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• Polymer collapse above the upper critical dimension (du = 3)

is a weak thermodynamic second-order phase transition.

• One finds an apparent first-order phase transition in finite sy-

stems due to strong finite-size corrections to scaling.

• We propose to call this scenario a

pseudo-first-order transition.
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Modeling of Polymers in Solution

Polymers = long chains consisting out of smaller units (monomers)

“Coarse-Graining”: beads on a chain

“Excluded Volume”: minimal distance between monomers

Contact of monomers with solvent molecules

⇒ effective monomer-monomer-interaction

Good/bad solvent ⇒ repelling/attracting interaction

Consequence: chains clump together

Eight linear polymer chains with 128 monomers each in a bad solvent

(Grassberger, FZ Jülich)
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Polymer collapse in a dilute solvent

(Coil-Globule Transition, Θ-Point)

length N , spatial extension R ∼ N ν

R

T > Tc: good solvent

swollen phase (coil)

T = Tc:

Θ-polymer

T < Tc: bad solvent

collapsed phase (globule)
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Lattice Model: Interacting Self-Avoiding Walk (ISAW)

• Physical space ⇔ lattice Z3 (or Zd)

• Polymer in solution ⇔ Self-Avoiding Walk (SAW)

• Quality of solvent ⇔ nearest-neighbor interactions

XXX
XXX

XXX
XXX

XXy

ω = e−βε

Boltzmann weight

N = 26

m = 6

Partition function: ZN(ω) =
∑

mCN,mω
m

CN,m number of SAW with length N and m interactions

Thermodynamic limit: V =∞ and N →∞
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Critical Exponents

1. Length scale exponent ν: RN ∼ N ν

d Coil Θ Globule

2 3/4 4/7 1/2

3 0.587 . . . †∗ 1/2(log) 1/3

4 1/2(log) 1/2 1/4

> 4 1/2 1/2 1/d

∗ Belohorec and Nickel (1997): 0.58758(7), TP (2001): 0.5874(2)

† Irene Hueter (2002): lower bound 7/12 = 0.583

2. Entropic exponent γ: ZN ∼ µNNγ−1

d Coil Θ Globule

2 43/32 8/7 different scaling form

3 1.15 . . . 1(log) ZN ∼ µNµs
Nσ
Nγ−1

4 1(log) 1 σ = (d− 1)/d (surface)

> 4 1 1 [ALO, TP, PRL 70 (1993) 951]

Surface term: κN = 1
N logZN ∼ κ + κsN

σ−1 + . . .
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Crossover Scaling at the Θ-Point

RN ∼ N νR(∆T Nφ)

φ crossover exponent

ZN ∼ µNNγ−1Z(∆T Nφ)

specific heat of ZN : CN ∼ Nα

2− α = 1/φ tri-critical scaling form

Mean Field Theory of the Θ-Point

Balance between “Excluded Volume”–repulsion

and attractive interaction

⇒ polymer behaves like random walk: ν = 1/2, γ = 1

One expects a weak thermodynamic phase transition

⇒ α = 0, i.e. φ = 1/2

(d = 2: φ = 3/7, d = 3: φ = 1/2(log), d > 3: φ = 1/2)
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Why look at d ≥ 4?

Theoretical predictions for φ:

• Mean field theory: φ = 1/2 for d > 3

(= 1/2 in d = 4)

• Continuous Edwards model (equivalent with field-theoretic

formulation): φE = 2− d/2 for d > 3

– Edwards model = Brownian motion

+ suppression of self-intersections + attractive interactions

– field theory is φ4 − φ6 O(n)-model for n→ 0

(= 0 in d = 4)

• Edwards model predicts a shift of the Θ-point by N−ΨE :

ΨE = d/2− 1 for d > 3

(= 1 in d = 4)

• Matching of scaling form for RN : φ = d/2− 1

(= 1 in d = 4)
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Further Motivations . . .

• silent assumption: Θ-point exists.

But this is not obvious for d > 3 . . .

M.A. Moore, J Phys A 10 (1976) 305

• There are indications that the way self-avoidance and

interaction enters the modeling influences the critical

behavior of the respective Θ-point

vertex avoidance (Walks) ⇔ edge avoidance (Trails)

~ ~
~
	 	� �
�	

nearest-neighbor interaction ⇔ contact interaction

open questions, unclear theory ⇒ simulations of lattice models for

polymer collapse, ISAW and ISAT, on Z4 and Z5
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PERM – “Go with the Winners” Monte-Carlo

PERM = Pruned and Enriched Rosenbluth Method

Grassberger, Phys Rev E 56 (1997) 3682

(improvements possible, see e.g. Hsu et. al., cond-mat/0209363)

Rosenbluth Method: kinetic growth

1/3 1/2

1 trapped

Observation: kinetic growth weights and interactions balance each

other at suitable temperatures (near the Θ-point?)

