^{2n+2}}{4n!} \int d\kappa \int d\lambda \ e^{n(\log\kappa-\kappa\log 2)} e^{n(\log\lambda-\lambda\log 2)} e^{-\frac{1}{2\kappa\lambda}}$$
$$\sim \frac{n^{2n+2}}{4n!} e^{nw(\kappa_s)} \sqrt{\frac{2\pi}{n|w''(\kappa_s)|}} e^{nw(\lambda_s)} \sqrt{\frac{2\pi}{n|w''(\lambda_s)|}} e^{-\frac{1}{2\kappa_s\lambda_s}}$$
$$= \frac{n^{2n+2}}{4n!} \left(e^{n(\log\log 2-1)} \sqrt{\frac{2\pi}{n(\log 2)^2}} \right)^2 e^{-\frac{1}{2}(\log 2)^2}$$

• Use a Gaussian approximation around $\kappa_s = \lambda_s = 1/\log 2$ to get

$$F(n) \sim \frac{n^{2n+2}}{4n!} \int d\kappa \int d\lambda \ e^{n(\log\kappa-\kappa\log 2)} e^{n(\log\lambda-\lambda\log 2)} e^{-\frac{1}{2\kappa\lambda}}$$
$$\sim \frac{n^{2n+2}}{4n!} e^{nw(\kappa_s)} \sqrt{\frac{2\pi}{n|w''(\kappa_s)|}} e^{nw(\lambda_s)} \sqrt{\frac{2\pi}{n|w''(\lambda_s)|}} e^{-\frac{1}{2\kappa_s\lambda_s}}$$
$$= \frac{n^{2n+2}}{4n!} \left(e^{n(\log\log 2-1)} \sqrt{\frac{2\pi}{n(\log 2)^2}} \right)^2 e^{-\frac{1}{2}(\log 2)^2}$$

This simplifies to

$$F(n) \sim \frac{n!}{4} e^{-\frac{1}{2}(\log 2)^2} \frac{1}{(\log 2)^{2n+2}}$$

where $(x)_m = x(x-1) \dots (x-m+1)$ is the falling factorial

Proof 4 (ctd.)

Do a saddle point analysis of the contour integral ...

Thomas Prellberg, "Counting Incidence Matrices" - p. 25/27

Do a saddle point analysis of the contour integral ...

. For fixed $\sigma, \tau > 0$

$$m_{k,l}(n) \sim \frac{n^{2n}}{n!} e^{nw(\sigma)} v(\sigma) e^{nw(\tau)} v(\tau) e^{-\frac{1}{2\sigma\tau}}$$

with

$$w(x) = x(1 - e^{-1/x})\log(1 - e^{-1/x}) + \log x - e^{-1/x}$$
$$v(x) = \sqrt{x(1 - e^{-1/x})/(x(1 - e^{-1/x}) - e^{-1/x})}$$

and $k = n\sigma(1 - e^{-1/\sigma})$, $l = n\tau(1 - e^{-1/\tau})$

Do a saddle point analysis of the contour integral ...

. For fixed $\sigma, \tau > 0$

$$m_{k,l}(n) \sim \frac{n^{2n}}{n!} e^{nw(\sigma)} v(\sigma) e^{nw(\tau)} v(\tau) e^{-\frac{1}{2\sigma\tau}}$$

with

$$w(x) = x(1 - e^{-1/x})\log(1 - e^{-1/x}) + \log x - e^{-1/x}$$
$$v(x) = \sqrt{x(1 - e^{-1/x})/(x(1 - e^{-1/x}) - e^{-1/x})}$$

and $k = n\sigma(1 - e^{-1/\sigma})$, $l = n\tau(1 - e^{-1/\tau})$

• $F(n) = \sum_{k \le n} \sum_{l \le n} m_{kl}$ is dominated by $k_s = l_s = n/2 \log 2$

- Mathematics of incidence matrices
- Counting functions $F_{ijkl}(n)$, $\Phi_{ij}(n)$
- Asymptotics of $F(n) = F_{1111}(n)$

$$F(n) \sim \frac{n!}{4} e^{-(\log 2)^2/2} \frac{1}{(\log 2)^{2n+2}}$$

Four proofs

leen Mary

University of London

- probabilistic, binary block designs
- product action of permutation groups
- "simple" identity, gaussian approximation
- residues and saddle point method
- Many open problems for other $F_{ijkl}(n)$, $\Phi_{ij}(n)$

The End

Thomas Prellberg, "Counting Incidence Matrices" - p. 27/27