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Abstract

The Lorentz Lattice Gas models a particle on a two dimensional square lattice whose trajectory
is modified by scatterers at each lattice point. In this paper, a particular scattering rule known
as the mirror model is examined where lattice points are populated with double sided mirrors.
The trajectory of particles of N-step walks are probed at different probabilities of left and right
mirrors by examining the winding angle distributions. It is confirmed that configurations with
probabilities of left and right mirrors equal to one (referred to in this paper as mirror density
of one) are compatible with known Gaussian behavior with variance growing asymptotically as
C log N. The winding angle distributions where mirror density is equal to one are further
probed to reveal interesting fine structure. Distributions are examined with varying steps, N, in
order to confirm that behavior seen cannot be attributed to walk length alone. In addition,
winding angle distributions of mirror density less than one are examined where Gaussian
behavior breaks down. Winding angle distributions are examined by varying mirror
probabilities by 0.0001 in order to achieve highly resolved results at interesting points of the

sample space.
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1 Introduction

1.1 Motivation for this work

1.1.1 Lorentz Gas

The Lorentz gas is a fundamental model arising in the theory of Hamiltonian dynamical
systems whereby a particle makes mirror-like reflections from an extended collection of
scatterers'! whose dynamics can be likened to those of mathematical billiards'. It was

proposed by Lorentz in 1905"! as a model of electronic motion in a solid.

1.1.2 Lorentz Lattice Gas

Lorentz went one step further with this model by defining these dynamics on a two
dimensional lattice. Lorentz modeled the particle as a free electron and its scatterers as fixed
atoms at each lattice point. The trajectories of a single particle in a Lorentz Lattice gas are
modeled as the particle moves from lattice site to lattice site. When the particle arrives at a
lattice site, it encounters a scatterer that modifies its motion according to a given scattering
rule . Depending on the scattering rule, each scatterer can also have one of a number of

orientations.

In this paper a particular scattering rule called the mirror model is looked at. The lattice is
defined as a two dimensional square lattice populated with double-sided mirrors at the lattice
sites. The mirrors have diagonal orientations with respect to the origin and are placed

randomly at each lattice point reached by the particle with pre-determined probability:
Pret + Prigne = 1

In the notation above and for the remainder of this paper, the probabilities of left mirrors and

right mirrors will be referred to as Prer and Prigne respectively.

The trajectory of the particle is determined by the fixed positions of the mirrors and changes
with the probabilities of right/left mirrors and unoccupied lattice sites (all three of which

referred to in this paper as ‘mirror orientations’). The mirror orientations are determined as



such by the first arrival of the particle at the lattice point and remain fixed for the remainder of
the simulation of each particular walk. Details of how this was implemented are described in

the programming section of this paper (Section 2.1, Appendix A).

1.1.3 Self Avoiding Trails

Whilst the particle trajectory may close in on itself, forming an orbit, a given bond will never
be traversed in the opposite direction so the particle trajectories can be modeled as self-
avoiding trails. In contrast to self-avoiding walks, which are site-avoiding lattice paths, self-
avoiding trails are edge-avoiding, that is, they do not visit the same edge of the lattice twice™'.

Trails can visit the same lattice point more than once.

This behavior can be used to model the behavior of long chain polymers ® which cements its
relevance in fields such as chemical engineering and in the understanding of proteins and

DNA. !

1.1.4 Winding Angle distributions

From the trajectories of particles across the lattice, the winding angle is determined. The
winding angle distributions for lattice walks have received much theoretical attention since
they are a way of measuring subtle changes in particle behavior due to their sensitivity to
certain effects within the lattice. The winding angle of a two dimensional random walk which
exhibits a Brownian path around a finite winding center has winding angle distributions
showing slowing decays at long lengths. As proved by Spitzer,'™ the winding angle
distributions of two dimensional random walks are Cauchy distributed. In contrast, simulations
of interacting self-avoiding walks show that the winding angle distribution for N-step walks is
compatible with the theoretical prediction of a Gaussian with a variance growing
asymptotically as C log N . The winding angle distributions are sensitive to the details of a

model so are very good at probing the behavior of trajectories. In this paper, the winding angle



distributions enabled probing of underlying structure that would not have been picked up

using a different trajectory metric such as displacement from the origin.

1.2 Content of the thesis
1.2.1 Method

Figure 1 shows the probability space sampled with respect to the mirror orientation. The
method of simulating particle trajectories (such as those seen in Figures 2 and 3) and
determining winding angles are detailed in the method section of this thesis. The design and

implementation of the program is detailed in Appendix A with well commented code in

Appendix B.
LA
Pleft + Pright = 1
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Figure 1: Sample space: The red line shows p P + Prigne €qual to one. The blue line shows Pre - Piighe.

The winding angle is taken as the cumulative angle subtended by one end of the walk relative

to the origin of the two dimensional lattice. For consistent results, step 1 should always be



taken in the same direction and all winding angles should be measured with respect to this
direction. In the following discussion, step 1 is always eastwards. The first step of the walk is
from point (0,0) to (1,0) with no mirror being generated at the origin. The red mirror in
Figure 2 represents the mirror generated with pre-determined probability should the particle
return to the origin. The winding angle is therefore calculated with respect to this initial step.
Figure 2 depicts a maroon dot at the point the particle has reached winding angle of 360

degrees and shows the final winding angle of the walk.
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Figure 2: A 20 step walk generating right mirrors with probability 0.2 and left mirrors with probability 0.8, depicted as
forward and backward slashes respectively to achieve a mirror density of 1. Notable winding angles are labeled including
360 degree winding angle marked by a maroon dot. The first step of the walk is from point (0,0) (denoted by a green

dot) to point (1,0) with no mirror is generated at the origin, hence the red mirror indicates the mirror generated by

return to the origin.

