Spectral Analysis of Transfer Operators associated with Intermittency

Thomas Prellberg

thomas.prellberg@tu-clausthal.de

TU Clausthal

Thomas Prellberg, 2003 - p.1/22

- - Ruelle-Perron-Frobenius operator

$$\mathcal{P}\varphi(x) = \sum_{f(y)=x} |f'(y)|^{-\beta}\varphi(y)$$

- Expanding map ($|f'| \ge c > 1$) \Rightarrow spectral gap
- **Spectral gap** \Rightarrow exponential decay of correlations

Farey map on
$$[0, 1]$$

$$f(x) = \begin{cases} \frac{x}{1-x}, & x \le 1/2\\ \frac{1-x}{x}, & 1/2 < x \end{cases}$$

- Toy model for intermittency
 - "intermittent" left branch
 - "chaotic" right branch
- f'(0) = 1: almost expanding (non-uniformly expanding)

Invariant density $\rho(x) = 1/x$ not normalizable

$$\mathcal{P}_0\varphi(x) = \frac{1}{(1+x)^{2\beta}}\varphi\left(\frac{x}{1+x}\right)$$
 "intermittent part"

and

$$\mathcal{P}_1\varphi(x) = \frac{1}{(1+x)^{2\beta}}\varphi\left(\frac{1}{1+x}\right)$$
 "chaotic remainder"

Thomas Prellberg, 2003 - p.4/22

BV[0,1] Banach space of functions on [0,1] with bounded variation. Theorem 1 (Prellberg, Slawny, 1991): \mathcal{P} acting on BV[0,1] is a bounded operator with

$$P r_{ess}(\mathcal{P}) = 1 \qquad \forall \beta \in \mathbb{R}$$

$$P \quad r(\mathcal{P}) = 1 \qquad \forall \beta \ge 1$$

$$P(\mathcal{P}) = \lambda_{max}(\beta) > 1 \qquad \forall \beta < 1$$

$$\ \, \bullet \ \, \lambda_{max}(\beta) \text{ analytic in } \beta < 1$$

•
$$\lambda_{max}(\beta) \sim \exp\left[C\frac{1-\beta}{-\log(1-\beta)}\right]$$

as $\beta \to 1^-$

Method: Inducing away from indifferent fixed point

- Consider first return map on [1/2, 1]
- **•** Branches $g_n = f^n|_{[1/2,1]} = f_0^{n-1} \circ f_1$
- Associated transfer operator must keep track of n

$$\mathcal{M}_{z}\varphi(x) = \sum_{n=1}^{\infty} z^{n} |(g_{n}^{-1})'(x)|^{\beta}\varphi \circ (g_{n}^{-1})(x)$$
$$= \sum_{n=1}^{\infty} \frac{z^{n}}{(1+nx)^{2\beta}}\varphi\left(1-\frac{x}{1+nx}\right)$$

Proof of Theorem 1 uses operator relations between \mathcal{M}_z and \mathcal{P}

Drawback: BV[0,1] is too large

■ Remark 1: induced map is expanding, branches are analytic ⇒ *M_z* defines a nuclear operator on a suitable space of analytic functions

Remark 2: for z = 1, \mathcal{M}_1 is related to transfer operator of Gauss map known to be self-adjoint on suitable Hilbert space (Mayer)

Wish: find Hilbert space on which $\ensuremath{\mathcal{P}}$ is self-adjoint

Progress using results of Mayer, Isola, Rugh, ...

