Forcing Adsorption of a Tethered Polymer by Pulling

Judy-anne Osborn (ANU) and Thomas Prellberg (QMUL)

Dynamical Systems and Statistical Physics Seminar 23 March 2010

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Forcing Adsorption of a Tethered Polymer by Pulling

Judy-anne Osborn (ANU) and Thomas Prellberg (QMUL

Walk above a wall

Figure: A walk with weight $x^{10}y^{17}\kappa^2\mu^3$

Forcing Adsorption of a Tethered Polymer by Pulling

Judy-anne Osborn (ANU) and Thomas Prellberg (QMUL

Walk above a wall

Figure: A walk with weight $x^{10}y^{17}\kappa^2\mu^3$

Generating function G

$$G(x, y, \kappa; \mu) = \sum_{N, M, K, H \ge 0} C_{N, M, K, H} x^N y^M \kappa^K \mu^H$$

Generating function - functional equation

Abbreviate $G(\mu) := G(x, y, \kappa; \mu)$. Then

 $G(\mu) = \kappa x$ $+G(\mu)\Big(x$ + $\frac{xy\mu}{1-y\mu}$ $+ \qquad \frac{x \frac{y}{\mu}}{1 - \frac{y}{\mu}} \bigg)$ $-\frac{x}{1-\frac{y}{\mu}}G(y) +\kappa xG(y)$

horizontal step at height 0

horizontal step at height > 0

vertical steps up, then horizontal

vertical steps down, then horizontal

minus over-counting; *y* fills to surface plus contact weights

•
$$\underbrace{\left(1 - \frac{x(1-y^2)}{1-y(\mu+\frac{1}{\mu})+y^2}\right)}_{\text{Set kernel= 0;}} G(\mu) = \kappa x - x \left(\frac{1}{1-\frac{y}{\mu}} - \kappa\right) G(y)$$

Forcing Adsorption of a Tethered Polymer by Pulling

•
$$\underbrace{\left(1 - \frac{x(1-y^2)}{1-y(\mu+\frac{1}{\mu})+y^2}\right)}_{\text{Set kernel= 0;}} G(\mu) = \kappa x - x \left(\frac{1}{1-\frac{y}{\mu}} - \kappa\right) G(y)$$

• Quadratic equation:

$$y\mu^2 - (1 - x + y^2 + xy^2)\mu + y = 0$$

Forcing Adsorption of a Tethered Polymer by Pulling

ludy-anne Osborn (ANU) and Thomas Prellberg (QMUL

•
$$\underbrace{\left(1 - \frac{x(1-y^2)}{1-y(\mu+\frac{1}{\mu})+y^2}\right)}_{\text{Set kernel= 0;}} G(\mu) = \kappa x - x \left(\frac{1}{1-\frac{y}{\mu}} - \kappa\right) G(y)$$

• Quadratic equation:

$$y\mu^2 - (1 - x + y^2 + xy^2)\mu + y = 0$$

• Choosing correct root μ_0 gives

$$G(y) = \frac{\kappa \not x}{\left(\frac{1}{1-\frac{y}{\mu_0}} - \kappa\right) \not x}$$

Judy-anne Osborn (ANU) and Thomas Prellberg (QMUL

•
$$\underbrace{\left(1 - \frac{x(1-y^2)}{1-y(\mu+\frac{1}{\mu})+y^2}\right)}_{\text{Set kernel= 0;}} G(\mu) = \kappa x - x \left(\frac{1}{1-\frac{y}{\mu}} - \kappa\right) G(y)$$

Quadratic equation:

$$y\mu^2 - (1 - x + y^2 + xy^2)\mu + y = 0$$

• Choosing correct root μ_0 gives

$$G(y) = \frac{\kappa \not x}{\left(\frac{1}{1-\frac{y}{\mu_0}}-\kappa\right)\not x}$$