1.2.2 Results and discussion

The winding angles distributions for both mirror density equal to one and mirror density less
than one are examined in depth. At mirror density of one, Prigne + Prer = 1, prior research

reports known Gaussian behavior”?*?, This is confirmed in Section 3.1 where the winding



angle distributions of walks with mirror density equal to one are further probed to reveal
interesting fine structure. In Section 3.2, walks with mirror density less than one (as
demonstrated in Figure 3) are examined where there is strong numerical evidence Gaussian
behavior breaks down. It is seen the winding angle distributions have more complex behavior

than the theoretical Gaussian prediction.

10 1

Figure 3: A 50 step walk generating right mirrors with probability 1/3 and left mirrors with probability 1/3 and

designating a point having no mirrors with probability 1/3.
The winding angles at Prigne + Prer< 1 are further investigated by varying Prighe , Prer by
increments as low as 0.0001. This allows probing of interesting distributions such as those
seen at mirror probabilities equal to a third where an asymptotic value of kurtosis of around
3.8, which clearly deviates from the Gaussian value of 3" is seen. At very 1ow Prigh and Py,
near ballistic behavior is exhibited as the particle follows linear displacement with steps due to
a lack of encounters with scatterers. In Section 3.3, kurtosis is used as a proxy to determine the
probabilities at which unusual trajectories occur in the sample space and these are examined

in depth.



2 Method

As aforementioned, the winding angle is taken as the cumulative angle subtended by the end
of the walk relative to the origin of the two dimensional lattice. The first step of each walk is
from point (0,0) to point (0,1) with a cumulative winding angle of zero. Note, the program
implementation takes as its consistent first step a step “northwards” which is different from the

prior discussion but since it is treated consistently this gives exactly the same results.

2.1 Program Flow of Execution

This section describes the flow of execution through the program in order to determine the

Winding Angle.

The flow control of classes in this program is as follows:
{RandomWalk.ThreadMain()} = Grid — Direction
{RandomWalk.ThreadMain() } = Analytics

Further programming information such as; Design Considerations, Implementation and
Learning Points along with other useful files such as; RandomWalk.cpp,
RandomWalkCommonHeader.h, RandomWalkUtilities.cpp, GridUtilities.cpp are detailed in the
Appendix. Itis important to note in the body of this report that the program was designed to
work effectively on a local computer with limited memory and processing power, in addition
to the supercomputer, using a common code base; hence the flow of execution reflects this. All

functionality was developed on the local computer before executing on the super computer.

The program takes 6 parameters in the command line. These parameters describe;

* The steps in each walk

* The number of configurations required
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* The probability of a mirror facing left (as a percentage)

* The probability of a mirror facing right (as a percentage)

» The probability scale factor, which instructs the program the decimal points of
probability which have to be taken into account .

* The action, which can be one of serialise, load , RAM (explained in detail in Appendix

A)

The command line parameters collectively constitute one of two structures which control the
execution of the program, the other control structure is a series of hash defines in
RandomWalkCommonHeader.h which determine both which functionality is executed and
which code compiles into the program. This second control structure reduces the need for
processor costly evaluation of ‘if’ conditions, in order to maximize the number of

configurations that can be determined in any given time frame.

The program determines whether it is running in single thread or multiple thread mode. For

the rest of this method discussion it is assumed it is running in single thread mode.

The program uses the information passed on the command line to set up essential data
elements for the subsequent executable, the most important of which is the ‘GridMap’.

(implementation and sizing described in Appendix A)

An instance of the Class Grid is created and is then initialized. During the initialization
function the ‘GridMap’ is created and used to record the winding angle at every grid position.
With the Grid initialized, the programs main function in RandomWalk.cpp, asks Grid to find a
configuration and will keep doing so until the required number of configurations has been
found. Grid never knows how many configurations it is required to find, it simple responds to

the request to ‘find a walk’.

11



Prior to each walk commencing, a number of parameters have to be reset. The most important
of these is ‘GridMapTrace’, which records each arrival and departure destination for every grid
point that is visited during the walk. Hence, at the start of each walk, every position is reset to

“not visited”. Another key variable reset is the step count.

Every walk commences with a step from the origin (0,0) to point (1,0). This is treated in the

code as a step “northwards” with respect to the Winding Angle.

While Grid does not know how many configurations it is required to find, it does know how
many steps each configuration is comprised of. With the initialization complete, it asks the
Direction Class to take one step. Each time Grid asks Direction to take one step, it invokes the
‘takeOneStep’ function on a subclass of Direction (the North, East, South or West subclass) but

it is unaware of this.

Neither Direction nor its subclasses know the number of configurations or steps they are

required to find. They simply take one step each time they are instructed to do so.

The majority of the work undertaken by the program is taken during the ‘takeOneStep’
function. First, the function updates its departure direction in ‘GridMapTrace’ for the grid point

at which it is currently located. It then takes one step in the appropriate direction.

Having arrived at the new location, the function updates ‘GridMapTrace’ to indicate the
direction from which it arrived. Next, the change in winding angle and new cumulative

winding angle are calculated. For reasons explained in Appendix A, the process is as follows:
The change in winding angle is calculated by the difference between the winding angle stored

on ‘GridMap’ for the current position and the winding angle stored on ‘GridMap’ for the

previous position. Note: this can result in a positive or negative value. The cumulative winding
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angle is then updated by adding the change in winding angle. This automatically takes into

account the direction of rotation and rotations greater than 360 degrees to an arbitrary size.

