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Abstract

The MSci project is based on V.P Kostov, Rev. Mat. Complut. ”Asymptotics of

the spectrum of partial theta function”, from which we call the spectrum of θ(q, x) :=

∞∑
j=0

q(
j+1
2 )xj , the set Γ of values of q ∈ (0, 1) for which θ(q, .) has a multiple real zero. We

refer to its elements as spectral numbers, denoted by

0 <q̃ = q̃1<q̃2< · · ·<q̃j< · · ·<1, lim
j→+∞

q̃j = 1. As q increases from 0 to 1 and when it

passes through a value q̃j of the spectrum, the rightmost two of the real zeros coalesce and

then form a complex pair. Hence geometrically speaking we think of spectral numbers as

being bifurcation points of θ. At the value of these bifurcation points q̃j , θ(q̃j , x) has a

corresponding local minimum for x = yj .

Essentially, Kostov’s paper extends the approximations of the spectral numbers, q̃j
′s

made in an earlier paper of Kostov’s [2], whilst giving rise to a truly remarkable and

ingenious result, of which absolutely astounds me, by providing us with an asymptotic

approximation for their associative yj ’s, namely

lim
j→∞

yj = −eπ.

I will be explaining the proof of this, as well as suggesting ideas of further work to

possibly generalise this theorem for the β-family of functions θβ(q, x) :=
∞∑
j=0

q(
j+1+β
2+β )xj ,

where β = 0 is the case considered by Kostov himself.
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1 Introduction

1.1 Some facts about the function θ

Consider the bivariate series θ(q, x) :=
∞∑
j=0

qj(j+1)/2xj . For each fixed q ∈ [0, 1) it defines an

entire function in x. In what follows we are interested in the case x ∈ R. We say that the

series defines a partial theta function and we regard x as a variable and q as a parameter. The

terminology ’partial theta function’ is explained by the fact that the Jacobi theta function

is defined by the series
∞∑

j=−∞
qj

2
xj and one has θ(q2, xq ) =

∞∑
j=0

qj
2
xj (i.e. in the definition of

θ only a partial summation is performed). The function θ satisfies the following functional

equation:

θ(q, x) = 1 + qxθ(q, qx) (1)

This can be shown true since

∞∑
j=0

qj(j+1)/2xj = 1 +
∞∑
j=1

qj(j+1)/2xj

= 1 +
∞∑
j=0

q(j+1)(j+2)/2xj+1

= 1 +

∞∑
j=0

qj(j+1)/2(qx)j+1

= 1 + qx
∞∑
j=0

qj(j+1)/2xj

The function θ also satisfies the following differential equation, which is merely stated in

Kostov’s paper

2q∂θ/∂q = 2x∂θ/∂x+ x2∂2θ/∂x2 = x∂2(xθ)/∂x2 (2)

To derive the first equality

∂θ/∂q =
∞∑
j=0

[j(j + 1)/2]q
j(j+1)

2
−1xj
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⇒ 2q∂θ/∂q = 2
∞∑
j=0

[j(j + 1)/2]q
j(j+1)

2 xj =
∞∑
j=0

[j(j + 1)]q
j(j+1)

2 xj and we also have ∂θ/∂x =

∞∑
j=0

jq
j(j+1)

2 xj−1 ⇒ 2x∂θ/∂x = 2
∞∑
j=0

jq
j(j+1)

2 xj

which then means we have ∂2θ/∂x2 =
∞∑
j=0

j(j − 1)q
j(j+1)

2 xj−2

⇒ x2∂2θ/∂x2 =
∞∑
j=0

j(j − 1)q
j(j+1)

2 xj

⇒ 2x∂θ/∂x+x2∂2θ/∂x2 =
∞∑
j=0

2jq
j(j+1)

2 xj+
∞∑
j=0

j(j−1)q
j(j+1)

2 xj =
∞∑
j=0

[2j+j(j−1)]q
j(j+1)

2 xj =

∞∑
j=0

[2j + j2 − j)]q
j(j+1)

2 xj =
∞∑
j=0

[j(j − 1)]q
j(j+1)

2 xj = 2q∂θ/∂q

Similarly, to derive the second equality

xθ =
∞∑
j=0

q
j(j+1)

2 xj+1

⇒ ∂(xθ)/∂x =
∞∑
j=0

(j + 1)q
j(j+1)

2 xj ⇒ ∂2(xθ)/∂x2 =
∞∑
j=0

j(j + 1)q
j(j+1)

2 xj−1 ⇒ x∂2(xθ)/∂x2 =

∞∑
j=0

j(j + 1)q
j(j+1)

2 xj = 2q∂θ/∂q = 2x∂θ/∂x+ x2∂2θ/∂x2

For any fixed q ∈ (0, 1), the function θ(q, .) has infinitely many real zeros all of which are

negative. It is shown in [1] that ∃ constant q̃ ∈ (0, 1) with the following property: for q

∈ (0, q̃) (where the more accurate value 0.3092493386...of q̃ = (q̃1) is given in [2]) the function

θ(q, .) has only real negative simple zeros and that θ(q̃, .) has a double negative zero, the rest

of the zeros being negative and simple.

In [2] one can find the value −7.5032559833...(=y1) of the double zero of θ(q̃, .).

Remark 1.1. This value of q̃ (= q̃1) above is called the first spectral number of θ(q, .) and

from [2] we find its corresponding local minimum (to 10 decimal places), which is the value

y1 of the negative double root of θ(q̃1, .) to be −7.5032559833.

I will give some formal definitions regarding spectral numbers and their corresponding local

minimums below and in the next section I will be explaining in detail (and showing visually)

what these values represent.

Remark 1.2. In equation (3) the term 2x∂θ/∂x = 0 at a local minimum while the term

x2∂2θ/∂x2>0 (due to definition of local minimum). Hence ∂θ/∂q>0, i.e. the values of θ at
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its local minima (when considered as functions of q) increase. In the same way, the values at

its local maxima decrease.

Remark 1.3. It is shown in [3] that it is indeed at a local minimum of θ(q, .) that a double

zero and then a complex conjugate pair is born.

1.2 Formal definition & related remarks

Now, for a definition from Kostov’s paper and vital related remarks, needed to understand

the main theorem in Kostov’s paper:

Definition 1.4. We call the spectrum of θ, the set Γ of values of q ∈ (0, 1) for which θ(q, .)

has a multiple real zero. These such values of q are referred to as spectral numbers.

Remarks:

1. It is proved in [3] that Γ consists of countably-many real numbers (referred to as spec-

tral numbers) denoted by

0 <q̃ = q̃1<q̃2< · · ·<q̃j< · · ·<1, lim
j→+∞

q̃j = 1.

