Monte Carlo Investigation OF Lattice Models of Polymer Collapse

IN FOUR AND FIVE DIMENSIONS

Thomas Prellberg

Institut für Theoretische Physik Technische Universität Clausthal

thomas.prellberg@tu-clausthal.de

with Aleksander L. Owczarek, University of Melbourne

- Polymer collapse above the upper critical dimension $(d_u = 3)$ is a weak thermodynamic second-order phase transition.
- One finds an apparent first-order phase transition in finite systems due to strong finite-size corrections to scaling.
- We propose to call this scenario a

pseudo-first-order transition.

Int. J. Mod. Phys. 14 (2003), Comp. Phys. Commun. 147 (2002) 629, Physica
A 297 (2001) 275, Europhys. Lett. 51 (2000) 602, Phys. Rev. E 62 (2000)
3780, Physica A 260 (1998) 20

MODELING OF POLYMERS IN SOLUTION

Polymers = long chains consisting out of smaller units (monomers) "Coarse-Graining": beads on a chain

"Excluded Volume": minimal distance between monomers

Contact of monomers with solvent molecules

 \Rightarrow effective monomer-monomer-interaction

Good/bad solvent \Rightarrow repelling/attracting interaction

Consequence: chains clump together

Eight linear polymer chains with 128 monomers each in a bad solvent (Grassberger, FZ Jülich)

Polymer collapse in a dilute solvent (Coil-Globule Transition, Θ -Point)

length N, spatial extension $R \sim N^{\nu}$

 $T < T_c$: bad solvent collapsed phase (globule)

LATTICE MODEL: INTERACTING SELF-AVOIDING WALK (ISAW)

- Physical space \Leftrightarrow lattice \mathbb{Z}^3 (or \mathbb{Z}^d)
- Polymer in solution \Leftrightarrow Self-Avoiding Walk (SAW)
- Quality of solvent \Leftrightarrow nearest-neighbor interactions

Partition function: $Z_N(\omega) = \sum_m C_{N,m} \omega^m$ $C_{N,m}$ number of SAW with length N and m interactions Thermodynamic limit: $V = \infty$ and $N \to \infty$

CRITICAL EXPONENTS

1. Length scale exponent ν : $R_N \sim N^{\nu}$

d	Coil	Θ	Globule
2	3/4	4/7	1/2
3	$0.587^{\dagger*}$	$1/2(\log)$	1/3
4	$1/2(\log)$	1/2	1/4
> 4	1/2	1/2	1/d

* Belohorec and Nickel (1997): 0.58758(7), TP (2001): 0.5874(2)

[†] Irene Hueter (2002): lower bound $7/12 = 0.58\overline{3}$

2. Entropic exponent γ : $Z_N \sim \mu^N N^{\gamma-1}$

d	Coil	Θ	Globule
2	43/32	8/7	different scaling form
3	1.15	$1(\log)$	$Z_N \sim \mu^N \mu_s{}^{N^{\sigma}} N^{\gamma-1}$
4	$1(\log)$	1	$\sigma = (d-1)/d$ (surface)
>4	1	1	[ALO, TP, PRL 70 (1993) 951]

Surface term: $\kappa_N = \frac{1}{N} \log Z_N \sim \kappa + \kappa_s N^{\sigma-1} + \dots$

 $R_N \sim N^{\nu} \mathcal{R}(\Delta T N^{\phi})$

 ϕ crossover exponent

 $Z_N \sim \mu^N N^{\gamma - 1} \mathcal{Z}(\Delta T N^{\phi})$

specific heat of Z_N : $C_N \sim N^{\alpha}$

 $2 - \alpha = 1/\phi$ tri-critical scaling form

Mean Field Theory of the Θ -Point

Balance between "Excluded Volume"–repulsion

and attractive interaction

 \Rightarrow polymer behaves like random walk: $\nu=1/2,\,\gamma=1$

One expects a weak thermodynamic phase transition

 $\Rightarrow \alpha = 0$, i.e. $\phi = 1/2$

 $(d = 2: \phi = 3/7, d = 3: \phi = 1/2(\log), d > 3: \phi = 1/2)$

Why look at $d \ge 4$?