Assuming that the previous step did not involve passing through the center of the grid the
program evaluates whether the current position is the center. If so, this is recorded with the
direction of rotation and a further step is taken to determine whether the walk has entered a

loop.

Assuming the new position is not the center. The new direction that the walk will take is
determined. In the instance where the position is visited for the first time, an orientation for a
new mirror is obtained according to the probabilities that have been passed on the command
line; either right, left or straight on. In the instances where the position is visited for the
second time, there is only one direction left to move in. Note: the exception to this is for the

central grid position (0,0) since no mirror is generated at the origin at step O.

The new direction is returned by the ‘takeOneStep’ function in the form of a pointer to the
relevant subclass of Direction which the ‘findWalk’ function of Grid receives as a pointer to a

Direction Class instance.

Returning now to ‘findWalk’ in Grid, Grid will keep invoking ‘takeOneStep’ until one of two
conditions is satisfied; either the necessary number of steps have been taken, or direction has
indicated it encountered a loop. In the former case, the walk is returned to the main function.
In the second case, ‘findWalk’ resets all the relevant variables and starts again and keeps doing

so until it has successfully completed a walk of the requisite number of steps.

At this point we have returned to the main calling function and we are in a position to process

the walk according to the functionality enabled in RandomWalkCommonHeader.h.

13



Assuming ENABLE OUTPUT ANALYTICS() = TRUE, RandomWalk.cpp will pass each walk to
the Analytics Class in order to generate a Histogram and calculate distribution metrics such as

variance and kurtosis.

2.2 The Sample Space

Simulations were performed for walk lengths ranging from 10* to 10° steps using the
algorithm detailed above. This algorithm determined the winding angles of each walk which
were then passed to the Analytics class which allows production of Histogram data in situ with
predetermined bin size and range. Winding angles were passed to the Analytics class upon
generation and did therefore not need to be stored in RAM. Histograms were obtained for
winding angle distributions at probabilities across the sample space. The bin size was altered
in the range of 0.5 degrees to 22.5 degrees in order to pick up very fine structure and get a

more general distribution shape.

10

VL)

06

04

Probability right mirror
N

0z

0o

00 02 08 10

04 06
Probability left mirror

Figure 5: Points show the Left and Right mirror probabilities sampled at N = 1000 steps. The Blue points show actual

sampled data that could then be used to extrapolate the black points after proving this behaves symmetrically.
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Figure 5 shows the winding angles determined across a wide spectrum of probabilities, with
interesting distributions examined in more depth. Note the increased sampling at very high
and very low probabilities , where Prighe = Prer and as the mirror density Prighe+ Pret:

approached one.

The maximum jump in probabilities sampled across the sample space was 0.05. However, at
points of interest, probabilities were changed by 0.0001 in the range of 0.1 in order to achieve

distribution data such as kurtosis at high resolution.

The Analytics class was also used in order to get key analytics data such as Kurtosis and
Variance. This was done as follows in order to allow these metrics to be calculated without the

program needing to store all winding angles.

Initially Mean and Variance and any intermediate values such as

Fractional_delta were set to zero.

With each new New winding angle pushed to the Analytics class, the Number of angles was

incremented by one and its deviation from the mean was calculated.

Delta = New winding angle — Mean
Fractional delta = Delta/ Number_ of angles

Mean = Mean + Fractional_delta

Using the terms Fractional delta squared and Term1 to calculate the Second moment,

variance could be returned.

Fractional delta squared = Fractional delta * Fractional delta
Terml = (Number of angles — 1)* Delta * Fractional delta

Second_moment = Second moment + Terml

15



Variance = Second moment/(Number of angles - 1)

One Analytics property deemed particularity useful when studying Winding Angles is Kurtosis,

referred to as the fourth standardized central moment:

((X- w)*)/{(X-u)*)?, which indicates the amount of probability in the tails.

In order to calculate Kurtosis, Third_ moment and Fourth_ moment were determined with each

new New winding angle pushed to the Analytics class.

Third moment += Terml * Fractional delta * (Number of angles - 2) - 3

* Fractional delta * Second moment;

Fourth moment+= Terml * Fractional delta_ squared *
(Number of angles*Number of angles - 3*Number of angles + 3) + 6 *
Fractional delta squared * Second moment - 4 * Fractional delta *

Third moment ;

Kurtosis = (Number_ of angles )* Fourth moment/ ( Second moment *

Second_moment )

Initial sampling across the sample space was done at 100 steps in order to probe for points of
interest. A plot depicting the initial probing with respect to Kurtosis is shown in Section 3.3 of
the results . The majority of the research done at points of interest was for steps of length 1000
or above. At very low mirror probabilities, 100 step walks were deemed insufficient for
rigorous sampling as the finite size effect interfered with results. These effects became
particularly prominent for mirror probabilities with the combined combination of left and right
mirror of less than 0.01, where the vast majority of the walks generated of 100 steps contained

NO Mmirrors.
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3 Results
3.1 Mirror Density of One

Gaussian behavior is seen with Pgighe + Prer =1, also referred to in this paper as mirror density
equal to one. The distributions below have been scaled to unit variance, using the mean and

variance obtained by the Analytics class of the program. The standard deviation was obtained
from the square root of the variance, allowing determination of the scaled winding angle by:

Scaled winding angle = (Winding Angle — Mean)/Standard deviation

This enabled the determination of the scaled density in the Histogram in order for the area

under the curve to sum to one, allowing comparison with the Gaussian distribution.