2. For q̃j ∈ Γ, θ(q̃j , .) has exactly one multiple real zero which is negative, multiplicity 2

and is the rightmost of its real zeros (i.e. largest real zero).

We denote it by yj .

3. The function θ(q̃j , .) has a local minimum at yj . (i.e. the local minima of θ(q̃j , .) give

rise to double zeros as q increases)

4. The function θ( ˜qj − ε, .)[resp. θ( ˜qj + ε, .)] has two real zeros close to yj , namely ε2j and

ε2j−1.

5. For q ∈ (q̃j , ˜qj+1) the function θ has exactly j complex conjugate pairs of zeros (counted

with multiplicity).
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6. Denote by · · · <ξ2<ξ1<0 the zeros of θ(q, .) for q <q̃. When q increases from 0 to 1

and when it passes through a value q̃j of the spectrum, the rightmost two of the real

zeros coalesce and then form a complex pair (think of this as a bifurcation of real roots

into complex ones). The other real zeros remain real negative and distinct.

In the next section, I shall be giving a clear and visual explanation of Remarks (3)− (6), but

first, allow me to introduce Kostov’s Theorem from his paper, in which he gives an asymptotic

estimate of the spectral numbers q̃j and an asymptotic approximation of their corresponding

local minima yj ’s:

Theorem 1.5. (1) One has q̃j ≈ 1− ( π2j ) + o(1
j )

(2) One has lim
j→∞

yj = -eπ = −23.1407 · · ·

Note: In [2] the following approximation of q̃j is suggested:

q̃j ≈ 1− 1

0.6388j + 0.8022
(3)

The first 40 spectral numbers q̃j are well approximated by this formula. This is due to the

fact that

1− 1
0.6388j+0.8022 = 1− 1

0.6388j +O( 1
j2

) and we have 0.6388 is quite close to 2
π = 0.6366197723.

Remark 1.6. Essentially, Kostov’s paper extends the approximations of the spectral numbers,

q̃j
′s made in [2]. Not only this, but provides an asymptotic approximation for their associative

y′js with ( lim
j→∞

q̃j = 1) ∧ ( lim
j→∞

yj = −eπ)

Remarks 2 (1) [4] announces the following result: The sum of the series θ(q, x) :=
∞∑
j=0

qj(j+1)/2xj

(considered for q ∈ (0, 1) and x complex) tends to 1/(1−x) (for x fixed and as q → 1−) exactly

when x belongs to the interior of the closed Jordan curve e|s|+is, s ∈ [−π, π].

(2) When both x and q are real this theorem implies that for q ∈ (0, 1) and as q → 1−, the
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function θ(q, .) tends to 1/(1− x) exactly if x ∈ (−eπ, 1). This result is in line with part (2)

of Kostov’s Theorem.

1.3 Further directions and miscellanea

Definition 1.7. The Laguerre-Pólya class (L-PI) is the class of entire functions consist-

ing of those functions which are locally the limit of a series of polynomials whose roots are

all real.

One can easily see that θ(q, x) has a positive radius of convergence as a function of x if and

only if |q| ≤ 1. If |q| = 1, then θ(q, x) has a radius of convergence equal to 1; while ∀ q

with |q|<1, the function θ(q, x) is entire. Moreover, for small positive q, the series θ(q, x),

considered as a function of x belongs to the Laguerre-Pólya class (L-PI), i.e., it has all roots

negative.

In fact, we have the following interesting statement:

θ(q, x) ∈ L-PI⇔ q ∈ (0, q̃1) (4)

Remark 1.8. A consequence of θ(q, x) ∈ L-PI (for q ∈ (0, q̃1)) gives the following three

properties of θ(q, x) for q ∈ (0, q̃1):

• The roots of θ(q, x) are all real.

• The nonzero zeros xn satisfy
∑
n

1
|xn|2 converges, with zeros counted according to their

multiplicity.

• The function θ(q, x) can be expressed in the form of a Hadamard product

xmea+bx+cx2
∏
n

(1− x

xn
)exp(

x

xn
) (5)
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with b, c ∈ R, c ≤ 0. (The non-negative integer m will be positive if θ(q, 0) = 0. Note that

if the number of zeros is infinite (which is true in this case), one may have to define how to

take the infinite product.)
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2 Visual explanation of Kostov’s Theorem & previous related

remarks

In this chapter, I will be giving visual explanations of remarks (3)-(6) of the first chapter and

of Kostov’s main Theorem. I start by using maple to plot θ(q, x), truncated to order 20, to

first give an idea of the type of function we are dealing with:

> theta:=(x,q,N) -> sum(x^n*q^binomial(n+1,2),n=0..N);

θ := (x, q,N)→
∑N

n=0 x
nqbinomial(n+1,2)

> series(theta(x,y,10),x);

1 + yx+ y3x2 + y6x3 + y10x4 + y15x5 +O(x6)

> with(plots): implicitplot(theta(x,q,20),q=0..1,x=-30..30,

gridrefine=5,view=[0..1,-30..0]);
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Note: I will denote the truncated partial theta function by θN (q, x).

From [2] we have the following approximations of the first three spectral numbers:

q̃1 ≈ 0.3092, q̃2 ≈ 0.5169, q̃3 ≈ 0.6306, from which, using the above graph one can read off

approximations of their corresponding yj values.

Now, increasing the order of θN (q, x) to say N=30, gives a more approximate graph of θ(q, x)

and hence a clearer approximation of the spectral numbers q̃j ’s and their associative yj ’s:

>implicitplot(theta(x,q,30),q=0..1,x=-30..30,gridrefine=5, view=[0..1,-30..0]);

The following graph includes the limit point of both the yj ( lim
j→∞

yj = −eπ) and the q̃j

( lim
j→+∞

q̃j = 1) values as well as the graph of θ(q, x) truncated to Order 40:

> with(plots):p1:=implicitplot(theta(x,q,40),q=0..1,x=-30..30,gridrefine=5,

view=[0..1,-30..0]):

> p2:=plot([[1,-exp(Pi)]],style=point,symbolsize=30,color=blue):

> display(p1,p2);
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Now, for the visual explanations on Remarks (3)-(6) (page 5-6):

Regarding Remark (6), the following slides from an animation of the roots of θ30(q, x) as q

increases from 0 to 1 shows this bifurcation of real roots into complex ones very clearly. One

sees that (as already stated generally in Remark (6)) when q increases from 0 to 1 and passes

through the first value q̃1 of the spectrum, the rightmost two of the real zeros (ε1, ε2) coalesce

and then form a complex conjugate pair.

animate(complexplot,[[’fsolve(theta(x,q,30),complex)’],-10..10,-10..10,style=point],

q=[seq(k/1000,k=306..311)]);

Instead of the actual animation, on the next page I show specific slides showing how the

rightmost two real roots of θ(x, q, 30) = 0 for q increasing from 0.306 (top) via 0.308 (middle)

to 0.311 (bottom) collide and form a complex conjugate pair.
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Remark 2.1. In slides q=0.306, q=0.308 above, ε2 is seen as the leftmost real simple zero

whereas ε1 is the rightmost.