Theoretical predictions for ϕ :

• Mean field theory: $\phi = 1/2$ for d > 3

(=1/2 in d=4)

- Continuous Edwards model (equivalent with field-theoretic formulation): $\phi_E = 2 d/2$ for d > 3
 - Edwards model = Brownian motion
 + suppression of self-intersections + attractive interactions
 field theory is \(\phi^4 \phi^6 O(n)\)-model for \(n \rightarrow 0\)

(=0 in d = 4)

• Edwards model predicts a **shift** of the Θ -point by $N^{-\Psi_E}$:

$$\Psi_E = d/2 - 1$$
 for $d > 3$

(=1 in d = 4)

• Matching of scaling form for R_N : $\phi = d/2 - 1$

$$(=1 \text{ in } d=4)$$

FURTHER MOTIVATIONS ...

• silent assumption: Θ -point exists. But this is not obvious for $d > 3 \dots$

M.A. Moore, J Phys A **10** (1976) 305

 There are indications that the way self-avoidance and interaction enters the modeling influences the critical behavior of the respective Θ-point

vertex avoidance (Walks) \Leftrightarrow edge avoidance (Trails)

nearest-neighbor interaction \Leftrightarrow contact interaction

open questions, unclear theory \Rightarrow simulations of lattice models for polymer collapse, ISAW and ISAT, on \mathbb{Z}^4 and \mathbb{Z}^5

PERM – "GO WITH THE WINNERS" MONTE-CARLO

PERM = Pruned and Enriched Rosenbluth Method

Grassberger, Phys Rev E **56** (1997) 3682

(improvements possible, see e.g. Hsu *et. al.*, cond-mat/0209363)

Rosenbluth Method: kinetic growth

Observation: kinetic growth weights and interactions balance each other at suitable temperatures (near the Θ -point?)

Enrichment: too large weight

 \rightarrow make copies of configuration (and adjust weight) Pruning: too small weight

 \rightarrow remove configuration occasionally (and adjust weight)

PERM - CONTINUED

Kinetic growth is close to the Θ -point (for d large)

→ PERM well suited for simulation of polymer collapse Disadvantage: enrichment creates correlated configurations

 \rightarrow error estimation *a priori* impossible, *a posteriori* difficult

All configurations in a tour are correlated

Cost of simulation for 4d ISAW (600MHz Dec Alpha):

 10^7 configurations with $N_{max} = 16384$ in 2 weeks Further applications for PERM:

branched polymers, DNA, proteins, percolation, ...

 $R_{e,N}^2/N$ as function of the temperature variable ω

- One finds a Θ -point with $R_{e,N}^2/N$ constant
- Collapse region and Θ -region are well separated!

 Θ -point determination: $\omega_{\theta} = 1.182(1)$

 $\omega = 1.40 > \omega_{\theta}$ fixed:

• Change of $R_{e,N}^2$ in N is not monotone

• Surface correction term $\kappa \sim \kappa + \kappa_s N^{-1/4}$?

4D ISAW SIMULATIONS: THE SPECIFIC HEAT

• Collapse region and Θ -region are well separated!

• Scaling behavior of the transition: width \neq shift

 $\omega_{c,N} - \omega_{\theta} \sim N^{-1/3} \qquad \Delta \omega \sim N^{-2/3}$ (?)

Cannot be explained by conventional tri-critical scaling form!

4D ISAW SIMULATIONS: INTERNAL ENERGY DISTRIBUTION

A surprising, unexpected result:

• The internal energy histogram near the collapse shows a bimodal distribution!