Histogram[ 'Scaled angle_times_ frequency'] = Scaled Angle Bin Width

*Histogram[ 'Frequency' ]

Histogram[ 'Scaled Density']= Histogram[ ‘Frequency’]/

(abs( Histogram['Scaled angle times frequency']).sum())

The histogram bin size was adjusted in order to show fine structure. At a bin size of 22.5
degrees, all of the below figures showed Gaussian distribution, as seen in Figure 7a. At bin size
= 5 degrees, increasing amounts of fine structure is seen as the difference in Piighand Preq

increases.

Figures 6a and 6b both show binning at 5 degrees in order to demonstrate that the fine
structure of the distribution Pgigne=Pres=0.5 has perfect agreement with the Gaussian. Despite
the distributions using 22.5 degree binning showing a kurtosis of 3 and perfect alignment with
the Gaussian in Figure 7a, fine structure is seen at 5 degree binning. In addition, the fine
structure of the distribution starts to loose symmetry and the mean shifts from 0.014921 for

PRjght:PLeft:O.S to -988333 fOI' Pright: 06, P]eft: 0.4.
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Figures 6 and 7: Winding Angle Distribution from 10° configurations of 1000 step walks . Since left and right mirror
probabilities sum to 1, we see Gaussian distribution of winding angles. Figure 6 gives: Mean: 0.014921, Variance:
7.57432, Kurtosis: 3.00219. Figure 7 gives: Mean:-9.88333, Variance: 7.53568, Kurtosis: 3.04248. Figure 7a shows
large bins in order to remove fine structure and demonstrate agreement with Gaussian, shown with a red curve. Figure

7b shows smaller binning of 5 degrees to include fine structure.

This fine structure becomes more prominent as the difference in mirror probabilities increases.
The distributions plotted become increasingly modulating. The mean continues to move
towards -45 degrees with Pgighe = 0.7, Pier = 0.3 and Prigne = 0.8, Prer = 0.2, giving means of
-19.5074 and -28.6580, respectively.

Figures [8-11] demonstrate the increasing modulation as Pgig is progressively increased by 0.1
and P, decreased by 0.1 maintaining Prigne+Prer=1. The distributions generated with 22.5
degree bins have been omitted since they showed perfect Gaussian distribution as in Figure 6a
and 7a. Instead the Gaussian is shown on the figures with a red curve. The fine structure seen
below is surprising since analytics point to perfect alignment with the Gaussian at mirror
density equal to one. Instead the fine structure reveals increasing modulation around the

Gaussian with prominent sharp peaks showing at Pgighe = 0.9, Prere =0.1.
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Figures 8, 9,10, 11 : Winding Angle Distribution from 10® configurations of 1000 step walks. Metrics for Figure 8 are
described in the caption for Figure 7 on the previous page. Figure 9 has; Mean: -19.5074, Variance: 7.42298, Kurtosis:
3.03917. Figure 10 has; Mean: -28.658, Variance: 7.20924, Kurtosis: 3.03402. Figure 11 has; Mean: -37.1664,

Variance: 6.79405, Kurtosis:3.02001. Gaussian is shown in red.



Figure 12 shows that as the number of steps increases to 10 000 steps, the fine structure
becomes more prominent, as indicated by the blue line. This confirms that the fine structure

seen is not noise and cannot be attributed to unusual behavior at a particular length walk.
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Figure 12: Winding Angle Distribution from 10® configurations generating right mirrors with probability 0.9 and left
mirrors with probability 0.1. The distribution for 1000 step walks is shown in black with the distribution for 10 000 step

walks shown in blue indicating increased structure.

Despite interesting fine structure shown in the distributions, all of the above distributions show
mesokurtic distributions with a numerical kurtosis value of three and alignment with the
Gaussian when 22.5 degree binning was used. An exception arose where mirrors of only one
orientation were generated in order to achieve a mirror density of one, i.e. in the cases:

Pright = 1 Preg=0 and Prighe = 0 Pres=1
Distributions with the probability of either the right or left mirror equal to one show a peak at

-45 or 45 degrees, respectively, due to the formation of channels as demonstrated in Figure 13.
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Figure 13: A 20 step walk generating right mirrors with probability 1 and left mirrors with probability O showing a final

winding angle of - 45 degrees as the walk gets stuck in a channel.
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3.2 Mirror Density Less than One

Whilst at mirror density equal to one, the walks have a winding angle distribution that is

Gaussian, this breaks down with mirror densities less than one.
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Figure 14: Winding Angle Distribution from 10® configurations of 1000 step walks generating right mirrors with
probability 1/3 and left mirrors with probability 1/3. Mean: -0.0199307, Variance: 14.8567, Kurtosis: 3.83548.

Figure 14 shows the distribution generated from 108, 1000 step walks. The distribution clearly
deviates from the Gaussian with Kurtosis of 3.835 seen. This value is in line with the value
determined in prior research *!. Due to a proportion of the mirrors being neither left nor right,
a larger variance is observed than at mirror density equal to one with a broader more peaked
distribution. Displacement from origin is also determined with maximum displacement
returned using the program’s analysis functionality in RandomWalkCommonHeader.h.
Unsurprisingly, distributions with Pgighe + Prer < 1 have a higher displacement from origin than

those generated with Prighe + Pre =1.