Remark 2.2. In between q=0.308 and q=0.311, the two real roots (ε1, ε2) collide and a bi-

furcation takes place (at x = y1:=min turning point), with a complex conjugate pair being

created.

Regarding Remark (5): For the purpose of simply explaining what this statement tries to

show, allow me to truncate θ(q, .) to say Order 30, disregarding error terms produced by

truncation as irrelevent for this purpose.

Using Maple again, let:

> theta:=(x,q,N) -> sum(x^n*q^binomial(n+1,2),n=0..N);

θ := (x, q,N)→
∑N

n=0 x
nqbinomial(n+1,2)

Let N=30 and solving the roots for q=0.306,0.308,0.311 we get:

fsolve(theta(x,0.306,30),complex);

−1.278896245·1015,−1.041614412·1015,−2.501560001·1014,−7.683085837·1013,−2.350947190·

1013,−7.193899030·1012,−2.201333103·1012, . . . ,−114.0512615,−35.02876733, ε2 = −8.412572144, ε1 =

−6.851733526.

fsolve(theta(x,0.308,30),complex);

−1.012363550·1015,−8.914705317·1014,−2.084025643·1014,−6.443859282·1013,−1.984638117·

1013,−6.112686009·1012,−1.882707287·1012, . . . ,−111.1173155,−34.35775116, ε2 = −8.031946335, ε1 =

−7.072798526.

fsolve(theta(x,0.311,30),complex);
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β1 = −7.090368538 · 1014 − 5.342026391 · 1013I, β2 = −7.090368538 · 1014 + 5.342026391 ·

1013I,−1.588152030·1014,−4.960059198·1013, . . . ,−343.7146990,−106.8909855,−33.38380732, α1 =

−7.435340550− .5601934500I, α2 = −7.435340550 + .5601934500I.

Notice how for q = 0.311 ∈ (q̃1,q̃2) θN (q, .) has 2 complex conjugate pair of zeros. However,

only the smaller conjugate pair (α1, α2) is a legitimate pair of zeros of θ. The extremely large

conjugate pair (β1,β2) is a consequence of truncating θ (only small values of x close to the

origin are considered actual zeros of θ and we disregard the extreme values due to truncation

errors). Hence we only really have 1 conjugate pair when considering roots of θ.

As stated previously, we have in general for q ∈ (q̃j , ˜qj+1) the function θ has exactly j complex

conjugate pairs of zeros (counted with multiplicity).

Regarding Remarks (3) & (4): The following graphs of θ(q, .) show how the local minima of

θ(q, .) give rise to double zeros as q increases:

> theta2:=(x,q)->sum(x^n*q^(n*(n+1)/2),n=0..20);

θ2 := (x, q)→
∑20

n=0 x
nq

1
2
n(n+1)

> plot([theta2(x,0.306),theta2(x,0.308),theta2(x,0.311)],x=-10..0,

view=[-9..-6,-0.05..0.05]);
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The graph above shows curves for θ(0.306, x) (bottom), θ(0.308, x) (middle), θ(0.311, x) (top)

As you can see, ∃q ∈ (0.306, 0.311) s.t. θ(q, .) has a double zero. This value of q is the first

spectral number q̃1 and note that the local minimum is x = y1 ≈ −7.5, which gives rise to a

double zero.

Regarding Remark (4); In the above example, we let ε>0 s.t. θ(q̃1 − ε, .) = θ(0.306, .). It’s

clearly visible that ∃ two real zeros close to x = y1, namely ε1 and ε2 in this case (where

in the above graph, again we have for q=0.306, q=0.308, ε2 is the leftmost real simple zero,

whereas ε1 is the rightmost).

Graphing the same plots for the second spectral number q̃2 gives:

> plot([theta2(x,0.50),theta2(x,0.51),theta2(x,0.52)],x=-20..0);

15



The graph above shows curves for θ(0.50, x) (bottom), θ(0.51, x) (middle), θ(0.52, x) (top).

Now ∃ q ∈ (0.51, 0.52) s.t. θ(q, .) has a double zero and this value of q is the second spectral

number q̃2.

Note that the local minimum of θ(q̃2, .) is x = y2 ≈ −11.2.

Note also that here, regarding Remark (4), in this example (for θ(0.51, .)), we let ε>0 s.t.

θ(q̃2 − ε, .) = θ(0.51, .). It’s clearly visible that ∃ two real zeros close to x = y2, namely ε3

and ε4 in this case (where in the above graph, we have for q=0.5, q=0.51, ε4 is the leftmost

real simple zero, whereas ε3 is the rightmost).

In general, θ(q̃j − ε, .) and θ(q̃j + ε, .) has two real zeros close to yj , namely ε2j and ε2j−1

(which is exactly what Remark (4) stated).

3 Proof of Kostov’s Theorem

In this section, I am going to be explaining the proof of Kostov’s Theorem (seen in Introduc-

tion 1.2) in detail.
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3.1 Beginning of the proof of Kostov’s Theorem

Facts:

1. We have already seen and explained previously that the local minima of θ give rise to

double zeros as q increases.

2. From ’definition 5’ of Kostov’s paper we have; for k even (resp. odd) the number

−q−k−
1
2 corresponds to a local maximum (resp. minimum) of θ(q, .).

Idea:

We want to first prove the asymptotic behaviour indicated in the Theorem correct not for

the values of the spectrum of θ, but for the values for which one has θ(q,−q−k−
1
2 ) = 0. In

what follows we are interested in the odd values of k. For these values (seen in fact (2) above)

the number −q−k−
1
2 corresponds to a local minimum of θ, where the double zeros arise. Set

k := 2s− 1, where s = 1, 2, .... Denote by r̃s the solution to the equation θ(q,−q−2s+ 1
2 ) = 0

and set zs := −(r̃s)
−2s+ 1

2 (It’s clear why we have defined zs to be this- ∀ s, we have rs is

the s− th spectral number and as −q−k−
1
2 corresponds to each successive local minimum, we

have zs := −(r̃s)
−2s+ 1

2 ).

We first prove the following propostion about quantities r̃s and zs. Later we compare these

numbers (r̃s, zs) with q̃s and ys respectively and we show that the Theorem holds true (see

the completion of the proof of Kostov’s Theorem).

