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What are Incidence Matrices?
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Incidence Matrices

How many zero-one Matrices are there with exactly n ones?




1 0 0 0 1 1 1

1 1 0 0 1 1 1

1 0 0 1 0 0 1

0 0 1 0 1 1 1




No zero rows or columns allowed (for finite answer)

Counting Function Fijkl(n), i, j, k, l ∈ {0, 1}
i(k) = 0: count matrices modulo row (column) permutations

j(l) = 0: forbid row (column) repetitions

By transposition, Fklij(n) = Fijkl(n)⇒ 10 cases

Identify transposed matrices⇒ 4 additional cases, Φij(n)

Thomas Prellberg, “Counting Incidence Matrices” – p. 3/27



Incidence Matrices

How many zero-one Matrices are there with exactly n ones?




1 0 0 0 1 1 1

1 1 0 0 1 1 1

1 0 0 1 0 0 1

0 0 1 0 1 1 1




No zero rows or columns allowed (for finite answer)

Counting Function Fijkl(n), i, j, k, l ∈ {0, 1}
i(k) = 0: count matrices modulo row (column) permutations

j(l) = 0: forbid row (column) repetitions

By transposition, Fklij(n) = Fijkl(n)⇒ 10 cases

Identify transposed matrices⇒ 4 additional cases, Φij(n)

Thomas Prellberg, “Counting Incidence Matrices” – p. 3/27



Incidence Matrices

How many zero-one Matrices are there with exactly n ones?




1 0 0 0 1 1 1

1 1 0 0 1 1 1

1 0 0 1 0 0 1

0 0 1 0 1 1 1




No zero rows or columns allowed (for finite answer)

Counting Function Fijkl(n), i, j, k, l ∈ {0, 1}
i(k) = 0: count matrices modulo row (column) permutations

j(l) = 0: forbid row (column) repetitions

By transposition, Fklij(n) = Fijkl(n)⇒ 10 cases

Identify transposed matrices⇒ 4 additional cases, Φij(n)

Thomas Prellberg, “Counting Incidence Matrices” – p. 3/27



Incidence Matrices

How many zero-one Matrices are there with exactly n ones?




1 0 0 0 1 1 1

1 1 0 0 1 1 1

1 0 0 1 0 0 1

0 0 1 0 1 1 1




No zero rows or columns allowed (for finite answer)

Counting Function Fijkl(n), i, j, k, l ∈ {0, 1}
i(k) = 0: count matrices modulo row (column) permutations

j(l) = 0: forbid row (column) repetitions

By transposition, Fklij(n) = Fijkl(n)⇒ 10 cases

Identify transposed matrices⇒ 4 additional cases, Φij(n)

Thomas Prellberg, “Counting Incidence Matrices” – p. 3/27



Incidence Matrices

How many zero-one Matrices are there with exactly n ones?




1 0 0 0 1 1 1

1 1 0 0 1 1 1

1 0 0 1 0 0 1

0 0 1 0 1 1 1




No zero rows or columns allowed (for finite answer)

Counting Function Fijkl(n), i, j, k, l ∈ {0, 1}
i(k) = 0: count matrices modulo row (column) permutations

j(l) = 0: forbid row (column) repetitions

By transposition, Fklij(n) = Fijkl(n)⇒ 10 cases

Identify transposed matrices⇒ 4 additional cases, Φij(n)

Thomas Prellberg, “Counting Incidence Matrices” – p. 3/27



Examples

Incidence matrices with two ones, n = 2

I1 =
(

1 1
)
, I2 =


1

1


 , I3 =


1 0

0 1


 , I4 =


0 1

1 0




I1 has repeated columns, I2 has repeated rows

I3 and I4 are equivalent under row or column permutations

I1 and I2 are equivalent under transposition

For example,

F0000(2) = 1 , F1010(2) = 2 , F0101(2) = 3 , F1111(2) = 4 ,

Φ00(2) = 1 , Φ10(2) = 2 , Φ11(2) = 3
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Some Enumeration Data

n 1 2 3 4 5 6 7 8 9

F0000(n) 1 1 2 4 7 16

F0010(n) 1 1 3 11 40 174

F1010(n) 1 2 10 72 624 6522

F0001(n) 1 2 4 9 18 44

F0011(n) 1 2 7 28 134 729 4408 29256 210710

F1001(n) 1 2 6 20 73 315

F1011(n) 1 3 17 129 1227 14123

F0101(n) 1 3 6 16 34 90 211 558 1430

F0111(n) 1 3 10 41 192 1025 6087 39754 282241

F1111(n) 1 4 24 196 2016 24976 361792 5997872 111969552

Φ00(n) 1 1 2 3 5 11

Φ10(n) 1 2 8 44 340 3368

Φ01(n) 1 2 4 10 20 50

Φ11(n) 1 3 15 108 1045 12639 181553 3001997 55999767

.
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Why are Incidence Matrices interesting?