Moving focus to look at very low probabilities of mirrors generated a large displacement from
the origin is seen since walks experience much less scattering. In addition, early scattering
events significantly effect the winding angle. Altering the lengths of the walks sampled would
greatly change the distributions at low mirror probabilities since at shorter walks such as those

with 100 steps, scattering events become less and less likely. At a higher number of walks such
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as those with 10 000 steps, we would expect the below distribution to occur at lower mirror
probabilities whereas with walks of 1000 steps at probability of 0.1 a mean free path of 100
leads on average to a scattering event every 100 steps. Figures [15-24] show the scaled
winding angle for runs with 10° configurations of 1000 step walks for equal mirror
probabilities decreasing under 0.01 for left and right mirrors. These distributions are

symmetrical with a mean of around 0 degrees.
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Figure 15: PRight = PLeft = 0.008, Bins = 12.25 degrees Figure 16 : PRight = PLeft = 0.006, Bins = 12.25 degrees
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Figure 17: : PRight = PLeft = 0.004, Bins = 12.25 degrees Figure 18 : PRight = PLeft = 0.002, Bins = 12.25 degrees

As Prighe and Prer decreased, the bin size was made smaller to show the increased prominence of
the central peak as more and more walks encounter no mirrors. Ridges appearing in the
distribution show the effect of individual encounters with scatterers on the winding angle
depending on where in the walk they are reached. Encounters with scatterers early on in the
walk shift the winding angle by 45 degrees but this is decreased as the particle encounters a

scatterer later.
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Figure 19: PRight = PLeft = 0.001, Bins = 12.25 degrees Figure 20 : PRight = PLeft = 0.0008, Bins = 5 degrees
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Figure 21: PRight = PLeft = 0.0006, Bins = 5 degrees Figure 22: PRight = PLeft = 0.0004, Bins = 5 degrees
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Figure 23: PRight = PLeft = 0.0002, Bins = 5 degrees Figure 24: PRight = PLeft = 0.0001, Bins = 5 degrees

At the lowest probability sampled, Figure 24 shows the vast majority of walks encounter no
scatterers, the two ridges in the distribution indicate a small proportion of walks encounter
either a left or right mirror which alter the winding angle by somewhere in the range of 0 to

45 degrees depending on the point in the walk where the scatterer is encountered.
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3.3 Kurtosis

As mentioned above, normal distribution has kurtosis equal to to 3, this can also be referred to
as a mesokurtic distribution. If the kurtosis is greater than 3, the distribution is leptokurtic and
the data set has heavier tails than a normal distribution. An example of this is logistic
distribution which resembles normal distribution but has heavier tails with kurtosis of
approximately 4.2 31, If the kurtosis is less than 3, platykurtic distribution, then the dataset
has lighter tails than a normal distribution.

Since kurtosis enables the probing of deviation of a random variable from a normally
distributed one, it acts as a good proxy for determining where unusual behavior occurs on the
sample space and hence where interesting distributions occur. Figure 25 shows the sample

space as a 3D scatter plot as sampled at 100 steps in order to probe for points of interest.
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Figure 25: 3D scatter plot showing Kurtosis against probability of Left and Right mirrors for 100 step walk with analytics

taken from 10°® configurations

Variance was also looked at in order to confirm expected behavior. Several prior papers found
the winding angle distribution having a variance that grows asymptotically as C log N 9,

Figure 26 shows little noise and clear agreement with the theoretical straight line.
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Figure 26 : Variance in radians against Log(N) with varying length walks where each variance point is taken from 108

configurations. Note overlap of variance with mirror density equal to one.

Almost identical variance was seen for both sets of probabilities resulting in a lattice mirror
density of one. A disproportionate probability of left and right mirrors had very little effect on
the variance as suspected from results found in Section 3.1 where it was shown that regardless
of the respective Pgn, Piere , the winding angle distribution is Gaussian. As the mirror density
was decreased from 1 (Pright = Prer = 0.5 and Prigne = 0.6, Prese = 0.4) to 0.8 (Pright = 0.4, Prer =
0.4), the variance increased. This effect was seen as the density of mirrors on the lattice site
was further decreased to Prigne = 1/3, Prer =1/3 and was more significant with higher N. In
addition, Figure 26 indicates slight curvature in the graph with mirror densities of less than
one showing the variance grows faster than linearly in Log(N). Since the variance indicates
that parameters change on the logarithmic scale, the Kurtosis was plotted as a function of
1/Log(N) keeping mirror probabilities fixed. The dotted lines seen in Figure 27 are to guide the

eye, not for extrapolation.
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Figure 27: Kurtosis against 1/Log(N) with varying length walks where each kurtosis point is taken from 10° solutions.
The green squares show Kurtosis at equal mirror probability = 0.4, whilst blue points and orange squares show kurtosis

where mirror probability =1 with right mirror = left mirror and disproportionate mirror probabilities.

Whilst significant change in Kurtosis with 1/Log(N) is seen for Pgighc + Prer < 1, no notable

change is seen for Prighe + Prer = 1 where the value of the kurtosis in line with the Gaussian
value of 3. Where mirror density is less than one, clear deviation from the Gaussian value is
seen as winding angle distributions have significantly more probability in the tails. The red
dots in Figure 27 show Prigne = Pl = 1/3 and indicate an asymptotic value of Kurtosis between
3.65 and 3.8. This behavior does not indicate stretched exponential where much fatter tails are
seen with a kurtosis value of 6"%. The above findings clearly show the winding angle
distributions move away from exhibiting Gaussian behavior as mirror probabilities are

decreased from Pright + Prer = 1.
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Figure 28 shows Kurtosis as this phenomenon was investigated further by decreasing Pgigh and

Pi. by equal increments of 0.001 from 0.5 to O in order to see this effect at high resolution.
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Figure 28: Values of kurtosis calculated from 10° configurations of 1000 step walks generating left and right mirrors of
equal probability. The green dots indicate the known values of kurtosis at p=1/3 and p = ¥ . This clearly shows that the
numerical value of the kurtosis also approaches the Gaussian value of 3 . Values of kurtosis above 6 were cut as these

were put down to the finite size effect.

