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Transfer Operators for Interval Maps

f :]0,1] — [0, 1] piecewise monotone, analytic
(minimal requirement: piecewise C17¢)

Ruelle-Perron-Frobenius operator

Pox)= > |l ey

f(y)=x
B = 1. Perron-Frobenius operator, Pp = p, P* 11, = iy,
p invariant density, eigenfunction to maximal eigenvalue A =1
Expanding map (|f/| > ¢ > 1) = spectral gap

Spectral gap = exponential decay of correlations
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Technik - Unmwelt

Farey Map

Farey map on [0, 1] 08 |
T, T< 1/2 0.6 |
=1
Tx y 1/2 <X 0.4 |
0.2
Toy model for intermittency /ﬁ

® ‘“Intermittent” left branch "0 02 04 06 08 1

$ “chaotic” right branch L

5 H

£/(0) = 1: almost expanding
(non-uniformly expanding)  °

J
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Invariant density p(x) = 1/z not normalizable
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Farey Operator

® RPF Operator

Po(x) = > 1@ o)

fly)=x
= Pop(z) + Pro(x)

with

Pop(r) = — “ ) “intermittent part’
op(x) = (RN G intermittent par

and

1 1 ’ . o
Pro(z) = i x)2ﬁgp (1 n x) chaotic remainder
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Banach Space Approach

BV[0, 1] Banach space of functions on [0, 1] with bounded variation.
Theorem 1 (Prellberg, Slawny, 1991): P acting on BV [0, 1] is a
bounded operator with

® .. (P)=1 V3 e R
r(P)=1 VvB>1
r(P) = Amaz(8) > 1 V3 < 1

Amaz () @nalyticin 5 < 1

o o o @

)
1—
Az (8) ~ exp | Ot
as g — 1-
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Inducing

Method: Inducing away from indifferent fixed point

® Consider first return map on [1/2,1]

® Branches g, = f*|1/211 = fo" ' o fi

® Associated transfer operator
must keep track of n

Mep(x) = Y 2"|(g,") (@)Ppo (g,") ()

Technik - Unmwelt

- ® Proof of Theorem 1 uses operator relations between M and P
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Technik - Urnwelt

Banach Space Approach (ctd.)

® Drawback: BV|0,1] is too large

$» Remark 1: induced map is expanding, branches are analytic =
M, defines a nuclear operator on a suitable space of analytic
functions

® Remark 2: for z = 1, M, is related to transfer operator of Gauss
map known to be self-adjoint on suitable Hilbert space (Mayer)

Wish: find Hilbert space on which P is self-adjoint

Progress using results of Mayer, Isola, Rugh, ...
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Self-Adjointness

Theorem 2 (Prellberg, 2002): P is self-adjoint on the Hilbert space

H={eta) = [T us)nts) v e R

with 1(s) = e=*s?/~1 and appropriate induced inner product.
Proof: P = KSK~! where S acting on L*(R_, 1) is given by

S(s) = e (s) + / " K (s, o (t)du(t)

with K (s,t) = (st)2P.Jy5_1(2v/st) and K is given by
B

TUe Ko(z) = o2 / e 5 (s)dpa(s)

Technik - Unmavelt
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Spectral Properties

Theorem 3 (Prellberg, 2002): P acting on ‘H has spectrum o = o. U o,
where

® o.=0,1]
® .,\{0} isolated eigenvalues of finite multiplicity
® (0 is an eigenvalue of infinite multiplicity

Proof: utilizes P = KSK!

® Sp(x) = e *Y(s) multiplication operator with o. = [0, 1]
® S is compact perturbation of Sy
® Operator relations between M, and P

. ® p@)=—p(l-z) = Pe=0
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Understanding Theorem 2

First look at Py, then consider P; as a perturbation

® Formal conjugation of the Farey map with Co(x) = ¢ (1_—3“)

—~

—_ PO — CQ()C_l QogO(ZIZ‘) = gO(ZIZ‘ — 1) shift
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Understanding Theorem 2 (ctd.)

® Conjugation of Q with generalized Laplace transform

() = / " exp(— s (s)dus)

leads to multiplication operator Syy(z) = e % (s)

® On L%*Ry,u), Sy has continuous spectrum [0, 1]

This shows
Lemma: On CLL? (R4, ), Py has spectrum o (Py) = 0.(Py) = [0, 1]

® |sthere a measure p for which § = Sy + S1 (and therefore P) is
self-adjoint?
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Understanding Theorem 2 (ctd.)