Proposition 3.1. 1. One has r̃s = 1− ( π2s) + o(1
s )

2. One has lim
s→∞

zs = -eπ = −23.1407 · · ·

The following equalities about θ(q, .) hold true:

θ(q,−q−k−
1
2 ) =

∞∑
j=0

(−1)jq
j(j−2k)

2 =
∞∑

j=−k
(−1)j+kq

j2−k2
2 =

∞∑
j=−∞

(−1)j+kq
j2−k2

2 −
∞∑

j=k+1

(−1)j+kq
j2−k2

2 (∗∗)
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We have that
∞∑

j=−∞
(−1)j+kq

j2−k2
2 = (−1)kq

−k2
2

∞∑
j=−∞

(−1)jq
−k2
2 (

1∑
j=−∞

(−1)jq
j2

2 +1+
∞∑
j=1

(−1)j+kq
j2

2 ) =

(−1)kq
−k2
2 (1 + 2

∞∑
j=1

(−1)j+kq
j2

2 )

= (−1)kq
−k2
2 ψ(q

1
2 ) (where ψ(q) = 1 + 2

∞∑
j=1

(−1)jqj
2
).

From (**) it follows that (−1)kq
−k2
2 ψ(q

1
2 ) −

∞∑
j=k+1

(−1)j+kq
j2−k2

2 = 0. This implies that

ψ(q
1
2 ) =

∞∑
j=k+1

(−1)j+kq
j2−k2

2 .

For k := 2s− 1, this becomes:

ψ(q
1
2 ) =

∞∑
j=2s

(−1)jq
j2

2 =: λs(q) = q2s2χs(q) (6)

The important thing to notice is that we have turned solving

θ(q,−q−2s+ 1
2 ) = 0 into solving ψ(q

1
2 ) =

∞∑
j=2s

(−1)jq
j2

2 , where the function ψ(q
1
2 ) := 1 +

2
∞∑
j=1

(−1)jq
j2

2 = −1 + 2θ(q2,−1
q ) has many important properties (Theorem 6 of Kostov’s

paper, proved in [5]), which allow us to prove the following Lemma, which in turn we deduce

Proposition 3.1 from it.

Lemma 3.2. 1. One has lim
q→1−

λs(q) = lim
q→1−

χs(q) = 1
2

2. For s ∈ N sufficiently large the graphs of the functions ψ(q
1
2 ) and λs(q) (considered for

q ∈ [0, 1]) intersect at exactly one point belonging to (0, 1) and at 1.

3. For q ∈ [0, 1], the inequality λs(q) ≥ λs+1(q) holds true with equality for q = 0 and q=1.

4. For q ∈ [0, 1] one has 1
2 ≤ χs(q) ≤ 1.

Before proving Lemma 3.2, we deduce Proposition 3.1 from it. Part 2 of Lemma 3.2 implies

that for each s sufficiently large the number r̃s is correctly defined (since ψ(q
1
2 ) and λs(q)

intersect at exactly one point).
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Part 3 implies that the numbers r̃s form an increasing sequence. Indeed this follows from

ψ(q
1
2 ) being a decreasing function, see part 1 of Theorem 6 of Kostov’s paper.

Set r̃s := 1− hs
s . Consider the equalities (6). It is stated in Kostov’s paper that the left-hand

side is representable in the form e−((π2−εs)/4)(2s/hs) (where εs ≥ 0 and lim
s→∞

εs = 0, see part 5

of Theorem 6 of Kostov’s paper).

My proof that the LHS of (6) is representable in the form e−((π2−εs)/4)(2s/hs).

By Theorem 6 of Kostov’s Theorem (part 6) we have ∀ε>0, ∃δ>0 s.t.

e
π2

4(q−1)<ψ(q)<e
π2−ε
4(q−1) .

Now, by the IVT, ∃εs s.t. ψ(q
1
2 ) = e

π2−εs

4(q
1
2 −1) where εs ≥ 0, lim

s→∞
εs = 0.

Let q = r̃s = 1− hs
s ⇒ ψ(q

1
2 ) = e−((π2−εs)/4)(2s/hs).

The right-hand side of (6) equals (1− hs
s )2s2χs(1− hs

s ) (simply by substituting q = 1− hs
s ).

It is further stated that

(1− hs
s

)2s2 = ((1− hs
s

)
s
hs )2hss = (e−1 + ηs)

2hss (7)

where lim
s→∞

ηs = 0.

My proof of (7). Firstly, It’s clearly visible that (1− hs
s )2s2 = ((1− hs

s )
s
hs )2hss

For the second equality, we simply use the fact that

lim
n→∞

(1 + k
n)n = ek by letting n = s

hs
⇒ 1

n = hs
s

⇒ lim
s→∞

((1− hs
s )

s
hs ) = lim

n→∞
(1 +− 1

n)n = e−1 (with n = s
hs

as above).

Hence, as n → ∞ (equivalently as s → ∞), we have ((1 − hs
s )

s
hs ) → e−1 but as s is simply

fixed and not specified as tending to infinity we have
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((1− hs
s

)
s
hs ) = e−1 + ηs

With ηs → 0 as s→∞

Taking the logarithms of both sides of (7) yields:

− ((π2 − εs)/4)(
2s

hs
) = −(2hss)(1 + o(1)) + log(χs(1−

hs
s

)) (8)

My proof of (8). log(e−((π2−εs)/4)( 2s
hs

)) = log((1− hs
s )2hssχs(1− hs

s )) since

(1− hs
s )2s2 = (e−1 + ηs)

2hss.

This implies -((π2 − εs)/4)( 2s
hs

) = log((e−1 + ηs)
2hss) + log(χs(1− hs

s )

We have log((e−1 + ηs)
2hss) = 2hss[log(e−1 + ηs)] = 2hss[log(e−1(1 + ηs

e−1 ))] = 2hss[log(e−1 +

log(1 + ηs
e−1 )]

Where log(1 + ηs
e−1 ) = o(1) since lim

s→∞
ηs = 0

Hence log(1 + ηs
e−1 ) is bounded above by 1 as s→∞ so we get 2hss[log(e−1 + log(1 + ηs

e−1 )] =

2hss(−1 + o(1)) = −2hss(1 + o(1))

As χs(q) ∈ [1
2 , 1] (see part 4 of the Lemma), log(χs(1− hs

s )) ∈ [log(1
2), 0].

Dividing both sides of Eq. (8) by s and comparing expressions afting taking the large s limits

one gets h2
s = π2

4 + o(1), i.e. hs = π
2 + o(1).

My proof. Dividing both sides of Eq. (8) by s we get:

−(π2−εs)2s
4hss

= −2hs(1 + o(1)) +
log(χs(1−hss ))

s .