Enrichment: too large weight

→ make copies of configuration (and adjust weight)

Pruning: too small weight

→ remove configuration occasionally (and adjust weight)
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PERM – continued

Kinetic growth is close to the Θ-point (for d large)

→ PERM well suited for simulation of polymer collapse

Disadvantage: enrichment creates correlated configurations

→ error estimation a priori impossible, a posteriori difficult

N=0 N=Nmax

All configurations in a tour are correlated

Cost of simulation for 4d ISAW (600MHz Dec Alpha):

107 configurations with Nmax = 16384 in 2 weeks

Further applications for PERM:

branched polymers, DNA, proteins, percolation, . . .
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4d ISAW Simulations: End-to-End Distance R2
e,N

R2
e,N/N as function of the temperature variable ω
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• One finds a Θ-point with R2
e,N/N constant

• Collapse region and Θ-region are well separated!
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Θ-point determination: ωθ = 1.182(1)
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4d ISAW Simulations: The Collapsed Phase

ω = 1.40 > ωθ fixed:

• Change of R2
e,N in N is not monotone
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• Surface correction term κ ∼ κ + κsN
−1/4?
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4d ISAW Simulations: the Specific Heat

• Collapse region and Θ-region are well separated!
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• Scaling behavior of the transition: width 6= shift
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ωc,N − ωθ ∼ N−1/3 ∆ω ∼ N−2/3 (?)

Cannot be explained by conventional tri-critical scaling form!
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4d ISAW Simulations: Internal Energy Distribution

A surprising, unexpected result:

• The internal energy histogram near the collapse shows a

bimodal distribution!

(⇒ First-Order Phase Transition?!?)
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• The bimodality becomes stronger with increasing system size

⇒ no disappearing finite-size crossover effect
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Mean Field Theory of Khokhlov

(Based on works of Lifshitz and Grosberg in d = 3)

Khokhlov, Physica A 105 (1981) 357

• Consider effect of a surface term in the free energy

FN = Fbulk + Fsurface

• classical mean field theory predicts

Fbulk ∼ −N(∆T )2

• extended self-consistent mean field theory predicts

Fsurface ∼ Rd−1σ

– globule radius R ∼ (N/|∆T |)1/d

– surface tension σ ∼ (∆T )2

Conclusion:

FN ∼ −N(∆T )2
[
1− |∆Tc/∆T |(d−1)/d

]

with ∆Tc ∼ N−1/(d−1)
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Predictions of the Khokhlov Theory

• Shift of the transition

ωc,N − ωθ ∼ N−1/(d−1) (−1/3 in d = 4)

• Width of the transition

∆ω ∼ N−(d−2)/(d−1) (−2/3 in d = 4)

• Heat of the transition

∆U ∼ N−1/(d−1) (−1/3 in d = 4)

• Height of specific heat peak

Cmax ∼ N (d−3)/(d−1) (1/3 in d = 4)

Conclusion:

Pseudo-First Order Transition

• A sharp transition with aspects of a first-order phase transition

(e.g. the heat of the transition ∆U is released in a relatively

small temperature range ∆ω)

• We find a classical second-order phase transition in the thermo-

dynamic limit.
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Alternative Interpretation: Internal Energy Distribution

ρ(x)

second-order phase transition

ρ(x)

first-order phase transition

∆U → const

-�

ρ(x)

x = m/N

pseudo-first-order phase transition

∆U → 0

- �
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Implications for Scaling

• Conventional scaling breaks down:

one needs an extended scaling form

RN(T ) ∼ N ν

Θ-point︷ ︸︸ ︷
R((Tθ − T )Nφ)

collapse︷ ︸︸ ︷
S((Tc,N − T )Nφc)

with

Tθ − Tc,N ∼ N−ψ

i.e. two further exponents for the collapse

• Relevance for three-dimensional models:

Consider trails with contact interactions
y yy� �� ��� on the diamond

lattice

Conflicting results:

– existence of a Θ-point (second-order transition)

Prellberg, Owczarek, Phys Rev E 51 (1995) 2142

– bimodal energy distribution (first-order transition)

Grassberger, Hegger, J Phys A 29 (1996) 279

This work opens up a possible new scenario
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Comparison ISAW ↔ ISAT

Motivation:

• Physically relevant open questions in d=3

• Testing of validity of theoretical approaches

Mean field theory predictions:

• An important parameter is

v

ad

v effective volume of a monomer

a distance between two monomers on the chain

• influence on scaling behavior:

ωc,N − ωθ ∼
(
ad

Nv

)1/(d−1)

Interpretation for ISAW ↔ ISAT:

• a lattice constant

• Nearest neighbor interaction ↔ contact interaction:

vSAW >> vSAT
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Simulations: 4d ISAW ↔ 4d ISAT

• Bimodality in ISAT at much smaller system sizes
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• A comparison shows
vSAT
vSAW

≈ 0.03
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Simulations: 4 Dimensions ↔ 5 Dimensions

• Surface effects more pronounced:

bimodality appears at even smaller system sizes
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• Peak distance does not (yet?) decrease as N−1/4

Need R >> lattice spacing for true asymptotics (45 = 1024)
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Summary

• Existence of a collapse transition in d ≥ 4

• Θ-point has Gaussian statistics

• Collapse transition is well separated from Θ-point

• Khokhlov mean field theory applies:

– second-order phase transition with strong

finite-size corrections

– At fixed system size, the phase transition

appears to be of first-order

Suggestion:

Pseudo-First Order Transition

Are there other systems which show this kind of behavior?
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