Theorem 2 (Prellberg, 2002): \mathcal{P} is self-adjoint on the Hilbert space

$$\mathcal{H} = \left\{ \varphi(x) = x^{-2\beta} \int_0^\infty e^{-s\frac{1-x}{x}} \psi(s) d\mu(s) : \psi \in L^2(\mathbb{R}_+, \mu) \right\}$$

with $\mu(s) = e^{-s}s^{2\beta-1}$ and appropriate induced inner product. Proof: $\mathcal{P} = \mathcal{KSK}^{-1}$ where \mathcal{S} acting on $L^2(\mathbb{R}_+, \mu)$ is given by

$$\mathcal{S}\psi(s) = e^{-s}\psi(s) + \int_0^\infty K(s,t)\psi(t)d\mu(t)$$

with $K(s,t) = (st)^{\frac{1}{2}-\beta} J_{2\beta-1}(2\sqrt{st})$ and \mathcal{K} is given by

$$\mathcal{K}\varphi(x) = x^{-2\beta} \int_0^\infty e^{-s\frac{1-x}{x}} \psi(s) d\mu(s)$$

Theorem 3 (Prellberg, 2002): \mathcal{P} acting on \mathcal{H} has spectrum $\sigma = \sigma_c \cup \sigma_p$ where

- 𝒴 σ_c = [0, 1]
- \boldsymbol{I} $\sigma_p \setminus \{0\}$ isolated eigenvalues of finite multiplicity
- 0 is an eigenvalue of infinite multiplicity

Proof: utilizes $\mathcal{P} = \mathcal{KSK}^{-1}$

- \mathcal{S} is compact perturbation of \mathcal{S}_0
- Operator relations between \mathcal{M}_z and \mathcal{P}

Formal conjugation of the Farey map with $C\varphi(x) = \varphi\left(\frac{1-x}{x}\right)$

 $P_0 = \mathcal{C}\mathcal{Q}_0\mathcal{C}^{-1}$ $\mathcal{Q}_0\varphi(x) = \varphi(x-1)$ shift

Conjugation of Q with generalized Laplace transform

$$\mathcal{L}\psi(x) = \int_0^\infty \exp(-sx)\psi(s)d\mu(s)$$

leads to multiplication operator $S_0\psi(x) = e^{-s}\psi(s)$

● On $L^2(\mathbb{R}_+, \mu)$, \mathcal{S}_0 has continuous spectrum [0, 1]

This shows

Lemma: On $\mathcal{CLL}^2(\mathbb{R}_+,\mu)$, \mathcal{P}_0 has spectrum $\sigma(\mathcal{P}_0) = \sigma_c(\mathcal{P}_0) = [0,1]$

Is there a measure μ for which $S = S_0 + S_1$ (and therefore \mathcal{P}) is self-adjoint?

Consider the transfer operator for h(x) = (ax + b)/(cx + d) with $\sigma = ad - bc = \pm 1$

$$\mathcal{H}\varphi(x) = |(h^{-1})'(x)|^{\beta}\varphi \circ h^{-1}(x) = (a - cx)^{-2\beta}\varphi\left(\frac{dx - b}{a - cx}\right)$$

Conjugation with a generalized Laplace transform \mathcal{L} gives

$$\mathcal{L}^{-1}\mathcal{H}\mathcal{L}\psi(s) = \int_0^\infty K(s,t)\psi(t)d\mu(t)$$

with kernel

$$\mu(s)K(s,t) = \frac{1}{c} \exp \frac{as + td}{c} \left(\frac{s}{t}\right)^{\beta - \frac{1}{2}} Z_{2\beta - 1}(\frac{2}{c}\sqrt{st})$$

where
$$Z_{\nu}(u) = I_{\nu}(u)$$
 for $\sigma = 1$ and $Z_{\nu}(u) = J_{\nu}(u)$ for $\sigma = -1$

Specialize to
$$\mathcal{H} = \mathcal{P}_1$$
, i.e. $a = -1$, $b = 1$, $c = 1$, $d = 0$:

$$\mu(s)K(s,t) = e^{-s} \left(\frac{s}{t}\right)^{\beta - \frac{1}{2}} J_{2\beta - 1}(2\sqrt{st})$$