Now, since we have lim
s→∞

εs = 0 and
log(χs(1−hss ))

s → 0 as s →∞, we then get

π2

2hs
= 2hs(1 + o(1)) ⇒ π2 = 4h2

s(1 + o(1)) ⇒ π2

4 = h2
s(1 + o(1)) ⇒ h2

s = π2

4 + o(1) ⇒ hs =

π
2 + o(1).

This proves part 1 of Proposition 3.1.
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Remark 3.3. I noted an error in Kostov’s paper. See the Proof of parts 1 and 4 below for

details regarding this.

Part 2:

Proof. zs = −(r̃s)
−2s+ 1

2 = −(1− π
2s + o(1

s ))−2s+ 1
2 .

Taking the limit as s tends to ∞ we get:

lim
s→∞

[−(1− π
2s) + o(1

s ))−2s+ 1
2 ]. s→∞⇒ 1

s → 0 in which we now have

- lim
s→∞

(1− ( π2s))
−2s+ 1

2 = − lim
s→∞

(1 + ( π
−2s))

−2s = −eπ.

Since lim
n→∞

(1 + k
n)n = ek.

Thus, we have have proved that we deduce Proposition 3.1 from Lemma 3.2. Now, onto the

proof of Lemma 3.2.

Proof of parts 1 and 4:

For ν>0 (where ν need not be integer) we consider the function ϕv(q) :=
∞∑
j=0

(−1)jqνj+j(j−1)/2.

This function is analytic on [0,1) and limq→1− ϕv(q) = 1
2 (see Propostion 14 in [3]).

Kostov’s paper suggests that λk = q(2k+1)/2ϕ(2k+3)/2(q) and χs(q) = ϕ(4s+1)/2(q) (*).

This second equation is correct. However, the first is not :

λs(q) =
∞∑
j=2s

(−1)jq
j2

2 , ϕv(q) :=
∞∑
j=0

(−1)jqνj+j(j−1)/2

⇒ λs(q) =
∞∑
j=0

(−1)j+2sq
(j+2s)2

2 = q2s2
∞∑
j=0

(−1)jq
j2

2
+2js = q2s2ϕ2s+ 1

2
(q) = q2s2χs(q).

Now, since k := 2s− 1, we get this is equal to q(k+1)2/2ϕk+ 3
2
(q) by substituting s = k+1

2 . Not

what Kostov’s paper suggests q(2k+1)/2ϕk+ 3
2
(q), which is presumeably a typographical error.

Consequently however, this does not change the result of part 1 or part 4 of Lemma 3.2.

Since we have lim
q→1−

ϕv(q) = 1
2 by Proposition 14 in [3], we hence have:

lim
q→1−

ϕk(q) = lim
q→1−

q(k+1)2/2ϕk+ 3
2
(q) = 1 · 1

2 = 1
2 = 1

2 = lim
q→1−

χs(q) = 1
2 .

This proves part 1.
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Equality (*) implies part 4 of Lemma 3.2 for s ≥ 1 because ϕν(q) = θ(q,−qν−1) (see below).

θ(q, x) =
∞∑
j=0

qj(j+1)/2xj ⇒ θ(q,−qν−1) =
∞∑
j=0

qj(j+1)/2(−qν−1)j =
∞∑
j=0

(−1)jq
j(j+1)

2
+(ν−1)j =

∞∑
j=0

(−1)jqvj+
j(j−1)

2 = ϕν(q).

For s ≥ 1 one has ν>1 hence θ(q,−qν−1) ∈ [1
2 , 1], see part 6 of Theorem 4 of Kostov’s paper.

For s = 0 (i.e. ν = 1
2) we observe that

χ0(q) = ϕ 1
2
(q) :=

∞∑
j=0

(−1)jq
j2

2 =
1

2
+
ψ(q

1
2 )

2
(9)

Since ψ(q
1
2 ) = 1 + 2

∞∑
j=1

(−1)jq
j2

2 we have 1
2ψ(q

1
2 ) = 1

2 +
∞∑
j=1

(−1)jq
j2

2

⇒ 1
2 + ψ(q

1
2 )

2 = 1 +
∞∑
j=1

(−1)jq
j2

2 =
∞∑
j=0

(−1)jq
j2

2 = ϕ 1
2
(q).

From Theorem 6, parts 1 and 2 we hence have χ0(q)(= ϕ 1
2
(q)) ∈ [1

2 , 1]. This proves part 4.

Proof of part 2:

We represent the function λs(q) in the form ρ1(q) + ρ2(q) + · · · , where ρi(q) = q
(2s+2i−2)2

2 −

q
(2s+2i−1)2

2 , i = 1, 2, · · · . One checks directly that the following property of the functions ρi(q)

holds:

(A) Let Ai := (2s + 2i − 2)2/2 and Bi := (2s + 2i − 1)2/2. The function ρi is positive

valued on (0,1) (obviously ρi(0) = ρi(1) = 0). It is increasing on [0, τi], decreasing on [τi, 1],

convex on [0, σi] and concave on [σi, 0], where τi = (AiBi )
1

Bi−Ai , σi = (Ai(Ai−1)
Bi(Bi−1))

1
Bi−Ai . One has

σi<τi<τi+1.

(The inequality τi<τi+1 is equivalent to

(1 +
1

2s+ 2i
)1/(4s+4i+1)<(1 +

1

2s+ 2i− 2
)1/(4s+4i−3) (10)

and can be deduced from the fact that for x>0 the function (1+1/x)1/(2x+1) (above inequality

for x = 2s+ 2i) is decreasing). We prove below that
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(B) For s large enough and q ∈ (0, 1) the graphs of ψ(q1/2) and ρ1(q) intersect at only one

point µ ∈ (0, τ1).

(C) If s is large enough, then ψ(q1/2)<ρ1(τ1).

My proof of the above inequality (10).

Ai := (2s+2i−2)2/2, Bi := (2s+2i−1)2/2 and τi = (AiBi )
1

Bi−Ai ⇒ τi<τi+1 ⇔ (AiBi )
1

Bi−Ai<(Ai+1

Bi+1
)

1
Bi+1

−Ai+1

(AiBi )
1

Bi−Ai = ?

Let Ai :=
u2i
2 , Bi := (ui+1)2

2 ⇒ Bi −Ai = 2ui+1
2

⇒ τi = (
u2i
u2i+1

)2/(2ui+1 = ( ui
ui+1

)4/(2ui+1)

with ui = 2s+ 2i− 2, ui+1 = ui + 2.