Thomas Prellberg, “Counting Incidence Matrices” – p. 6/27



Incidence matrices count ...

... hypergraphs by weight n

vertex set {x1, . . . , xr}
(hyper)-edges E1, . . . , Es

weight of the hypergraph: sum of the cardinalities of the edges

aij = 1 if xi ∈ Ej , 0 else

Choose i, k to get labelled/unlabelled vertices/edges,
choose j, l to get repeated/no repeated vertices/edges

Examples

F0101(n) counts simple hypergraphs with no isolated vertices,
up to isomorphism

F1101(n) is the number of (vertex)-labelled hypergraphs
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Incidence matrices count ...

... bipartite graphs by number of edges n

partition vertices into sets {r1, . . . , rr} and {c1, . . . , cs}

aij = 1 if (ri, cj) is an edge, 0 else

Choose i, k to get labelled/unlabelled vertex sets (j = l = 1)

Examples

F0101(n) counts unlabelled bipartite graphs with distinguished
bipartite block

F1111(n) counts labelled bipartite graphs with a distinguished
bipartite block

Φ01(n) counts unlabelled bipartite graphs with a distinguished
bipartition
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Incidence matrices count ...

... orbits of certain permutation groups

let S be the symmetric group acting on Q
let A be the group of all order-preserving permutations of Q
(strictly monotone, continuous, and piecewise linear maps)

First consider the number of orbits of S and A on n-element
subsets of Q

both S and A carry any n-element subset into any other

therefore the number of orbits of S or A is 1

Now consider the number of orbits of S × S, S ×A, and A×A on
n-element subsets of Q×Q. Then (details later)

F0101(n) is the number of orbits of S × S
F1101(n) is the number of orbits of A× S
F1111(n) is the number of orbits of A×A

Thomas Prellberg, “Counting Incidence Matrices” – p. 9/27



Incidence matrices count ...

... orbits of certain permutation groups

let S be the symmetric group acting on Q
let A be the group of all order-preserving permutations of Q
(strictly monotone, continuous, and piecewise linear maps)

First consider the number of orbits of S and A on n-element
subsets of Q

both S and A carry any n-element subset into any other

therefore the number of orbits of S or A is 1

Now consider the number of orbits of S × S, S ×A, and A×A on
n-element subsets of Q×Q. Then (details later)

F0101(n) is the number of orbits of S × S
F1101(n) is the number of orbits of A× S
F1111(n) is the number of orbits of A×A

Thomas Prellberg, “Counting Incidence Matrices” – p. 9/27



Incidence matrices count ...

... orbits of certain permutation groups

let S be the symmetric group acting on Q
let A be the group of all order-preserving permutations of Q
(strictly monotone, continuous, and piecewise linear maps)

First consider the number of orbits of S and A on n-element
subsets of Q

both S and A carry any n-element subset into any other

therefore the number of orbits of S or A is 1

Now consider the number of orbits of S × S, S ×A, and A×A on
n-element subsets of Q×Q. Then (details later)

F0101(n) is the number of orbits of S × S
F1101(n) is the number of orbits of A× S
F1111(n) is the number of orbits of A×A

Thomas Prellberg, “Counting Incidence Matrices” – p. 9/27



Incidence matrices count ...