Linear behavior is observed from approximately Prighe = Piert 0.2 to 0.48. As in shown in Figure
27, kurtosis is seen to decrease as the number of steps is increased in this region. This changes
at the extremities. Unusual behavior is seen as the Gaussian value of kurtosis as mirror density

equal to one is approached where a sharp dip in kurtosis is observed.

At lower mirror density there is additional interesting behavior. In all walk lengths a dip is

observed at low probabilities before the kurtosis dramatically increases. The sharp increase in
kurtosis occurs at higher probabilities for lower N and can most likely be attributed to a finite
size effect since at low mirror probabilities, the chances of a particle encountering a mirror on

any given walk is smaller at smaller N.
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Figure 29 shows the change in kurtosis at high resolution for Prigne=Prex < 0.1. In all values of
N, the dip is clearly defined and occurs at kurtosis of just under 4.4 for 1000 and 10 000 steps,
showing the distributions have significantly more weight in the tails than the Gaussian

distribution but cannot be attributed to a stretched exponential distribution of 6.
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Figure 29: Values of Kurtosis calculated from 10° configurations generating left and right mirrors of very low equal

probability. Values of kurtosis above 6 were cut as these were put down to the finite size effect.
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Figure 30: Values of Kurtosis calculated from 10® configurations generating left and right mirrors of equal probability
approaching p = 1/2.

Figure 30 shows change in kurtosis as Prign and Preq are increased from 0.495 to 0.500.

Surprising behavior is observed with N=100, N=1000 and N=10000 following no obvious
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trend. More sampling at 100 000 steps would be required in order to confirm the indication

that the decrease in kurtosis becomes progressively less linear as N is increased.

A natural progression from observing the change in Kurtosis as the mirror density approaches
one with equal probability of left and right mirrors is the probing of Kurtosis as the mirror
density approaches one with unequal mirror probabilities.

Figure 31 was generated by altering P..« in the range 0 to 0.9 keeping P fixed at 0.1.
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Figure 31: Values of Kurtosis calculated from 10° configurations generating left mirrors of varied probability and right

mirror at fixed probability = 0.1.

Very similar behavior was seen as in Figure 28, with a large linear section showing theoretical
agreement with the effect of step length on kurtosis in the section ranging from approximately
P = 0.2 to 0.7. The behavior differs at the extremities. Where P approaches 0, the
kurtosis rapidly decreases at all values of N. Abnormal behavior is observed for N=100, which
is mostly likely due to the step length since minute changes in probability are not reflected in
the kurtosis at this resolution. At steps of length 100 and 1000, a dip is observed at
approximately 4.4 but rounds off at 10 000 steps where the distribution reaches a kurtosis of

4.7. Clear deviation from the Gaussian distribution is again demonstrated with a kurtosis most
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closely attributed to logistic distribution which resembles normal distribution but has heavier

tails and a kurtosis of 4.2.
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Figure 32: Values of Kurtosis calculated from 10° configurations generating left mirrors of varied low probability and

0.125 0.150 0.175

right mirror at fixed probability = 0.1.

Figure 33 again indicates abnormal behavior for N=100 as kurtosis drops below the expected
Gaussian value of 3 however since the drop is not significant this could be attributed to the
finite size effect. Step lengths: 1000 and 10 000 behave consistently exhibiting very similar

behavior with clear deviation from linearity as the mirror density approaches one.
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Figure 33: Values of Kurtosis calculated from 10® configurations generating left mirrors of varied high probability and right

mirror at fixed probability = 0.1.
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4 Conclusions

A program was designed in order to determine the winding angles for walks of up to 107 steps
for up to 10° configurations which works quickly on a regular local machine. Known Gaussian
behavior of the winding angle distributions were confirmed for lattices with a mirror density of
one and deviation from the Gaussian for notable probabilities such as Prighe = Prerr = 1/3 were

also seen in line with prior research.

Winding angles were studied across the parameter space at all possible probabilities, with
kurtosis taken at probability increments of 0.05 for 100 step walks in order to probe for
interesting behavior. Unusual fine structure was observed at a mirror density of one where the
distributions modulates around the Gaussian. This is a new finding. It was proven that this
could not be attributed to the finite size effect by demonstrating an increase in structure at

high N.

The change in kurtosis as mirror probabilities moved towards one was examined in depth for
equal and unequal probabilities of left and right mirrors. Again, unusual distributions that
clearly deviate from the Gaussian were observed, both at very low mirror probabilities and as
the lattice approached a mirror density of one. More research at higher step length is required
in this area since from the variation of step lengths sampled it is unclear whether the correct

asymptotic regime was reached.
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5 Appendix A

5.1 Design considerations and Decisions

The majority of the data for this paper was obtained by running this program on a super
computer. However, in order i) avoid wasting costly supercomputer processing time and ii)
make development more efficient, all functionality was first implemented and tested on the
development machine before promotion to the supercomputer. Not surprisingly, there were
significant differences between the capabilities of, and resources available to, the two
computers. This decision to fully implement all functionality on both machines had significant

design implications.

Initially hash tables were used, indexing on the x value for each bucket however this led to
problems with speed since the evaluations at each new point was high due to the number of ‘if’

statements and ‘push/pop’ statements on the C++ container.

A decision was made to use a data construct that provided contiguous memory, hence vector
was chosen since it also allows for direct access to its elements without having to use push and

pop. In addition, a vector can be used to represent 2D array (Grid) with simple maths.