So, τi<τi+1 ⇔ ( ui
ui+1

)4/(2ui+1<(ui+1

ui+2
)4/(2(ui+1))+1 ⇔ ( ui

ui+1
)4/(2ui+1<(ui+2

ui+4)4/(2(ui+2))+1

⇔ ( ui
ui+1

)4/(2ui+1<(ui+2
ui+4)4/(2ui+5)

⇔ ( ui
ui+1

)1/(2ui+1<(ui+2
ui+4)1/(2ui+5)

⇔ (ui+1

ui
)1/(2ui+1>(ui+4

ui+2)1/(2ui+5)

⇔ (1 + 1
ui

)1/(2ui+1>(1 + 1
ui+2)1/(2ui+5)

ui = 2s+ 2i− 2 hence gives our required inequality:

(1 +
1

2s+ 2i
)1/(4s+4i+1)<(1 +

1

2s+ 2i− 2
)1/(4s+4i−3)

From the above properties (A), (B) and (C) of the functions pi, we have that part 2 of Lemma

3.2 follows. Indeed, the properties (A) implies not only that pi, but also λs is increasing on

[0, τ1] (since pi all increasing on [0, τi] implies λs(q) :=
∑
pi also increasing on [0, τ1]; sum of

increasing functions is also increasing).

One has λs(0) = p1(0) + p2(0) + p3(0) + · · · = 0 (since pi(0) = 0 ∀i).
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λs(τ1) = p1(τ1) + p2(τ1) + · · ·>p1(τ1) (since p2(τ1), p3(τ1),... are all positive valued on (0, 1)).

ψ(τ
1
2

1 ) = 1 + 2
∞∑
j=1

(−1)jτ
j2

2
1 is clearly less than λs(τ1) =

∞∑
j=2s

(−1)jτ
j2

2
1 .

So, λs(τ1)>p1(τ1)>ψ(τ
1
2

1 ).

Now, before we make use of Bolzano’s Theoem, let me first define what this is:

Bolzano’s Theorem: Bolzano’s Theorem is a specialization of the Intermediate Value The-

orem and states that if a continuous function has values of opposite sign inside an interval,

then it has a root inside that interval.

We have the following facts:

(i) ψ is decreasing ∀q ∈ (−1, 1) (Theorem 6 part 1).

(ii) ψ(q) := 1 + 2
∞∑
j=1

(−1)jqj
2 ⇒ ψ(0) = 1.

(iii) λs(0) = 0, λs increasing on [0, τ1] and λs(τ1)>p1(τ1)>ψ(τ
1
2

1 ).

Then, using Bolzano’s Theorem, it’s clear to see that the graphs of ψ(q
1
2 ) and λs(q) intersect

at a point ∈ (0, τ1). This point is unique because p1(τ1) is sandwiched between two strictly

monotonic functions.

The rest of the proof of (A) is very clear so I won’t be ellaborating on what has already been

written. I will however prove property (C). Obviously (B) follows from (C) and Bolzano’s

theorem (ψ(τ
1
2

1 ) is decreasing, ψ(0) = 1, p1 is increasing, p1(0) = 0 and p1(τ1)>ψ(τ
1
2

1 )).

Now we prove property (C). Consider the straight line L through the points (τ1, p1(τ1)) and

(1, 0). The slope of this line L equals

− p1(τ1)− 0

1− τ1
= −(A1/B1)A1/(B1−A1)(B1 −A1)/B1

1− (A1/B1)1/(B1−A1)
. (11)

Since τ1 = (A1/B1)1/(B1−A1) we therefore have p1(τ1) = p1((A1/B1)1/(B1−A1)) = τA1
1 − τB1

1

(whereA1 = (2s+2−2)2/2, B1 = (2s+2−1)2/2) = τA1
1 (1−τ (B1−A1)

1 ) = (A1/B1)A1/(B1−A1)(1−
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(A1/B1)) = (A1/B1)A1/(B1−A1)(B1−A1
B1

) = p1(τ1).

⇒ the slope of line L equals

−(A1/B1)A1/(B1−A1)(B1 −A1)/B1

1− (A1/B1)1/(B1−A1)

It is merely stated in Kostov’s paper that the factor (A1/B1)A1/(B1−A1) tends to e−1 as

s→∞:

My proof. A1 = (2s)2/2 = 2s2, B1 = (2s + 1)2/2 ⇒ A1
B1

= (2s)2

(2s+1)2
= ( 2s

2s+1)2 and B1 − A1 =

(2s+1)2−(2s)2

2 = 4s2+4s+1−4s2

2 = ( 4s2

4s+1)

⇒ A1/(B1 −A1) = (2s2)/((4s+ 1)/2) = ( 4s2

4s+1)

⇒ (A1/B1)A1/(B1−A1) = ( 4s2

4s2+4s+1
)4s2/(4s+1) = ( 1

( 4s2+4s+1

4s2
)
)(4s2/(4s+1)) = ( 1

1+ 4s+1

4s2

)(4s2/(4s+1)) =

1

[(1 + 4s+1
4s2

)(4s2/(4s+1))]

let n = 4s2

4s+1 , then letting s→∞⇒ n→∞ also. The above is then equal to

1

[(1 + 1
n)n]

Now, taking the limit as n →∞ we get lim
n→∞

1
[(1+ 1

n
)n]

= 1
e1

= e−1.

It is also stated that the factor (B1 −A1)/B1 = O(1
s ).

My proof. (B1 −A1)/B1 = (4s+1
2 )/ (2s+1)2

2 = (4s+1)
(2s+1)2

= (4s+1)
4s2+4s+1

= O(1
s ).

It is further stated that the factor 1− (A1/B1)1/(B1−A1) = O( 1
s2

).

My proof. B1 −A1 = 4s+1
2 ⇒ 1

B1−A1
= 2

4s+1
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and (A1/B1) = ( 2s
2s+1)2 ⇒ (A1/B1)1/(B1−A1) = (4s2+4s+1−4s−1

(2s+1)2
)

2
4s+1 = (1− 4s+1

(2s+1)2
)2/(4s+1) =

1− (4s+1)
(2s+1)2

2
(4s+1) + higher order terms.

⇒ 1− (A1/B1)1/(B1−A1) = O( 1
s2

).

Hence we have that the slope of L is O(s), i.e. tends to −∞ as s → ∞. On the other hand

ψ(q
1
2 ) is flat at 1 (We use ”‘flat”’ here as defined in Theorem 6 part 3 of Kostov’s paper; for

any l ∈ N, ψ(q) = o((q − 1)l) as q → 1−) from which property (C) follows.

Proof of part 3:

From the proof of part 2, we have p1(q) = q
(2s+2−2)2

2 − q
(2s+2−1)2

2 = q2s2 − q
(2s+1)2

2 .

