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Counting and Language

Pirahã (Amazon):
hói = one/small/less,
hóı = two/many/large/more

Warlpiri (Australia):
one, two, many

Gumulgal (Australia):
one, two, two-one, two-two,
two-two-one, . . .

Roman numerals:
I, II, III, IV, V, VI, . . . , LXXXIX,
XC, XCI, . . .

India: zero, decimal system
1, 2, . . . , 9, 10, 11, . . .
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Counting and Society

20,000 BC: Ishango bone (Congo)
tally marks on baboon fibula

4000 BC: Sumeria
livestock ≡ tokens

3000 BC: Egypt

hieroglyph for one million

500 BC: Pythagoras (Greece)
“of all things numbers are the first”

Roman Empire:
Mathematics only for bookkeeping
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Counting and Mathematics

What are numbers (natural numbers, positive integers)?

Peano axioms (1889):
formalisation of the “obvious”

1 1 is a number
2 every number has a successor
3 1 is not a successor

and the “less obvious”
4 two numbers with the same

successors are themselves equal
5 if a set S of numbers contains 1

and also the successor of every
number in S, then every number
is in S
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Counting and Mathematics

counting: matching to numbers

{?, •, �} ≡ {1, 2, 3}

A set of objects has size n if there exists
a one-to-one map between the objects
of this set and the set of natural
numbers from 1 to n.
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Counting and Combinatorics

Combinatorics is the study of finite or countable discrete structures

Two basic types of questions

Do there exist structures of a given kind and size?

Given any six members of linkedin.com,
does there exist a collection of three of them
who are either all connected to each other or
don’t share any connections? Yes.

How many structures of a given kind and size are there?

There are 215 = 32768 differ-
ent friends-strangers graphs on
six labelled vertices (ignoring la-
bels and change of colour, one
gets 78 different graphs)
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Lattice Paths and Counting Functions

How many directed lattice paths with n up-steps and n east-steps
are there?

2 paths of length 2,

6 paths of length 4,

20 paths of length 6, . . .

The number of 2n-step paths is cn =

(
2n

n

)
The counting function Z (x) = c0 + c1x + c2x

2 + . . . is

Z (x) =
1√

1− 4x
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Walks in a Triangle

Restrict to a triangular domain
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Counting Walks

Parameters

Side-length L

Number of steps n

Starting point a

End point b

Number of n-step walks from a to b within triangle of side-length L

ca,bn,L

No general closed form known for ca,bn,L or associated counting function

Z a,b
L (t) =

∑
n

ca,bn,Lt
n
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A Special Case

Starting the walks in a corner of the triangle, we find

Theorem (Mortimer, Prellberg, 2015)

The counting function which counts n-step walks in a triangle of
side-length L starting at a chosen corner with no restrictions on the
endpoint is given by

(1− p3)(1− p1+L)

(1− p)(1− p3+L)

where

p =
1− 2t −

√
(1 + 2t)(1− 6t)

4t

Thomas Prellberg Approximate Counting
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Bi-Colored Motzkin Paths

Corollary (Mortimer, Prellberg, 2015)

n-step walks starting in a corner of a triangle of odd side-length
L = 2H + 1 with arbitrary endpoint are in one-to-one correspondence
with bi-colored n-step Motzkin paths in a strip of height H.

There is only a counting function proof, and no direct mapping is known.
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Lattice Path Models of Polymers

Lattice Paths

Physical space → cubic lattice

Ghost polymer → random walk

Self-Avoiding Walks (SAW)

Polymer with Excluded Volume →
self-avoiding random walk

Interacting Self-Avoiding Walks (ISAW)

Quality of solvent → interactions

Model for the collapse of polymers
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Model for the collapse of polymers
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“Realistic” Lattice Models of Polymers

adsorbed monomerroot monomer

force

nn-interaction

A self-avoiding walk lattice model of an interacting polymer tethered to a
sticky surface under the influence of a pulling force
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Counting and Density of States

adsorbed monomerroot monomer

force

nn-interaction

Combinatorial question:
How many n-step lattice
paths are there with m
nearest-neighbour
interactions, k contacts
with the surface, and ending
at distance h from the
surface?