• Back-substitute to solve for $G(\mu)$ in terms of G(y)

$$G(x, y, \kappa; \mu) = \kappa x \left(\frac{1 - \left(\frac{\mu - \kappa(\mu - y)}{\mu - y}\right) \left(\frac{\mu_0 - y}{\mu_0 - \kappa(\mu_0 - y)}\right)}{1 - \left(\frac{x(1 - y^2)}{1 - y\left(\mu + \frac{1}{\mu}\right) + y^2}\right)} \right)$$

where

$$\mu_0 = \frac{(1 - x + y^2 + xy^2) - \sqrt{-4y^2 + (1 - x + y^2 + xy^2)^2}}{2y}$$

Forcing Adsorption of a Tethered Polymer by Pulling

Judy-anne Osborn (ANU) and Thomas Prellberg (QMUI

Finite-step partition function

 We're interested in the partition function Z_L for walks of length L

$$G(x = \lambda t, y = t, \kappa; \mu) = \sum_{L \ge 0} t^L Z_L(\lambda, \mu, \kappa)$$

- t : conjugate to path length
- λ : conjugate to *horizontal position*
- μ : conjugate to *vertical position*

Finite-step partition function

 We're interested in the partition function Z_L for walks of length L

$$G(x = \lambda t, y = t, \kappa; \mu) = \sum_{L \ge 0} t^L Z_L(\lambda, \mu, \kappa)$$

- t : conjugate to path length
- λ : conjugate to *horizontal position*
- μ : conjugate to vertical position
- The singularities of G determine the asymptotic growth of Z_L

• G has a square root singularity at t at

$$\lambda t^2 + (1+\lambda)t - 1 = 0$$

Forcing Adsorption of a Tethered Polymer by Pulling

udy-anne Osborn (ANU) and Thomas Prellberg (QMU

• G has a square root singularity at t at

$$\lambda t^2 + (1+\lambda)t - 1 = 0$$

For $\mu > 1$, this singularity is dominated by a simple pole in t at

$$\lambda t^{3} + t^{2} - \left(\lambda + \mu + \frac{1}{\mu}\right)t + 1 = 0$$

• G has a square root singularity at t at

$$\lambda t^2 + (1+\lambda)t - 1 = 0$$

For $\mu > 1$, this singularity is dominated by a simple pole in t at

$$\lambda t^{3} + t^{2} - \left(\lambda + \mu + \frac{1}{\mu}\right)t + 1 = 0$$

• G has another simple pole in t at

$$\kappa\lambda t^{3} - \frac{\kappa}{\kappa - 1}t^{2} - \kappa\lambda t + 1 = 0$$

Forcing Adsorption of a Tethered Polymer by Pulling

udy-anne Osborn (ANU) and Thomas Prellberg (QMUI

• G has a square root singularity at t at

$$\lambda t^2 + (1+\lambda)t - 1 = 0$$

For $\mu > 1$, this singularity is dominated by a simple pole in t at

$$\lambda t^{3} + t^{2} - \left(\lambda + \mu + \frac{1}{\mu}\right)t + 1 = 0$$

• G has another simple pole in t at

$$\kappa\lambda t^{3} - \frac{\kappa}{\kappa - 1}t^{2} - \kappa\lambda t + 1 = 0$$

• These poles coincide ("Phase transition") when

$$\lambda = \frac{\kappa \mu (\kappa - 1 - \kappa \mu^2)}{(\kappa - 1)[(\kappa - 1)^2 - \kappa^2 \mu^2]}$$

Phase diagram in (κ, λ, μ)

Physical Variables

• Energy of a configuration:

$$E = KJ - NF_x - HF_y$$

- $KJ \equiv (number of contacts) \times (energy per contact)$
- $NF_x \equiv$ (horizontal distance) \times (horizontal force)
- $HF_y \equiv$ (vertical distance) \times (vertical force)

Physical Variables

• Energy of a configuration:

$$E = KJ - NF_x - HF_y$$

- KJ ≡ (number of contacts) × (energy per contact)
- $NF_x \equiv$ (horizontal distance) \times (horizontal force)
- $HF_y \equiv$ (vertical distance) \times (vertical force)
- Weight of a configuration:

$$e^{-\frac{1}{kT} \times E} = e^{-\frac{1}{kT} \times (KJ - NF_x - HF_y)}$$
$$= e^{-\frac{KJ}{kT}} e^{\frac{NF_x}{kT}} e^{\frac{HF_y}{kT}}$$
$$= \kappa^K \lambda^N \mu^H$$