We then have:

λs(q)−λs+1(q) =
∞∑
j=2s

(−1)jq
j2

2 −
∞∑

j=2s+2
(−1)jq

j2

2 =
2s+1∑
j=2s

(−1)jq
j2

2 = (−1)2sq2s2+(−1)2s+1q
(2s+1)2

2

= q2s2 − q
(2s+1)2

2 (for any s ∈ N)= p1(q).

So we have that λs(q)− λs+1(q) = p1(q) ≥ 0 (from (A)).

Clearly p1(0) = p1(1) = 0. So we hence have that λs(q) ≥ λs+1(q) for q ∈ [0, 1] and

λs(q) = λs+1 (q) only for q = 0 or q = 1.

Thus we have proved the Lemma and consequently the Proposition too. In doing so, we have

proved Kostov’s Theorem for the values q ∈ (0, 1) s.t. θ(q,−q−2s+ 1
2 ) = 0. We denoted these

q by r̃s and have r̃s = 1− ( π2s) + o(1
s ) with their corresponding local minimum turning points

zs.

Now, for completion of the Theorem, we need to prove the Theorem for the values of the

spectrum of θ. We do this by comparing r̃s and zs with q̃s and ys respectively and we show

that the Theorem must hold true for q̃s and ys also.
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3.2 Completion of the proof of Kostov’s Theorem

This next section is mostly very clearly explained in Kostov’s paper so I will not be greatly

elaborating on what has already been written. I will however be making some parts more

explicitly understandable where I believe it is needed.

It is clear that q̃s ≥ r̃s. Indeed, for q = r̃s one has θ(q,−q−2s+ 1
2 ) = 0, but at −q−2s+ 1

2 the

function θ(r̃s, .) does not necessarily have a double zero. That is, it might have two simple

zeros on the interval (−r̃s−2s,−r̃s−2s+1). This follows directly from part 7 of Theorem 4

of Kostov’s paper where we have −q−2k < ε2k < −q−2k+ 1
2 < ε2k−1 < −q−2k+1 for any real

participating zeros of θ(q, .), ε2k, ε2k−1.

So a double zero on the interval (−q−2s,−q−2s+1) occurs for some value of q greater than(or

at most equal to) r̃s, see Remark 1, i.e. q̃s ≥ r̃s. Now, suppose that the sequence {q̃s} tends

to 1 faster than 1− ( 2
Πs). (To be more precise. One should speak about a subsequence, but

given that {q̃s} is monotone, the existence of a subsequence tending to 1 faster than 1− ( 2
πs)

implies that the whole sequence tends to it faster). Then the sequence of double zeros of

θ(q̃s, .) cannot tend to −eπ.

More precisely, ∃ δ > 0, N ∈ N such that these zeros are less than or equal to -eπ-δ for s ≥ N .

Indeed, the double zero ys belongs to the interval J := (−q̃s−2s,−q̃s−2s+1), i.e. we have

− q̃s−2s<ys<− q̃s−2s+1 (12)

(It is the result of the confluence of the simple zeros ε2s and ε2s−1 and one has

− q̃s−2s<ε2s = ε2s−1 = ys<− q̃s−2s+1, (13)

see part 7 of theorem 4 of Kostov’s paper).
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If {q̃s} tends to 1 faster than 1 − ( 2
πs), then both extremities of the interval J are ≤ -eπ - δ

for s large enough, i.e. we have

− q̃s−2s+1 ≤ −eπ − δ (14)

(We make use of lim
x→0

(1 + x)
1
x = e1). This, however, is impossible. Indeed, consider any

sequence of numbers qs ∈ Is, Is:=[r̃s, ˜rs+1]. Hence one has qs = 1 -( 2
πs) + o(1

s ), the numbers

-q
−2s− 1

2
s tend to -eπ as s → ∞ and the convergence can be estimated independently of the

choices of qs in the intervals Is. Thus for s large enough all such numbers

− q−2s− 1
2

s ≥ −eπ − δ

2
(15)

On the other hand

-q̃s
−2s− 1

2 < -q̃s
−2s < ys, see (13). For each index s there exists τ(s) ∈ N ∪ {0} such that q̃s

∈ Is+τ(s) (because q̃s ≥ r̃s). Hence

− r̃−2(s+τ(s))− 1
2

s+τ(s) = −r̃−2s−2τ(s)− 1
2

s+τ(s) ≤ −q̃s−2s−2τ(s)− 1
2 ≤ −q̃s−2s− 1

2 (16)

Where -r̃
−2(s+τ(s))− 1

2

s+τ(s) ≤ −q̃s−2s−2τ(s)− 1
2 holds true since q̃s ≥ r̃s.

Now, using some of the above information (I will specify which ones after the following

inequality), we have that:

− eπ− δ
2
≤ −r̃−2s−2τ(s)− 1

2

s+τ(s) ≤ −q̃s−2s−2τ(s)− 1
2 ≤ −q̃s−2s− 1

2<− q̃s−2s<ys<− q̃s−2s+1 ≤ −eπ− δ

(17)

(Where the first inequality holds due to (15) and because qs ≥ r̃s, the second since q̃s ≥ r̃s,
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the third since q̃s is a monotonically increasing sequence, the fourth comes from (13), the

fifth and sixth both come from (12) and the last inequality follows from (14)).

Which is a contradiction since -eπ − δ
2 > -eπ − δ.

Thus, we have that the sequence of double zeros of θ(q̃s, .), ys, → −eπ as s → ∞, i.e.

lim
s→∞

ys = −eπ.

This now completes the proof of Kostov’s Theorem. In the next section, I shall summarise

the main points of Kostov’s Theorem, as well as suggesting possible further work to generalise

this theorem.

4 Conclusion and possible further work

4.1 Summary of Kostov’s paper and of the proof of his Theorem

Regarding Kostov’s paper ”Asymptotics of the spectrum of partial theta function”, we call

the spectrum of θ(q, x) :=
∞∑
j=0

q(
j+1
2 )xj , the set Γ of values of q ∈ (0, 1) for which θ(q, .) has a

multiple real zero. We refer to its elements as spectral numbers, denoted by

0 <q̃ = q̃1<q̃2< · · ·<q̃j< · · ·<1, lim
j→+∞

q̃j = 1. As q increases from 0 to 1 and when it passes

through a value q̃j of the spectrum, the rightmost two of the real zeros coalesce and then

form a complex pair. Hence geometrically speaking we think of spectral numbers as being

bifurcation points of θ. At the value of these bifurcation points q̃j , θ(q̃j , x) has a corresponding

local minimum for x = yj .