Physicists relate this to the Density of States and can extract from
this lots of interesting thermodynamic information

Thomas Prellberg Approximate Counting



A Brief History of Counting
Counting and Combinatorics

Exact Counting
Approximate Counting

Lattice Paths and Counting Functions
Walks in a Triangle
Lattice Path Models of Polymers
Pulling Polymers off a Surface

Counting and Density of States

adsorbed monomerroot monomer

force

nn-interaction

Combinatorial question:
How many n-step lattice
paths are there with m
nearest-neighbour
interactions, k contacts
with the surface, and ending
at distance h from the
surface?

Physicists relate this to the Density of States and can extract from
this lots of interesting thermodynamic information

Thomas Prellberg Approximate Counting



A Brief History of Counting
Counting and Combinatorics

Exact Counting
Approximate Counting

Lattice Paths and Counting Functions
Walks in a Triangle
Lattice Path Models of Polymers
Pulling Polymers off a Surface

Outline

1 A Brief History of Counting

2 Counting and Combinatorics

3 Exact Counting
Lattice Paths and Counting Functions
Walks in a Triangle
Lattice Path Models of Polymers
Pulling Polymers off a Surface

4 Approximate Counting
Sampling of Simple Random Walks
Sampling of Self-Avoiding Walks
Applications

Thomas Prellberg Approximate Counting



A Brief History of Counting
Counting and Combinatorics

Exact Counting
Approximate Counting

Lattice Paths and Counting Functions
Walks in a Triangle
Lattice Path Models of Polymers
Pulling Polymers off a Surface

Pulling Polymers off a Surface

A partially directed walk model of a polymer tethered to a sticky
surface under the influence of a pulling force

N

Partially directed walk ending horizontally

This model is exactly solvable (Osborn, Prellberg, 2010)
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Varying the Pulling Angle

Thermal desorption at T = 1/ log(1 +
√

2/2) ≈ 1.87

Vertical pulling, θ = 90o (left curve):
Increasing F favours desorption

Horizontal pulling, θ = 0o (right curve):
Increasing F disfavours desorption
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Simple Random Walk in One Dimension

Galton Board

Start at origin and go to left or
right with equal probability (fair
coin-toss)

2n possible random walks with
n steps

Endpoint position follows
binomial distribution

Trajectories are directed lattice
paths

Model of a directed polymer in two
dimensions
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Simple Sampling

Simple sampling of simple random walk for n = 50 steps. For each
simulation, 100000 samples were generated.

How can we tweak the algorithm to reach the tails?
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Pruned and Enriched Sampling

Smart idea: change sampling rate to achieve uniform sampling

Pruning and Enrichment Strategy

Pruning If sampling rate is too large, remove the configuration
probabilistically

Enrichment If sampling rate is too small, make several copies of the
configuration and continue growing each
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Pruned and Enriched Sampling

Uniform sampling with genuinely blind algorithm

Can be applied to a large class of growth processes
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Simple Sampling of Self-Avoiding Walk

Consider Self-Avoiding Walks (SAW) on the square lattice Z2

Simple sampling of SAW works like simple sampling of random walks

But now walks get removed if they self-intersect

Generating SAW with simple sampling is very inefficient

There are 4n n-step random walks, but only about 2.638n n-step
SAW

The probability of successfully generating an n-step SAW decreases
exponentially fast

This is called exponential attrition
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Algorithm Development

Rosenbluth Method (Rosenbluth, Rosenbluth, 1956):
Only take steps that avoid intersections

PERM (Grassberger, 1997):
Add Pruning and Enrichment to Rosenbluth Method

FlatPERM (Prellberg, Krawczyk, 2004):
Add Uniform Sampling Strategy to PERM
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Interacting Self-Avoiding Walks

Consider sampling with respect to an extra parameter, for example the
number of nearest-neighbour contacts

An interacting self-avoiding walk on the square lattice with n = 26 steps
and m = 7 contacts.
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ISAW simulations

Prellberg, Krawczyk, 2004
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Square lattice ISAW up to n = 1024

One simulation suffices

400 orders of magnitude
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A Pure Mathematics Application

In homage to last week’s Mathematics Colloquium:

“On the cogrowth of Thompson’s F group”
Rechnitzer, Elder, Wong (2012)

Indication that Thompson’s F group is not amenable1

1
does not have a finitely-additive left-invariant probability measure
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Lattice polymers with two competing interactions

Bedini, Owczarek, Prellberg (2014)
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Self-attracting polymers in two dimensions with three
low-temperature phases

Bedini, Owczarek, Prellberg (2017)
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Supercoiling in a lattice polymer

Dagrosa, Owczarek, Prellberg (preprint)
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