Forcing Adsorption of a Tethered Polymer by Pulling

ludy-anne Osborn (ANU) and Thomas Prellberg (QMUL

Physical Variables

• Energy of a configuration:

$$E = KJ - NF_x - HF_y$$

- KJ ≡ (number of contacts) × (energy per contact)
- $NF_{x} \equiv$ (horizontal distance) \times (horizontal force)
- $HF_y \equiv$ (vertical distance) \times (vertical force)
- Weight of a configuration:

$$e^{-\frac{1}{kT} \times E} = e^{-\frac{1}{kT} \times (KJ - NF_x - HF_y)}$$

= $e^{-\frac{KJ}{kT}} e^{\frac{NF_x}{kT}} e^{\frac{HF_y}{kT}}$
= $\kappa^K \lambda^N \mu^H$

• Normalize (by letting k = 1 and choosing J = -1):

$$\kappa = e^{rac{1}{T}} \;, \quad \lambda = e^{rac{F\cos heta}{T}} \;, \quad \mu = e^{rac{F\sin heta}{T}}$$

Phase diagram in (θ, T, F)

Varying the pulling angle

• Thermal desorption at $T=1/\log(1+\sqrt{2}/2)pprox 1.87$

Forcing Adsorption of a Tethered Polymer by Pulling

Judy-anne Osborn (ANU) and Thomas Prellberg (QMUL

Varying the pulling angle

- Thermal desorption at $T = 1/\log(1+\sqrt{2}/2) \approx 1.87$
- Vertical pulling, $\theta = 90^{\circ}$ (left curve): Increasing *F* favours desorption

Varying the pulling angle

- Thermal desorption at $T=1/\log(1+\sqrt{2}/2)pprox 1.87$
- Vertical pulling, $\theta = 90^{\circ}$ (left curve): Increasing F favours desorption
- Horizontal pulling, $\theta = 0^{\circ}$ (right curve): Increasing *F* disfavours desorption

$$heta= an^{-1}(1/2)pprox 26.565^o$$

Forcing Adsorption of a Tethered Polymer by Pulling

udy-anne Osborn (ANU) and Thomas Prellberg (QMUI

$$\theta = \tan^{-1}(1/2) \approx 26.565^{\circ}$$

• If $\theta \leq \tan^{-1}(1/2)$, pulling will never induce desorption (and will eventually induce adsorption).

$$\theta = \tan^{-1}(1/2) \approx 26.565^o$$

- If $\theta \leq \tan^{-1}(1/2)$, pulling will never induce desorption (and will eventually induce adsorption).
- At T = 0 desorption occurs when

$$F = \frac{1}{\sin \theta - \cos \theta}$$

Forcing Adsorption of a Tethered Polymer by Pulling

ludy-anne Osborn (ANU) and Thomas Prellberg (QMUI

$$\theta = \tan^{-1}(1/2) \approx 26.565^o$$

- If $\theta \leq \tan^{-1}(1/2)$, pulling will never induce desorption (and will eventually induce adsorption).
- At T = 0 desorption occurs when

$$F = \frac{1}{\sin \theta - \cos \theta}$$

• Once $\theta \leq 45^{o}$, no zero-temperature desorption occurs.