The kernel is symmetric for $\mu(s) = e^{-s}s^{2\beta-1}$, and we obtain

$$K(s,t) = (st)^{\frac{1}{2}-\beta} J_{2\beta-1}(2\sqrt{st})$$

This proves Theorem 2

We reintroduce \mathcal{M}_z abstractly by defining for $z \in \mathbb{C} - [1, \infty)$

$$\mathcal{M}_z = (1 - z\mathcal{P}_0)^{-1}z\mathcal{P}_1$$

Formal expansion in z gives the transfer operator associated with the induced map g on [1/2, 1]

$$\mathcal{M}_z = \sum_{n=1}^{\infty} z^n \mathcal{P}_0^{n-1} \mathcal{P}_1$$

Lemma: M_z is nuclear on CLL²(R₊, μ)
Proof: (a) |z| < 1: sum of nuclear operators
(b) analytic continuation (Rugh)

$$1 - z\mathcal{P} = (1 - z\mathcal{P}_0)(1 - \mathcal{M}_z)$$

Lemma:

$$\sigma_c(\mathcal{P}) = \sigma_c(\mathcal{P}_0) = [0,1]$$

$$\lambda = z^{-1}$$
 is eigenvalue of $\mathcal{P} \Leftrightarrow 1$ is eigenvalue of \mathcal{M}_z

Theorem 3 follows from considering the solutions to $1 \in \sigma(\mathcal{M}_z)$ using nuclearity and analytic perturbation theory

• $\sigma_c(\mathcal{P})$ is known

- Eigenvalues of \mathcal{M}_z are (branches of) analytic functions in z, $\lambda_n(z)$
- Solve $\lambda_n(z) = 1$ to get eigenvalue $\lambda = 1/z$ of \mathcal{P}
- Self-adjointness of \mathcal{P} : only real z needed!

Preliminary work (Dodds 1993):

considered $z \in [-1, 1]$ (i.e. real λ outside the unit disc)

Computation of the spectrum of \mathcal{M}_z :

- \mathcal{M}_z acts on analytic functions \Rightarrow expand in power series
- Expansion around x = 1 gives matrix elements

$$M_{z}^{n,m} = \sum_{k=0}^{n} (-1)^{n-k} \binom{-2\beta - m}{k} \binom{-2\beta - k}{n-k} \left(\frac{1}{z} \mathsf{Li}_{2\beta+m+k}(z) - 1\right)$$

with dilogarithm $\operatorname{Li}_s(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^s}$

Approximate \mathcal{M}_z with truncated operators $\mathcal{M}_z^{(N)}$ acting on a subspace of polynomials of at most degree N

Related work: Dodds 1993; Daudé, Flajolet, Vallée 1997

Lhote 2002: Rigorous computation of a leading eigenvalue

leading eigenvalue diverges at z = 1

miles analytic continuation has non-vanishing imaginary part along the cut

Numerical Analysis (ctd.)

analytic continuation beyond z = 1 possible

$$z = 1$$
 at $z = -2.971$, $z = -0.168$, $z = 0.038$, and $z = 13.101$

Numerical observation:

- When continuing eigenvalue branches to the cut $[1,\infty)$, the result is real only for $\beta = -N/2$
- For $\beta \neq -N/2$, the analytic extension has a non-vanishing jump in the imaginary part along the cut
- Therefore $\lambda_n(z) = 1$ has no solutions for z > 1 unless $\beta = -N/2$
- Eigenvalues of \mathcal{P} embedded in the continuous spectrum are only possible for $\beta = -N/2$

Numerical Analysis (ctd.)

- Self-adjointness of the Farey operator *P* on a suitable Hilbert space
- Spectral properties: $\sigma = \sigma_c \cup \sigma_p$ where
 - $\sigma_c = [0, 1]$
 - $\sigma_p \setminus \{0\}$ isolated eigenvalues of finite multiplicity
- Numerical analysis of eigenvalues via induced operator
- Conjecture: eigenvalues embedded in σ_c only at $\beta = -n/2$
- Open problem: proof of convergence of numerical method

