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Walks in a Triangle

Walk with 10 steps inside a triangle of side-length 6
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Counting Walks

Parameters

Side-length L

Number of steps n

Starting point a

End point b

Number of n-step walks from a to b within triangle of side-length L

ca,bn,L

Generating function

Z a,b
L (t) =

∑
ca,bn,Lt

n
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Counting Walks

Generating function

Z a,b
L (t) =

∑
ca,bn,Lt

n

Finite transition matrix ⇒ Rational generating function(
L+2
2

)
vertices ⇒ Degree of polynomials grows quadratically in L

It is surprisingly difficult to give a closed-form expression for Z a,b
L (t)
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Some Notation

Associate to each vertex three coordinates (nx , ny , nz)

n

n

nz

y

x(0,0,L) (L,0,0)

(0,L,0)

nx + ny + nz = L

For example, the point in the triangle above is given by p = (1, 2, 3)
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Some Notation

n

n

nz

y

x(0,0,L) (L,0,0)

(0,L,0)

Generating function

Z a,b
L (t) =

∑
n

ca,bn,Lt
n

Consider new generating function by summing over end-point positions

G a
L (x , y , z ; t) =

∑
nx ,ny ,nz

Z
a,(nx ,ny ,nz )
L (t)xnx yny znz
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Some Notation

n

n

nz

y

x(0,0,L) (L,0,0)

(0,L,0)

Fix L and a, drop t and write

G (x , y , z) ≡ G a
L (x , y , z ; t)

As nx + ny + nz = L, G is homogeneous of degree L

G (γx , γy , γz) = γLG (x , y , z)
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Changing the Dimension

Triangle of side-length L, starting point a = (u, v ,w) with u + v +w = L:

n

n

nz

y

x(0,0,L) (L,0,0)

(0,L,0)

G (x , y , z) =
∑

nx ,ny ,nz ,t

c
(u,v ,w),(nx ,ny ,nz )
n,L xnx yny znz tn

Line of length L, starting point a = (u, v) with u + v = L:

ny
nx(0,L) (L,0)

G (x , y) =
∑

nx ,ny ,t

c
(u,v),(nx ,ny )
n,L xnx yny tn

Obvious generalisation to tetrahedron and higher dimensions
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The Line

Line of length L, starting point a = (u, v) with u + v = L:

ny
nx(0,L) (L,0)

G (x , y) =
∑

nx ,ny ,t

c
(u,v),(nx ,ny )
n,L xnx yny tn

G (x , y) = xuy v zero-length walk

+G (x , y)t
x

y
take walk and add a step to the right

+G (x , y)t
y

x
take walk and add a step to the left

−G (x , 0)t
x

y
forbid stepping past the right boundary

−G (0, y)t
y

x
forbid stepping past the left boundary
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The Line

Line of length L, starting point a = (u, v) with u + v = L:

Functional equation[
1− t

(
x

y
+

y

x

)]
︸ ︷︷ ︸

Kernel

G (x , y) = xuy v − t
x

y
G (x , 0)− t

y

x
G (0, y)

Note that the length L only enters the functional equation through xuy v

The Kernel

K (x , y) = 1− t

(
x

y
+

y

x

)
will be central to finding a solution of this functional equation
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The Line
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The Triangle

Triangle of side-length L, starting point a = (u, v ,w) with u + v +w = L:

n

n

nz

y

x(0,0,L) (L,0,0)

(0,L,0)

K (x , y , z)G (x , y , z) = xuy vzw

−t
(y
x

+
z

x

)
G (0, y , z)

−t
(
z

y
+

x

y

)
G (x , 0, z)

−t
(x
z

+
y

z

)
G (x , y , 0)

with the Kernel

K (x , y , z) = 1− t

(
y

x
+

z

x
+

z

y
+

x

y
+

x

z
+

y

x

)
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The Kernel Method

Loosely speaking, the Kernel Method consists of

setting the Kernel equal to zero and manipulating the RHS, or

using variable transformations that leave the Kernel invariant and
cancelling terms on the RHS, or

staring at the stuff until you get a good idea . . .

This gives rise to various variations, known as the elementary Kernel
method, the algebraic Kernel method, the obstinate Kernel method, the
iterative Kernel method, and so forth

The experts will recognize in what follows yet another variation of the
theme
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The Line

Recall the functional equation

K (x , y)G (x , y) = xuy v − t
x

y
G (x , 0)− t

y

x
G (0, y)

with the Kernel

K (x , y) = 1− t

(
x

y
+

y

x

)

The Kernel is invariant under

K (x , y) = K (y , x) = K (λx , λy)

In particular,

K (p, 1) = K (1, p) = 1− t(p + 1/p)
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The Line

Now choose p such that

K (p, 1) = K (1, p) = 1− t(p + 1/p) = 0

Specialize (x , y) = (1, p) and (x , y) = (p, 1)

0 =pu − tpG (p, 0)− t

p
G (0, 1)

0 =pv − t

p
G (1, 0)− tpG (0, p)