Consider the transfer operator for h(x) = (ax + b)/(cx + d) with
o =ad—bc=+1

Ho(e) = [(hY(@)p o i~ (z) = (a — cx) (d”” b )

a — CT

Conjugation with a generalized Laplace transform £ gives

L7YHLY(s) / K (s, )0 (t)du(t)

with kernel

V'st)

1 as + td (s 2

51
K(s,t) = - _) Toa 1(2
p(s)K(s,1) CeXP . ; 203 1(0

where Z,(u) = I,(u) foroc =1and Z,(u) = J,(u) forc = —1
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Understanding Theorem 2 (ctd.)

® SpecializetoH =Py, i.e.a=-1,b=1,¢=1,d=0:

B_l

" Jap-1(2/st)

S

() K (s,8) = e (2)

t

® The kernel is symmetric for p(s) = e=*s?°~1, and we obtain

K (s,t) = (st)7"Jog1(2V/st)

This proves Theorem 2
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Understanding Theorem 3

We reintroduce M, abstractly by defining for z € C — [1, c0)
M, =(1- 273())_12731

Formal expansion in z gives the transfer operator associated with
the induced map g on [1/2, 1]

./\/lz — Z anon_1731

n=1

® Lemma: M. is nuclear on CLL?*(R,, p)
Proof: (a) |z| < 1: sum of nuclear operators
(b) analytic continuation (Rugh)

Technik - Unmwelt
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Understanding Theorem 3 (ctd.)

® We have the key identity (for z € C — [1, c0))
1—2P=(1—-2Py)(1 —M,)

» [emma:
® 0c(P)=0c(Po) =[0,1]
® )\ =z !iseigenvalue of P < 1 is eigenvalue of M.,

Theorem 3 follows from considering the solutions to 1 € (M) using

nuclearity and analytic perturbation theory
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Numerical Analysis of the Spectrum

o.(P) is known
o,(P) can be determined by solving 1 € o(M ) numerically

Eigenvalues of M, are (branches of) analytic functions in z, \,,(z)

e o o 0

Solve \,(z) = 1to get eigenvalue A =1/z of P

® Self-adjointness of P: only real z needed!

Preliminary work (Dodds 1993):

considered z € [—1, 1] (i.e. real A outside the unit disc)
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Numerical Analysis (ctd.)

Computation of the spectrum of M..:
$® M, acts on analytic functions = expand in power series

® Expansion around x = 1 gives matrix elements

v =S (T () (Miasmint - 1)

k=0

n

with dilogarithm Lis(z) = >°° , 2

n=1 ns

$® Approximate M, with truncated operators M) acting on a
subspace of polynomials of at most degree IV

Related work: Dodds 1993; Daude, Flajolet, Vallée 1997
TUE

=

~*= Lhote 2002: Rigorous computation of a leading eigenvalue

& HQ}V
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Numerical Analysis (ctd.)

o(M,)at3=0.5 A

Technik - Unmwelt

Thomas Prellberg, 2003 — p.18/22



Numerical Analysis (ctd.)
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Numerical Analysis (ctd.)

Numerical observation:

® When continuing eigenvalue branches to the cut |1, c0), the result
IS real only for 6 = —N/2

® For g # —N/2, the analytic extension has a non-vanishing jump in
the imaginary part along the cut

o

Therefore \,,(z) = 1 has no solutions for z > 1 unless 3 = —N/2

°

Eigenvalues of P embedded in the continuous spectrum are only
possible for 5 = —N/2

Technik - Urnwelt
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Numerical Analysis (ctd.)

The final result: o(P) o)

.25 -2<15 -1 - 05 05 1 15
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Technik - Urnwelt

Summary and Outlook

® Self-adjointness of the Farey operator P on a suitable Hilbert
space

® Spectral properties: o = 0. U 0, where
® o.=10,1]
® 0,\{0} isolated eigenvalues of finite multiplicity
$® Numerical analysis of eigenvalues via induced operator

® Conjecture: eigenvalues embedded in o. only at 3 = —n /2

® Open problem: proof of convergence of numerical method
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