... binary block designs

block design: set of n plots carrying two partitions
{B1, . . . , Br} and {B′1, . . . , B′s}
binary: the intersection of two blocks Bi ∩B′j contains at most
one plot

aij = 0 if Bi ∩B′j = ∅, 1 else

Choose i, k to get labelled/unlabelled partitions,
choose j, l to get repeated/no repeated blocks

Examples

F0101(n) counts binary block designs

F1111(n) counts labelled binary block designs

Φ01(n) counts binary block designs up to duality
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Focus on F (n) = F1111(n)
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Counting F (n)

mij the number of i× j incidence matrices with n ones

∑

i≤k

∑

j≤l

(
k

i

)(
l

j

)
mij =

(
kl

n

)

Möbius inversion

mkl =
∑

i≤k

∑

j≤l
(−1)k+l−i−j

(
k

i

)(
l

j

)(
ij

n

)

F (n) is given as 4-fold sum

F (n) =
∑

k≤n

∑

l≤n
mkl
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Bounds and Asymptotics

Upper bound

F (n) ≤
(
n2

n

)
∼ 1√

2πn
(ne)n

(choose n ones in n× n matrix, remove zero rows/cols)

Lower bound

F (n) ≥ n! ∼
√

2πn
(n

e

)n

(permutation matrices)

Theorem

F (n) ∼ n!

4
e−

1
2 (log 2)2 1

(log 2)2n+2

Four methods =⇒ four proofs
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Proof 1: Block Designs

Construct labelled binary block designs

partition an n-set into two labelled partitions
(with blocks Bi resp. B′j)

this produces a binary block design with probability p

Then
F (n) =

p

n!
P (n)2

with P (n) number of labelled partitions of an n-set

P (n) are known as ordered Bell numbers, their EGF is

∞∑

n=0

P (n)

n!
zn =

1

2− ez ⇒ P (n) ∼ n!

2

(
1

log 2

)n+1
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Proof 1 (ctd.)

Calculation of p

event Dij = {i and j are in the same block for each preorder}
labelled binary block design if no such Dij occurs

W =
∑

1≤i<j≤n
IDij =⇒ p = P(W = 0)

Asymptotic estimation of p

one can show that for each r ≥ 0

E[W (W − 1) · · · (W − r + 1)] ∼ [(log 2)2/2]r

thus W converges weakly to Poisson[(log 2)2/2]

P(W = 0) ∼ e− 1
2 (log 2)2
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Proof 1 (ctd.)

The identity

F (n) =
1

n!
P(W = 0)P (n)2

together with

P (n) ∼ n!

2

(
1

log 2

)n+1

and
P(W = 0) ∼ e− 1

2 (log 2)2

implies

F (n) ∼ n!

4
e−

1
2 (log 2)2 1

(log 2)2n+2
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Counting Orbits of Permutation Groups

Consider permutation group G acting on X (not necessarily finite)

Denote

F ∗n(G) the number of orbits on ordered n-tuples

Fn(G) the number of orbits on ordered n-tuples of distinct
elements

fn(G) the number of orbits on n-element subsets

Examples

G = S symmetric group acting on a countably infinite set X

fn(S) = 1 Fn(S) = 1 F ∗n(S) = B(n) Bell numbers

G = A group of all order preserving permutations on X = Q

fn(A) = 1 Fn(A) = n! F ∗n(S) = P (n) ordered Bell numbers
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Combinatorics of Orbit Counting

Stirling transforms

F ∗n(G) =
n∑

k=1

S(n, k)Fk(G) and Fn(G) =
n∑

k=1

s(n, k)F ∗k (G)

where s(n, k) and S(n, k) are Stirling numbers of the first and
second kind

Examples

G = S symmetric group acting on a countably infinite set X

F ∗n(S) =
n∑

k=1

S(n, k)Fk(S) =
n∑

k=1

S(n, k)1 = B(n)

G = A group of all order preserving permutations on X = Q

F ∗n(A) =
n∑

k=1

S(n, k)Fk(S) =
n∑

k=1

S(n, k)k! = P (n)
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Proof 2: Orbits and Product Action

Consider G×H acting on X × Y

Key observation

F ∗n(G×H) = F ∗n(G)F ∗n(H)

Apply to A× A acting on Q×Q
F ∗n(A×A) = P (n)2

Fn(A×A) =
∑n
k=1 s(n, k)F ∗k (A×A) =

∑n
k=1 s(n, k)P (k)2

fn(A×A) = Fn(A×A)/n!

For n distinct elements (x1, y1), . . . , (xn, yn) of Q×Q, form
incidence matrix by indexing rows and columns by the sets
{x1, . . . , xn} and {y1, . . . , yn}

F (n) = fn(A× A) =
1

n!

n∑

k=1

s(n, k)P (k)2
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Proof 2 (ctd.)