• To study transition between desorbed/adsorbed phases, consider the surface coverage

$$\mathcal{C} := \lim_{L \to \infty} \frac{1}{L} \langle K \rangle = \frac{\partial \log t_c}{\partial \log \kappa}$$

• To study transition between desorbed/adsorbed phases, consider the surface coverage

$$\mathcal{C} := \lim_{L \to \infty} \frac{1}{L} \langle K \rangle = \frac{\partial \log t_c}{\partial \log \kappa}$$

- Desorbed phase: C = 0
- Adsorbed phase: C > 0 (C = 1 for complete coverage)

• To study transition between desorbed/adsorbed phases, consider the surface coverage

$$\mathcal{C} := \lim_{L \to \infty} \frac{1}{L} \langle K \rangle = \frac{\partial \log t_c}{\partial \log \kappa}$$

- Desorbed phase: C = 0
- Adsorbed phase: C > 0 (C = 1 for complete coverage)
- $\bullet\,$ First-order transition: discontinuity in ${\cal C}$

No first order transition because pulling is purely horizontal here

The solution extends to 3 dimensions

via a substitution

Forcing Adsorption of a Tethered Polymer by Pulling

Judy-anne Osborn (ANU) and Thomas Prellberg (QMUL

From walks above a line to walks above a slab

Forcing Adsorption of a Tethered Polymer by Pulling

Judy-anne Osborn (ANU) and Thomas Prellberg (QMUL

From walks above a line to walks above a slab

Substitution

$$x \leftarrow \lambda_1 t + \lambda_2 t$$

The same generating function G as for the two-dimensional case!

$$\sum_{L\geq 0} t^L Z_L(\lambda_1, \lambda_2, \mu, \kappa) = G(x = \lambda_1 t + \lambda_2 t, y = t, \kappa; \mu)$$

- t : conjugate to path length
- λ_i : conjugate to *horizontal positions*
- μ : conjugate to *vertical position*

The same generating function G as for the two-dimensional case!

$$\sum_{L\geq 0} t^L Z_L(\lambda_1, \lambda_2, \mu, \kappa) = G(x = \lambda_1 t + \lambda_2 t, y = t, \kappa; \mu)$$

- t : conjugate to path length
- λ_i : conjugate to *horizontal positions*
- μ : conjugate to *vertical position*

Physical variables

$$\kappa = e^{\frac{1}{T}}$$
, $\lambda_1 = e^{\frac{F\cos\theta\cos\phi}{T}}$, $\lambda_2 = e^{\frac{F\cos\theta\sin\phi}{T}}$, $\mu = e^{\frac{F\sin\theta}{T}}$

where ϕ is the horizontal pulling angle

Phase diagram in (θ, T, F) for diagonal pulling

 $\phi = 45^{o}$

Forcing Adsorption of a Tethered Polymer by Pulling

Judy-anne Osborn (ANU) and Thomas Prellberg (QMUL

• Thermal desorption at $T=1/\log(7/8+\sqrt{17}/8)pprox 3.03$

Forcing Adsorption of a Tethered Polymer by Pulling

Judy-anne Osborn (ANU) and Thomas Prellberg (QMUL

- Thermal desorption at $T = 1/\log(7/8 + \sqrt{17}/8) \approx 3.03$
- Reentrance phenomenon in three dimensions (due to non-zero entropy of an adsorbed walk)

A clear first-order transition for F > 0

Forcing Adsorption of a Tethered Polymer by Pulling

ludy-anne Osborn (ANU) and Thomas Prellberg (QMUL

 $\phi = 45^{\circ}$ $\theta = 54^{\circ}$

 $\phi = 45^{\circ}$ $\theta = 36^{\circ}$

 $\phi = 45^{\circ}$ $\theta = 18^{\circ}$

 $\phi = 45^{\circ}$ $\theta = 0^{\circ}$

No first order transition because pulling is purely horizontal here

$$(\phi = 45^o \text{ only})$$

• At T = 0 desorption occurs when

$$F = \frac{2}{2\sin\theta - \sqrt{2}\cos\theta}$$

 $(\phi = 45^o \text{ only})$

• At T = 0 desorption occurs when

$$F = \frac{2}{2\sin\theta - \sqrt{2}\cos\theta}$$

• If $\theta \leq \tan^{-1}(\sqrt{2}/2) \approx 35.264^{o}$, no zero-temperature desorption occurs.