Essentially, Kostov’s paper extends the approximations of the spectral numbers, q̃j
′s made in

an earlier paper of Kostov’s [2], whilst giving rise to a truly remarkable and ingenious result,

of which absolutely astounds me, by providing us with an asymptotic approximation for their

associative yj ’s, namely

lim
j→∞

yj = −eπ.
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As you already know by my detailed explanation of the proof of Kostov’s Theorem, this proof

contains a substantial amount of mathematically challenging and dense material, however, it

is quite concise in the way it has been constructed.

I am now going to summarise the main points of the proof of Kostov’s Theorem.

Firstly, we prove the asymptotic behaviour indicated in Kostov’s Theorem for the values for

which one has θ(q,−q−k−
1
2 ) = 0 (k odd, k:=2s-1, s=1,2,...), for these values the number

−q−k−
1
2 corresponds to a local minimum of θ, where the double zeros arise. Denote by r̃s the

solution to θ(q,−q−2s+ 1
2 ) = 0 and set zs := −(r̃s)

−2s+ 1
2 . After proving this asymptotic be-

haviour for r̃s and zs, later we compare these numbers (r̃s, zs) with q̃s and ys respectively and

we show that the theorem holds true. To prove this behaviour for r̃s and zs, we use a shift of

limits to split θ(q,−q−k−
1
2 ) =

∞∑
j=0

(−1)jq
j(j−2k)

2 into
∞∑

j=−∞
(−1)j+kq

j2−k2
2 −

∞∑
j=k+1

(−1)j+kq
j2−k2

2

After some rearrangement, we conclude that solving θ(q,−q−k−
1
2 ) = 0 (k:=2s-1) is equivalent

to solving ψ(q
1
2 ) =

∞∑
j=2s

(−1)jq
j2

2 , where the function ψ(q
1
2 ) := 1 + 2

∞∑
j=1

(−1)jq
j2

2 = −1 +

2θ(q2,−1
q ) has many important properties (Theorem 6 of Kostov’s paper, proved in [5]),

which allow us to prove Lemma 3.2, which in turn we deduce Proposition 3.1 from it. Now,

for completion of the Theorem, we need to prove the Theorem for the values of the spectrum

of θ. We do this by comparing r̃s and zs with q̃s and ys respectively and we show that the

Theorem must hold true for q̃s and ys also.

This comparison of these two pairs of numbers uses the fact that q̃s ≥ r̃s. We suppose that

the sequence {q̃s} tends to 1 faster than 1 − ( 2
Πs), which in turn implies that the sequence

of double zeros of θ(q̃s, .) cannot tend to −eπ. We find a contradiction in this proof and

conclude that Kostov’s theorem is indeed true.
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4.2 Possible further work including visual exploration

It might be interesting to conduct further work and see if any generalisation of Kostov’s

Theorem and/or related work can be made for the β-family of functions

θβ(q, x) :=

∞∑
j=0

q(
j+1+β
2+β )xj

for β ≥ 0, where β = 0 has already been considered by Kostov himself.

You may be wondering why do this? and why this specific β-family of functions?

Originally, it was purely imaginative thinking which gave me the idea of considering Kostov’s

paper for higher powers of q. However, after much exploration (using Maple) I found some

rather interesting results on how the spectral numbers, q̃j ’s and their corresponding yj values

changed in comparison to the case β = 0 considered by Kostov himself in his paper for θβ(q, x)

when considering β>0.

I then conjectured the possibility that Kostov’s theorem could be generalised ∀β ≥ 0, not

just for β = 0.

The following maple code and resulting graphs show some of my findings when considering

β>0. Firstly, I construct my β-family of functions using Maple. I then plot its truncated

forms in the same way as previously done for β = 0. Following this, I discuss what these

graphs represent in relation to Kostov’s theorem for changing values for β ≥ 0.

> theta:=(x,q,beta,N) -> sum(x^n*y^binomial(n+1+beta,2+beta),n=0..N);

θ := (x, q,N)→
∑N

n=0 x
ny((

n)+1+β,2+β)

> with(plots):plt0:=implicitplot(theta(x,q,0,46),q=0..1,x=-30..30,gridrefine=5,

view=[0..1,-30..0]):

> plt05:=implicitplot(theta(x,q,1/2,46),q=0..1,x=-30..30,gridrefine=5,
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view=[0..1,-30..0]):

> plt1:=implicitplot(theta(x,q,1,46),q=0..1,x=-30..30,gridrefine=5,view=[0..1,-30..0]):

> plt2:=implicitplot(theta(x,q,2,50),q=0..1,x=-30..30,gridrefine=5,view=[0..1,-30..0]):

> plt3:=implicitplot(theta(x,q,3,50),q=0..1,x=-30..30,gridrefine=5,view=[0..1,-30..0]):

> plt4:=implicitplot(theta(x,q,4,50),q=0..1,x=-30..30,gridrefine=5,view=[0..1,-30..0]):

> display(array([plt0,plt05,plt1]));
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Remark 4.1. Graphs of θ0(q, x) (top), θ 1
2
(q, x) (middle), θ1(q, x) (bottom), truncated to order

N = 46.
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> display(array([plt2,plt3,plt4]));

Remark 4.2. Graphs of θ2(q, x) (top), θ3(q, x) (middle), θ4(q, x) (bottom), with order N = 50.
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Kostov’s paper considers the case of θβ(q, x) :=
∞∑
j=0

q(
j+1+β
2+β )xj for β = 0 and we have:

q̃j = 1− ( π2j )+o(1
j ) and lim

j→∞
yj = -eπ = −23.1407 · · · . This can be seen visually in the graph

of θ0(q, x).

Now, regarding how changing values of β affects these above two quantities, the interesting

thing to notice is that as soon as we consider β>0 i.e. β = 1
2 , there is a dramatic change

in lim
j→∞

yj (appears to be more than halved in value). For β = 1, again there is a change,

however it is not as dramatic as for β = 1
2 .

The spectral numbers q̃j for β>0 changes quite dramatically too. For example; for β = 0 we

have q̃1 ≈ 0.306 and q̃2 ≈ 0.5192, whereas for β = 1, q̃1 ≈ 0.5 ≈ q̃2 ≈ 0.5192.

For β>1, there is also change in lim
j→∞

yj , but it is much less dramatic than β = 0 → β = 1

change (see graphs previously for a clear geometrical visualisation of these points).

After much exploration, I suggest that the limits in Kostov’s Theorem would be different

∀β ≥ 0, and that the path and speed of convergence to their limit point may differ also. I

leave the reader with a question in which if I had more time I would try to answer it myself.

This question is- At each β and as we increase β, what is lim
j→∞

yj ?.

Following this, if lim
j→∞

yj and y′js are calculated, we could then possibly also calculate their

corresponding q̃j
′s and formulate a generalised asymptotic approximation for the spectral

numbers ∀β ≥ 0.
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