Use homogeneity G (p, 0) = pLG (1, 0) and G (0, p) = pLG (0, 1)

0 =pu − tp1+LG (1, 0)− t

p
G (0, 1)

0 =pv − t

p
G (1, 0)− tp1+LG (0, 1)
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This leads to a complete solution

Proposition

The generating function G (x , y) counting n-step walks on a line of length
L starting at (u, v) is given by

G (x , y) =
1

1−
x
y + y

x

p + 1
p

(
xuy v − xu+v+1pv+1(1− p2u+2)

y(1− p2u+2v+4)

− yu+v+1pu+1(1− p2v+2)

x(1− p2u+2v+4)

)
,

where

p =
1−
√

1− 4t2

2t
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Specializing to x = y = 1, the result looks quite pleasant

Corollary

The generating function G (1, 1) counting n-step walks on a line of length
L starting at (u, v) with no restrictions on the endpoint is given by

G (1, 1) =
(1 + p2)(1− pu+1)(1− pv+1)

(1− p)2(1 + pu+v+2)
,

where

p =
1−
√

1− 4t2

2t
.
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The Kernel

K (x , y , z) = 1− t

(
y

x
+

z

x
+

z

y
+

x

y
+

x

z
+

y

x

)
is invariant under

K (1, 1, p) = K (1, p, 1) = K (p, 1, 1) = K (1, p, p) = K (p, 1, p) = K (p, p, 1)

Choose p such that

K (1, 1, p) = 1− 2t(p + 1 + 1/p) = 0
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We find

2t

p
G (0, 1, 1) + t(1 + p)G (p, 0, 1) + t(p + 1)G (p, 1, 0) = pu

2t

p
G (1, 0, 1) + t(p + 1)G (0, p, 1) + t(1 + p)G (1, p, 0) = pv

2t

p
G (1, 1, 0) + t(1 + p)G (0, 1, p) + t(p + 1)G (1, 0, p) = pw

2tpG (0, p, p) + t

(
1 +

1

p

)
G (1, 0, p) + t

(
1

p
+ 1

)
G (1, p, 0) = pvpw

2tpG (p, 0, p) + t

(
1

p
+ 1

)
G (0, 1, p) + t

(
1 +

1

p

)
G (p, 1, 0) = pupw

2tpG (p, p, 0) + t

(
1 +

1

p

)
G (0, p, 1) + t

(
1

p
+ 1

)
G (p, 0, 1) = pupv
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The Triangle

While this is insufficient to find a full solution, we are able to show

Theorem (Mortimer, Prellberg)

The generating function G (1, 1, 1) which counts n-step walks in a
triangle of side-length L starting at (u, v ,w) with no restrictions on the
endpoint is given by

G (1, 1, 1) =
(1− p3)(1− pu+1)(1− pv+1)(1− pw+1)

(1− p)3(1− pu+v+w+3)
,

where

p =
1− 2t −

√
(1 + 2t)(1− 6t)

4t
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The Triangle

Starting the walks in a corner of the triangle, we find

Corollary (Mortimer, Prellberg)

The generating function which counts n-step walks in a triangle of
side-length L starting at a chosen corner with no restrictions on the
endpoint is given by

(1− p3)(1− p1+L)

(1− p)(1− p3+L)

where

p =
1− 2t −

√
(1 + 2t)(1− 6t)

4t

It is not obvious that this is a rational function in t, but it is indeed one,
and it has a very special structure . . .
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Continued Fractions

For L = 2H even, the GF expands as a continued fraction of length H,

(1− p3)(1− p1+2H)

(1− p)(1− p3+2H)
=

1

1− 2t −
4t2

1− 2t −
4t2

. . . −
4t2

1− 2t − 4t2︸ ︷︷ ︸
length H

and for L = 2H + 1 odd, a continued fraction of length H + 1,

(1− p3)(1− p2+2H)

(1− p)(1− p4+2H)
=

1

1− 2t −
4t2

1− 2t −
4t2

. . . −
4t2

1− 2t︸ ︷︷ ︸
length H + 1
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Bi-Colored Motzkin Paths

Corollary (Mortimer, Prellberg)

(a) n-step walks starting in a corner of a triangle of side-length
L = 2H + 1 with arbitrary endpoint are in bijection with bi-colored
n-step Motzkin paths in a strip of height H.

(b) n-step walks starting at a corner of a triangle of side-length L = 2H
with arbitrary endpoint are in bijection with bi-colored n-step
Motzkin paths in a strip of height H, such that horizontal steps at
height H are forbidden.
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Summary and Open Problem

Set up general problem: walks on line, triangle, tetrahedron, . . .

Complete solution for line (new method, but result basically known)

Partial solution for triangle

No solution for tetrahedron or higher dimensions

Intriguing “bijective” connection to Motzkin paths

For a wedge (L→∞), there is a bijection via Young tableaus of
height three (Eu, Adv Appl Math, 2010)

Unfortunately, that bijection does not restrict to finite L

Open Problem

Find a bijection for triangles!
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