The bimodality becomes stronger with increasing system size
 ⇒ no disappearing finite-size crossover effect

MEAN FIELD THEORY OF KHOKHLOV

(Based on works of Lifshitz and Grosberg in d = 3)

Khokhlov, Physica A 105 (1981) 357

• Consider effect of a surface term in the free energy

 $F_N = F_{\text{bulk}} + F_{\text{surface}}$

• classical mean field theory predicts

 $F_{\mathrm bulk} \sim -N(\Delta T)^2$

• extended self-consistent mean field theory predicts

 $F_{\text{surface}} \sim R^{d-1} \sigma$

- globule radius $R \sim (N/|\Delta T|)^{1/d}$
- surface tension $\sigma \sim (\Delta T)^2$

Conclusion:

$$F_N \sim -N(\Delta T)^2 \left[1 - |\Delta T_c/\Delta T|^{(d-1)/d}\right]$$

with $\Delta T_c \sim N^{-1/(d-1)}$

PREDICTIONS OF THE KHOKHLOV THEORY

• Shift of the transition

$$\omega_{c,N} - \omega_{\theta} \sim N^{-1/(d-1)}$$
 $(-1/3 \text{ in } d = 4)$

• Width of the transition

$$\Delta \omega \sim N^{-(d-2)/(d-1)}$$
 $(-2/3 \text{ in } d = 4)$

• Heat of the transition

$$\Delta U \sim N^{-1/(d-1)}$$
 $(-1/3 \text{ in } d = 4)$

• Height of specific heat peak

$$C_{\max} \sim N^{(d-3)/(d-1)}$$
 (1/3 in d = 4)

Conclusion:

Pseudo-First Order Transition

- A sharp transition with aspects of a first-order phase transition (e.g. the heat of the transition ΔU is released in a relatively small temperature range $\Delta \omega$)
- We find a classical second-order phase transition in the thermodynamic limit.

Alternative Interpretation: Internal Energy Distribution

IMPLICATIONS FOR SCALING

• Conventional scaling breaks down: one needs an extended scaling form

 $R_N(T) \sim N^{\nu} \underbrace{\mathcal{R}((T_{\theta} - T) N^{\phi})}_{\mathcal{R}((T_{\theta} - T) N^{\phi})} \underbrace{\frac{\text{collapse}}{\mathcal{S}((T_{c,N} - T) N^{\phi_c})}}_{\mathcal{S}((T_{c,N} - T) N^{\phi_c})}$

with

$$T_{\theta} - T_{c,N} \sim N^{-\psi}$$

i.e. two further exponents for the collapse

Relevance for three-dimensional models:
 Consider trails with contact interactions
 Interactions

Conflicting results:

- existence of a Θ -point (second-order transition)

Prellberg, Owczarek, Phys Rev E 51 (1995) 2142

- bimodal energy distribution (first-order transition)

Grassberger, Hegger, J Phys A **29** (1996) 279

This work opens up a possible new scenario

Comparison ISAW \leftrightarrow ISAT

Motivation:

- Physically relevant open questions in d=3
- Testing of validity of theoretical approaches

Mean field theory predictions:

• An important parameter is

$$rac{v}{a^d}$$

v effective volume of a monomer

 \boldsymbol{a} distance between two monomers on the chain

• influence on scaling behavior:

$$\omega_{c,N} - \omega_{ heta} \sim \left(rac{a^d}{Nv}
ight)^{1/(d-1)}$$

Interpretation for ISAW \leftrightarrow ISAT:

- a lattice constant
- Nearest neighbor interaction \leftrightarrow contact interaction:

$$v_{SAW} >> v_{SAT}$$

Simulations: 4d ISAW \leftrightarrow 4d ISAT

• Bimodality in ISAT at much smaller system sizes

• A comparison shows

 $\frac{v_{SAT}}{v_{SAW}} \approx 0.03$

Simulations: 4 Dimensions \leftrightarrow 5 Dimensions

• Surface effects more pronounced:

bimodality appears at even smaller system sizes

• Peak distance does not (yet?) decrease as $N^{-1/4}$ Need R >> lattice spacing for true asymptotics ($4^5 = 1024$)

SUMMARY

- Existence of a collapse transition in $d \ge 4$
- Θ -point has Gaussian statistics
- \bullet Collapse transition is well separated from $\Theta\text{-point}$
- Khokhlov mean field theory applies:
 - second-order phase transition with strong finite-size corrections
 - At fixed system size, the phase transition appears to be of first-order

Suggestion:

Pseudo-First Order Transition

Are there other systems which show this kind of behavior?