A key design decision was to minimise the number of ‘if’ statements that had to be evaluated.
Each step could involve a dozen or so ‘if’ statements and thus a run with 1,000 steps and
searching for 1,000,000 configuration might need to evaluate in excess of 10 billion ‘if
statements. This key design decision was implemented using a three-fold approach. First,
secondary functionality, such as printing verbose output or logging function execution times,
as well as more fundamental functionality, such as the enabling of multiple threads and the
saving of winding angles, were enabled or disabled using #defines. This enabled selected code

to be removed from the compiled executable and with it the need to check at run time if it
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should be executed. For Verbose mode, in particular, this check would otherwise have had to
be performed multiple times per step. Secondly, polymorphism was used so that the program
does not need to evaluate the direction from which it arrives at a point. Finally, by encoding
the “visit history” at each grid location, if a position is revisited the program does not need to
evaluate what the previous transit through that point; straightforward subtraction can be used

to determine the destination direction.

An early implementation of this approach used ‘ChangelnWindingAngles’ for every grid point
relative to its four neighboring grid points. This had the benefit that knowing the direction one
had reached a particular grid point from, one could immediately look up the change in angle
and add it to the cumulative total. The only maths required was an addition. This
implementation was faster - particularly if the change in winding angles were loaded from disk
having been pre-calculated during a previous run. However, this approach used almost four
times as much memory, so a compromise was taken to store winding angles themselves and

not the changes.

For memory reasons floats are used rather than doubles despite implication for precision of

winding angles over a very large number of steps.

Depending on the size of file written to, results were either written line by line or for files such
as ‘GridMap’, in binary. Depending on the action passed on the command line, on execution
this ‘GridMap’ is either, created in the current executable (Action = Serialise) and saved to
disk, read from disk (Action = Load), or created in the current executable and not saved

(Action = RAM).

A compression factor was used to reduce the size of GridMap created. A compression factor of
1 directs the program to create a vector with exactly the number of elements required to
encode a grid of length (2 * Steps) + 1. Fully half of such a grid is never reachable by any

walk. As the value of Steps increases, both the development computer and supercomputer run
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out of memory to capture the associated grid. In addition, the time required to create the grid
rapidly increases. Further, the proportion of the full grid that can actually be reached drops off
rapidly, particularly with mirror probabilities that create more winding. A lower compression
factor such as 0.1, for example, would result in a grid allowing for a net movement of one

tenth the number of steps, net, along either axis and a 100 fold reduction in required memory.

This program is well suited to a multi threaded approach. The benefits of using multiple
threads both depends on, and has implications for, other design considerations. A multi
threaded implementation which is materially faster was developed and testing indicates that it
is functionally correct. It works by dividing up the solutions (configurations) between the
number of threads which are available. However, it was found harder to debug and thus to be
a more complicated solution to develop and maintain. Therefore, all the data collected for this
project was was acquired by running the program in single thread mode in order to be

confident about integrity of data.

5.2 Implementation

This section describes the implementation used to generate the data on which the

mathematical analysis has taken place.

A key decision was to use a common header file, allowing definition of global constants and a

sinmple way of controlling the program.

The program can be considered to be a simple main function and three classes. The flow
control of classes in this program is as follows:

{RandomWalk.ThreadMain()} = Grid — Direction

{RandomWalk.ThreadMain() } = Analytics
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In the case of Grid some of its functionality is implemented via a utility file, GridUtilities. A

number of utilities are also provided in RandomWalk.cpp.

Due to RAM limitations unsigned data types were used wherever possible and the shortest
data type was used. This occasionally presented problems when variables were assigned values
greater than originally foreseen. Particular instances were needing to replace unsigned short

int with unsigned int and replacing unsigned int with unsigned long

In order to achieve both truer random distribution and faster random number generation, an
implementation of the xoshiro** algorithm ™! was implemented with a bespoke initialization
function.

The random generator function was modified to take the probability range of the generator
which again reduced the amount of if conditions in processing each configuration (see

commented code in 6.8 Appendix B)

Optional functionality includes the ability to log amount of time spent executing individual
functions and he number of invocations of those functions, this was useful in the early days of

development.

The program provides supporting functions which are not necessary for its mathematical
purpose. These functions allow analysis of probabilities generated to confirm that they are
correctly distributed,. In addition functions can return the extent that a set of walks reaches in
the grid which allows for the compression factor to be adjusted and as small a grid as possible
to be created for any given number of steps and desired configuration. Extensive structured

output was available to support debugging through the ENABLE VERBOSE_MODE().
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5.3 Learning Points

I was pleased with, but under-estimated, the amount of work required for the program to
generate useful info for debugging information and the subtlety of errors that were introduced
through changes to code. In particular, whilst I am pleased I constantly sought to improve the
design of the program I recognize that in doing so I created a significantly bigger regression

testing need than I realized at the start.

I was conscious of wanting to write code to a set of standards from the outset, but did not do
so rigorously initially. With hindsight, I would decide and follow my chosen standards from
the outset. Not only would debugging, maintenance and refactoring be easier, but less will
power would have been required towards the end of the project to make the changes which I
knew were necessary but didn’t want to contemplate because of the effort required and the

risk of introducing defects.

I did not examine the requirements as rigorously as I should have before beginning design and
development. Initially the program was designed to place the left right mirrors with respect to
the direction of travel which led to completely different distributions and resulted in a less

efficient program than had these requirements been better understood at the offset.

5.4 Experimental version

An experimental version has also been developed which was not used for this project but
includes code that was at various times experimented with.

In addition to the submitted functionality, the experimental version supports; i) an alternative
implementation of calculating grid coordinates that uses Direction’s sub classes and has a
lower processor overhead, ii) a low memory calculation of winding angles that replaces

GridMap with a counter of complete revolutions which is added to the partial rotation angle
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and iii) a way of recording and replaying direction choices that enables regression testing and
interoperability / comparison between different implementations.

It is believed that all functionality is correctly implemented. However, it has not been
submitted as it was not the version used to obtain the data that is reported on above and

which forms the basis of the findings of this research
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6 Appendix B

This section provides notable source code files in the program.

