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Random walks

Winding of N-step random walk about origin

Hu and Rudnick, 1987

Winding angle θ measured with respect to direction of first step
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Brownian motion

Winding of Brownian path of length N about origin

An infinitesimal winding center leads to divergent higher moments

P(x = 2θ/ logN) ∼ 1

1 + x2
(Spitzer’s law, 1958)

with adsorbing finite winding center

P(x = 2θ/ logN) ∼ 1

cosh2(1 + πx/2)

with reflecting finite winding center

P(x = 2θ/ logN) ∼ 1

cosh(1 + πx/2)
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Swollen polymers

Winding angle distribution is Gaussian

P(x = θ/
√

logN) ∼ exp(−x2/(2C ))

and the scaling variable has changed from θ/ logN to θ/
√

logN

Heuristic argument

Excluded volume leads to swelling ν > νRW = 1/2

Winding of segments N/2, N/4, N/8, . . . become independent

N-step chain has O(logN) independent segments

Law-of-large-numbers implies Gaussian distribution
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The constant C is universal

Prediction from Coulomb Gas methods (Duplantier and Saleur, 1988)

P(x = θ/
√

logN) ∼ exp(−x2/(2C ))

with

C =


2 swollen phase

24/7 critical state

4 dense phase

Also derivable from SLE (Gherardi, 2015, private communication)
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FlatPERM
Simulations of ISAW
Simulations of ISAT

FlatPERM

Simulations of an interacting lattice polymer using FlatPERM
(TP and Krawczyk, 2004)

Based on Pruned and Enriched Rosenbluth Method
(Grassberger, 1997)

Add uniform sampling with respect to

number of contacts m (energy E = −mJ)
winding angle θ

Winding angle θ is not discrete =⇒ binning

A Narros, AL Owczarek, and T Prellberg Winding angle distributions of interacting polymers



Theory
Simulations

FlatPERM
Simulations of ISAW
Simulations of ISAT

FlatPERM

Simulations of an interacting lattice polymer using FlatPERM
(TP and Krawczyk, 2004)

Based on Pruned and Enriched Rosenbluth Method
(Grassberger, 1997)

Add uniform sampling with respect to

number of contacts m (energy E = −mJ)
winding angle θ

Winding angle θ is not discrete =⇒ binning

A Narros, AL Owczarek, and T Prellberg Winding angle distributions of interacting polymers



Theory
Simulations

FlatPERM
Simulations of ISAW
Simulations of ISAT

FlatPERM

Simulations of an interacting lattice polymer using FlatPERM
(TP and Krawczyk, 2004)

Based on Pruned and Enriched Rosenbluth Method
(Grassberger, 1997)

Add uniform sampling with respect to

number of contacts m (energy E = −mJ)
winding angle θ

Winding angle θ is not discrete =⇒ binning

A Narros, AL Owczarek, and T Prellberg Winding angle distributions of interacting polymers



Theory
Simulations

FlatPERM
Simulations of ISAW
Simulations of ISAT

FlatPERM

Simulations of an interacting lattice polymer using FlatPERM
(TP and Krawczyk, 2004)

Based on Pruned and Enriched Rosenbluth Method
(Grassberger, 1997)

Add uniform sampling with respect to

number of contacts m (energy E = −mJ)
winding angle θ

Winding angle θ is not discrete =⇒ binning

A Narros, AL Owczarek, and T Prellberg Winding angle distributions of interacting polymers



Theory
Simulations

FlatPERM
Simulations of ISAW
Simulations of ISAT

Interacting Self-avoiding Walk (ISAW)
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Self-avoiding walk (ISAW for β = 0)
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Collapsing self-avoiding walk (ISAW for β = 0.6637)
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Collapsed self-avoiding walk (ISAW for β = 0.8)

400
300

200
100

sc
al

ed
 d

en
si

ty

1e-80

1e-60

1e-40

1e-20

1

scaled winding angle
−10 0 10

400
300
200
100

sc
al

ed
 d

en
si

ty

0

0.2

0.4

scaled winding angle
−4 −2 0 2 4

A Narros, AL Owczarek, and T Prellberg Winding angle distributions of interacting polymers



Theory
Simulations

FlatPERM
Simulations of ISAW
Simulations of ISAT

Scaling of the variance
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Gaussian nature and universality predictions confirmed
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Interacting Self-avoiding Trail (ISAT)

Canonical model: interacting self-avoiding walks (ISAW)
vertex avoidance and nearest-neighbor interaction

Alternative model: interacting self-avoiding trails (ISAT)
edge avoidance and contact interaction

Critical temperature for ISAT is known exactly: β = log 3
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Deviations from Gaussian behavior
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Kurtosis
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Scaling of the variance
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Fitting to stretched exponential
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Best fit at critical point
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Scaling of the variance revisited
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Scaling variable x = θ/(logN)1/ζ with ζ = 1.45
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Conclusions

ISAW

Winding angle distribution for ISAW is Gaussian at all temperatures
Predictions from Coulomb Gas methods (and SLE) are confirmed
Scaling variable

x = θ/
√

logN

ISAT

Winding angle distribution for ISAT is not Gaussian at and below
critical temperature
At criticality, the distribution is consistent with a stretched
exponential, the scaling variable is

x = θ/(logN)1/ζ with ζ = 1.45

At low temperatures, ζ seems to become smaller
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