Approximate P (n) by P (n) ∼ n!
2

(
1

log 2

)n+1

to get

F (n) =
1

n!

n∑

k=1

s(n, k)P (k)2 ∼ 1

4n!

n∑

k=1

s(n, k)(k!)2(log 2)−2n−2

(−1)n−ks(n, k) is the number of permutations which have k cycles
⇒ write F (n) as sum over permutations σ ∈ Sn
The sum is dominated by involutions (σ2 = 1) and evaluates
asymptotically to

F (n) ∼ n!

4
e−

1
2 (log 2)2 1

(log 2)2n+2

This is e−
1
2 (log 2)2

times the contribution of the identity (k = n)
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Proof 3: A Simpler Identity

Reconsider F (n) =
∑
k≤n

∑
l≤nmkl with

∑

i≤k

∑

j≤l

(
k

i

)(
l

j

)
mij =

(
kl

n

)

Insert

1 =
∞∑

k=i

1

2k+1

(
k

i

)
=
∞∑

l=j

1

2l+1

(
l

j

)

into F (n) =
∑
k≤n

∑
l≤nmkl and resum

This leads to

F (n) =
∞∑

k=0

∞∑

l=0

1

2k+l+2

(
kl

n

)
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Proof 3 (ctd.)

The sum

F (n) =
∞∑

k=0

∞∑

l=0

1

2k+l+2

(
kl

n

)

is dominated by terms with kl� n, where
(
kl
n

)
∼ (kl)n

n! e−
n2

2kl

Replace the sum by an integral

F (n) ∼ 1

4n!

∫
dk

∫
dl

(kl)n

2k+l
e−

n2

2kl

=
n2n+2

4n!

∫
dκ

∫
dλ en(logκ−κ log 2)en(log λ−λ log 2)e−

1
2κλ

Standard saddle point asymptotics using w(κ) = log κ− κ log 2

w′(κs) = 0 implies saddle κs = 1/ log 2
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Proof 3 (ctd.)

Use a Gaussian approximation around κs = λs = 1/ log 2 to get

F (n) ∼ n2n+2

4n!

∫
dκ

∫
dλ en(log κ−κ log 2)en(log λ−λ log 2)e−

1
2κλ

∼ n2n+2

4n!
enw(κs)

√
2π

n|w′′(κs)|
enw(λs)

√
2π

n|w′′(λs)|
e−

1
2κsλs

=
n2n+2

4n!

(
en(log log 2−1)

√
2π

n(log 2)2

)2

e−
1
2 (log 2)2

This simplifies to

F (n) ∼ n!

4
e−

1
2 (log 2)2 1

(log 2)2n+2
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Proof 4: Calculus of Residues

Rewrite

mkl =
∑

i≤k

∑

j≤l
(−1)k+l−i−j

(
k

i

)(
l

j

)(
ij

n

)

using

Res(Γ(s), s = −m) =
(−1)m

m!

This leads to

mkl(n) =
k!l!

n!
Res

(
(st)n

(s)k+1(t)l+1
; s =∞, t =∞

)

where (x)m = x(x− 1) . . . (x−m+ 1) is the falling factorial
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Proof 4 (ctd.)

Do a saddle point analysis of the contour integral . . .

For fixed σ, τ > 0

mk,l(n) ∼ n2n

n!
enw(σ)v(σ)enw(τ)v(τ)e−

1
2στ

with
w(x) = x(1− e−1/x) log(1− e−1/x) + log x− e−1/x

v(x) =
√
x(1− e−1/x)/(x(1− e−1/x)− e−1/x)

and k = nσ(1− e−1/σ), l = nτ(1− e−1/τ )

F (n) =
∑
k≤n

∑
l≤nmkl is dominated by ks = ls = n/2 log 2
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Summary

Mathematics of incidence matrices

Counting functions Fijkl(n), Φij(n)

Asymptotics of F (n) = F1111(n)

F (n) ∼ n!

4
e−(log 2)2/2 1

(log 2)2n+2

Four proofs

probabilistic, binary block designs

product action of permutation groups

“simple” identity, gaussian approximation

residues and saddle point method

Many open problems for other Fijkl(n), Φij(n)

Thomas Prellberg, “Counting Incidence Matrices” – p. 26/27



The End
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