Universality of Crossover Scaling for the Adsorption Transition of Lattice Polymers

Chris Bradly[†], Aleks Owczarek[†], and Thomas Prellberg[‡]

† School of Mathematics and Statistics, The University of Melbourne
 ‡ School of Mathematical Sciences, Queen Mary University of London

Recent Developments in Computer Simulational Studies in Condensed Matter Physics, University of Georgia, February 2018

Adsorption of polymers

Examples:

- adhesion
- wetting
- surface coating
- adsorption chromatography

Motivation:

- numerical vs. field theory results
- universality classes and dimensions
- surface effects

O'Shaugnessy & Vavylonis, J. Phys., 2004

イロト イボト イヨト イヨト

Adsorption of polymers

Eisenriegler, Kremer & Binder, J. Chem. Phys., 1982

(日)

Sac

Lattice models - I

- SAWs are canonical model of lattice polymers - excluded volume of polymer
- R&R weighting for Monte-Carlo simulation
- extensions to interacting systems, SATs, grooves, directed walks etc.
- different universality classes for SAWs and SATs (?)

Lattice models - II

- single polymer; one end attached; dilute bulk solution
- R&R weighting for Monte-Carlo simulation
- microcanonical parameters: length *n*, energy *m*,...
- surface-monomer interaction energy ϵ
- weight $\kappa = \exp(\epsilon/k_BT)$

$$Z_n = \sum_{\text{walks}} \kappa^m$$

- Thermodynamic limit: $u \equiv \partial F / \partial T \sim t^{1-\alpha}$
- Finite system at given temperature: $u_n \equiv \langle m \rangle / n \sim n^{\phi-1}$
- ϕ : controls no. of contacts with surface

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

- Thermodynamic limit: $u \equiv \partial F / \partial T \sim t^{1-\alpha}$
- Finite system at given temperature: $u_n \equiv \langle m \rangle / n \sim n^{\phi-1}$
- ϕ : controls no. of contacts with surface
- Finite-size scaling (FSS) form:

$$u_n \sim n^{\phi-1} f_u(tn^{1/\delta})$$

• $1/\delta$: controls shift of critical temperature: $T_a^{(n)} \sim T_a + n^{-1/\delta} f_T(tn^{1/\delta})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- Thermodynamic limit: $u \equiv \partial F / \partial T \sim t^{1-\alpha}$
- Finite system at given temperature: $u_n \equiv \langle m \rangle / n \sim n^{\phi-1}$
- ϕ : controls no. of contacts with surface
- Finite-size scaling (FSS) form:

$$u_n \sim n^{\phi-1} f_u(tn^{1/\delta})$$

- $1/\delta$: controls shift of critical temperature: $T_a^{(n)} \sim T_a + n^{-1/\delta} f_T(tn^{1/\delta})$
- But starting from the partition function:

$$Z_n \sim \mu_a^n n^{\gamma-1} f_Z\left(tn^{1/\delta}
ight)$$

• this form implies (log, derivative, etc): $u_n \sim n^{1/\delta - 1} f_u(tn^{1/\delta})$

• Thus:
$$\phi = 1/\delta$$

- Thermodynamic limit: $u \equiv \partial F / \partial T \sim t^{1-\alpha}$
- Finite system at given temperature: $u_n \equiv \langle m \rangle / n \sim n^{\phi-1}$
- ϕ : controls no. of contacts with surface
- Finite-size scaling (FSS) form:

$$u_n \sim n^{\phi-1} f_u(tn^{1/\delta})$$

- $1/\delta$: controls shift of critical temperature: $T_a^{(n)} \sim T_a + n^{-1/\delta} f_T(tn^{1/\delta})$
- But starting from the partition function:

$$Z_n \sim \mu_a^n n^{\gamma-1} f_Z\left(tn^{1/\delta}
ight)$$

- this form implies (log, derivative, etc): $u_n \sim n^{1/\delta-1} f_u(tn^{1/\delta})$
- Thus: $\phi = 1/\delta$
- no problem in 2D, debate in 3D
- universality with respect to interaction

Non-universality for 3d ISAW?

"... suggest that the critical line does not seem to be universal under general solvent conditions"

Plascak, Martins & Bachmann, PRE 95 050501(R), 2017

Outputs estimated microcanonical density of states, W_{n,m}

$$Z_n(\kappa) = \sum_m \kappa^m W_{n,m} \quad , \quad \langle Q
angle = rac{1}{Z_n} \sum_m \hat{Q}(m) \kappa^m W_{n,m}$$

- R&R weighting: $W_{n,m} \propto$ no. available steps
- prune/enrich cycle (Grassberger 1997)
- flattening histogram to access all parts of energy space
- athermal; all lengths up to some N_{max}

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Table: Details of flatPERM simulations. In all cases the number of samples and effectively independent samples is the average of 10 independent runs.