($\phi = 45^o$ only)

• At T = 0 desorption occurs when

$$F = \frac{2}{2\sin\theta - \sqrt{2}\cos\theta}$$

- If $\theta \leq \tan^{-1}(\sqrt{2}/2) \approx 35.264^{\circ}$, no zero-temperature desorption occurs.
- At F = 0 the desorption curve has vertical slope when

$$heta = an^{-1}((1+\sqrt{17}/17)\sqrt{2}/4) pprox 23.716^o$$

 $(\phi = 45^o \text{ only})$

• At T = 0 desorption occurs when

$$F = \frac{2}{2\sin\theta - \sqrt{2}\cos\theta}$$

- If $\theta \leq \tan^{-1}(\sqrt{2}/2) \approx 35.264^{o}$, no zero-temperature desorption occurs.
- At F = 0 the desorption curve has vertical slope when

$$heta = an^{-1}((1+\sqrt{17}/17)\sqrt{2}/4) pprox 23.716^o$$

• If $\theta \leq 23.716^{\circ}$, pulling will never induce desorption (and will eventually induce adsorption).

An alternative 3-dim walk model

Recall the 2-dimensional model

Judy-anne Osborn (ANU) and Thomas Prellberg (QMUL

Recall the 2-dimensional model

Before each x/y-step, allow steps in z-direction

$$t \leftarrow t\left(1+2t+2t^2+2t^3+\ldots\right) = \lambda t rac{1+t}{1-t}$$

Forcing Adsorption of a Tethered Polymer by Pulling

Judy-anne Osborn (ANU) and Thomas Prellberg (QMU

Recall the 2-dimensional model

Before each x/y-step, allow steps in z-direction

$$t \leftarrow t\left(1 + 2t + 2t^2 + 2t^3 + \ldots\right) = \lambda t \frac{1+t}{1-t}$$

Adjust interaction weights accordingly for steps in the surface

Walks above a slab II

Again, a simple substitution into the two-dimensional generating function ${\cal G}$

$$\sum_{L\geq 0} t^L Z_L(\lambda,\mu,\kappa) =$$

$$G(x = \lambda t \frac{1+t}{1-t}, y = t \frac{1+t}{1-t}, \kappa \frac{1-t}{1+t} \frac{1+\kappa t}{1-\kappa t}; \mu)$$

- t : conjugate to path length
- λ : conjugate to *horizontal position*
- μ : conjugate to *vertical position*

Walks above a slab II

Again, a simple substitution into the two-dimensional generating function ${\cal G}$

$$\sum_{L\geq 0} t^L Z_L(\lambda,\mu,\kappa) =$$

$$G(x = \lambda t \frac{1+t}{1-t}, y = t \frac{1+t}{1-t}, \kappa \frac{1-t}{1+t} \frac{1+\kappa t}{1-\kappa t}; \mu)$$

- t : conjugate to path length
- λ : conjugate to *horizontal position*
- μ : conjugate to *vertical position*

Physical variables

$$\kappa = e^{\frac{1}{T}} \;, \quad \lambda = e^{\frac{F\cos\theta}{T}} \;, \quad \mu = e^{\frac{F\sin\theta}{T}}$$

Phase diagram in (θ, T, F) for diagonal pulling

 $\phi = 45^{\circ}$

Forcing Adsorption of a Tethered Polymer by Pulling

Judy-anne Osborn (ANU) and Thomas Prellberg (QMUL

• Thermal desorption at $T \approx 3.07$

Judy-anne Osborn (ANU) and Thomas Prellberg (QMUI

- Thermal desorption at $T \approx 3.07$
- Here, the reentrance phenomenon is present but vanishes if pulling is sufficiently shallow!

• Pulling tethered polymers

Forcing Adsorption of a Tethered Polymer by Pulling

Judy-anne Osborn (ANU) and Thomas Prellberg (QMUL

- Pulling tethered polymers
- Walk models Kernel method

- Pulling tethered polymers
- Walk models Kernel method
- Re-entrance phenomena

- Pulling tethered polymers
- Walk models Kernel method
- Re-entrance phenomena

Shallow pulling or increasing T can favour adsorption

THE END

Forcing Adsorption of a Tethered Polymer by Pulling

Judy-anne Osborn (ANU) and Thomas Prellberg (QMUL