Lattice	Walks/ trails	Max length	Iterations	Samples at max length	Ind. samples max length
hex	SAW	4096	1.8×10^{7}	$2.3 imes 10^{9}$	1.0×10^{7}
hex	SAW	1024	$5.5 imes10^5$	$2.0 imes 10^{10}$	$2.6 imes 10^{8}$
squ squ	SAW SAT	1024 1024	$\begin{array}{c} 3.7\times10^5\\ 3.7\times10^5\end{array}$	$3.9 imes 10^{10}$ $3.9 imes 10^{10}$	$\begin{array}{c} 3.2\times10^8\\ 3.1\times10^8\end{array}$
SC SC	SAW SAT	1024 1024	$\begin{array}{c} 4.4\times10^5\\ 4.4\times10^5\end{array}$	$3.5 imes 10^{10} \ 3.4 imes 10^{10}$	$\begin{array}{c} 5.4 \times 10^8 \\ 5.9 \times 10^8 \end{array}$

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Extracting exponents

FSS form: $u_n \sim n^{\phi-1} f_u^{(0)}(tn^{1/\delta}) [1 + n^{-\Delta} f_u^{(1)}(tn^{1/\delta}) + \ldots]$

- direct: extract ϕ as leading order term; $\phi \sim 1 + \log(u_n/u_{n/2})$
- **Gamma**: extract $1/\delta$ from $\Gamma_n \equiv \partial \log u_n / \partial T \Rightarrow \max \Gamma_n \sim n^{1/\delta}$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Extracting exponents

FSS form: $u_n \sim n^{\phi-1} f_u^{(0)}(tn^{1/\delta}) [1 + n^{-\Delta} f_u^{(1)}(tn^{1/\delta}) + \ldots]$

- direct: extract ϕ as leading order term; $\phi \sim 1 + \log(u_n/u_{n/2})$
- **Gamma**: extract $1/\delta$ from $\Gamma_n \equiv \partial \log u_n / \partial T \Rightarrow \max \Gamma_n \sim n^{1/\delta}$
- R2: Universal value of Flory exponent v of polymer size in each direction
- **BC**: Universal value of Binder cumulant $U_4 = 1 \langle m^4 \rangle / 3 \langle m^2 \rangle^2$
- ratio: crossover of direct φ curves

・ ロ ト ・ 一型 ト ・ 目 ト

Square lattice SAWs: Critical temperatures

CJ Bradly, AL Owczarek, and T Prellberg Crossover Scaling for Adsorption

Square lattice SAWs: Exponent results

500

э

∍⊳

- 4 億 ト 4 Ξ

- hexagonal lattice SAW
- hexagonal lattice SAW at exact $T_c = 1/\log(1 + \sqrt{2})$
- square lattice SAT
- square lattice repulsive ISAT (a. k. a. SAW)

SQA

Ŀ

< ロト < 同ト < ヨト < ヨト -

All 2D lattices: exponents

- hexagonal lattice SAW
- hexagonal lattice SAW at exact $T_c = 1/\log(1 + \sqrt{2})$
- square lattice SAT
- square lattice repulsive ISAT (a. k. a. SAW)

< ロト < 同ト < 三ト <

Sac

All 2D lattices: exponents

- hexagonal lattice SAW at exact $T_c = 1/\log(1 + \sqrt{2})$
- square lattice SAT
- square lattice repulsive ISAT (a. k. a. SAW)

averaging of "independent estimates":

 $\phi_{2D} [= 1/\delta] = 0.501(2)$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Sac

All lattices: exponents

2D

3D

 $\phi_{2D} [= 1/\delta] = 0.501(2)$

$$\phi_{3D} [= 1/\delta] = 0.484(4)$$

イロト (得) (ラ) (ラ)

Э

Summary & Outlook

Conclusion

- $\phi \neq 1/\delta$ not confirmed
- $\phi_{3D} < 1/2$ confirmed; i.e. not superuniversal
- variation of \u03c6 with interaction not confirmed*
- statistical error < systematic error
- flatPERM good for accessing enough parameter space for this problem; still has standard limitation of finite size

Future questions

- closer look at varying interaction strength but with trails*
- other interactions/lattices/models

Article: PRE 97 022503, 16 Feb 2018

くロト (得) (ヨト (ヨト) ヨ