It starts with RandomWalkCommonHeader.h which defines key global constants and is one of
the two important control mechanisms.

This is followed by RandomWalk which contains main().

Next follow the implementation (.cpp) files of the three classes (and their subclasses, where
applicable) in the order they are used within the program and discussed above.

A full PDF of commented source code, Appendix 7 was submitted along with a README.txt in
the source code .zip file.

6.1 RandomWalkCommonHeader.h

#ifndef RandomWalkCommonHeader h
#define RandomWalkCommonHeader_ h

#define CENTRE_INITIAL_ STATE 0

#define CLOCKWISE 0

#define COUNTER_CLOCKWISE 1

#define COMPRESSION_FACTOR 1 // Suggested values 1.0 for up to 10,000 steps, 0.1 for 100,000 steps
and 0.05 for 1 million steps

#define EAST 1

#define ENABLE_ANALYSIS MODE() FALSE // It shows how much of Grid.Map has been used. Unused

Grid.Map means COMPRESSION FACTOR may be reduce. Aim for a "buffer" of 1. Introduces a time

overhead!

#define ENABLE_MULTIPLE THREADS() TRUE // Splits solutions between available cores, each using its

own grid map and creating instances of analysis class

#define ENABLE_LOG_FUNCTION_ EXECUTION TIME() FALSE //:: This can be used to track the relative
execution time of functions. See GridUtilities.cpp for more information. Introduces an overhead!

#define ENABLE_OUTPUT ANALYTICS() TRUE //This writes winding angles to analytics class and reports

mean and std dev to terminal

#define ENABLE OUTPUT WINDING ANGLES() FALSE // Enabling this functionality writes WindingAngles to

the display. winding angles are not currently saved.

#define ENABLE_SAVE_ SUCCESSFUL_PATHS() FALSE // We do not need the paths once we have the winding

angles. A value of FALSE therefore saves memory.

#define ENABLE_SAVE WINDING ANGLES() TRUE // Enabling this function saves winding angle to csv

file name as specified in RandomWalk.cpp

#define ENABLE_VERBOSE_MODE() FALSE // Generates considerably more output. It is advisable to

only use this with small Steps and Solutions to avoid swamping the display with output.

#define FALSE false

#define FIRST VISIT 1

#define GO_LEFT 3

#define GO_RIGHT 1

#define GO_STRAIGHT ON 0

#define MAXTIMUM SOLUTION_STEPS 1000000000000

#define MAXIMUM STEPS 1000000

#define NORMAL_TERMINATION 1
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#define NORTH 0

#define PI 3.141592654

/* Note that we have to give up one decimal point of precision due to resource constraints on the
development machine. In other words we can multiple radian values between 0 and 2pi by 10 "~ 8
and do signed arrithmatic without causing overflow errors. This is at the cost of precision. The
cumulative effects should be calculated to see if they are significant. On a computer with
greater memory we would have the option of using larger data types. */

#define PRECISION_DECIMAL POINTS 8

#define SOUTH 2

#define TAB1 " "

#define TAB2 " "

#define TAB3 " "

#define TRUE true

#define UNVISITED 7

#define VERSION "10.0.0 Final Project Code"

#define VISITED_TWICE 6

#define VERY BIG 100000000

#define WEST 3

/* Below is the information requried for the statistic element of the program,

The lower and upper bins are defined in winding angles and should be altered depending on the
ratio of Left to Right. These #defines should be removed from RandonWalkCommonHeader and passed
on the Command Line.*/

#define LOWEST_BIN -1097.5
#define HIGHEST BIN 1097.5
#define NUMBER_BINS 439

#include <math.h>
#include <time.h>
#include <omp.h>

#include <cstdlib>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>

using namespace std;

typedef struct Log {

clock t TotalExecutionTime = 0;

long Invocations = 0;

std::string ID;

std::string FunctionName;

std::string RelativeIndentation = "";
} Log;

unsigned int nextRandomDirectionChange(unsigned int Range);
void xoshiro256ss_init();

inline void fatalError(const std::string& Message) {
std: :cout<<"FATAL ERROR: "<<Message<<" Exiting..."<<std::endl;
eXit(EXIT_FAILURE);
}

#endif
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6.2 RandomWalk.cpp

#include "Analytics.h"
#include "Grid.h"
#include "RandomWalkUtilities.h"

#include <cstdlib>
#include <ctime>

int launchThreads(unsigned int& Steps, unsigned int& SolutionsWanted, float Compression, float
ProbabilityRight,float ProbabilityLeft, unsigned short int ProbabilityScaleFactor, clock t& Timer,
std::string& Action, std::string& PRightAsText, std::string& PLeftAsText , std::vector<Analytics*>
&ProgramAnalytics);

int threadMain(unsigned int& Steps, unsigned int& SolutionShare, float Compression, float
ProbabilityRight,float ProbabilityLeft, unsigned short int ProbabilityScaleFactor, clock t& Timer,

std::string& Action,unsigned short int ThisThread, std::string& PRightAsText, std::string& PLeftAsText,

Analytics* ProgramAnalytics);

int main(int argC, char** argV){
clock t Timer = clock();
// some information is useful even during VERBOSE_MODE
std::cout<<std::endl<<"VERSION "<<VERSION<<" BEGINNING AT ("<<(float)(clock()-
Timer)/CLOCKS_PER_SEC<<") seconds."<<std::endl;

float ProbabilityLeft;

float ProbabilityRight;

int CallSuccessful;

std::string Action;

std::string PLeftAsText;

std::string PRightAsText;

unsigned int SolutionsWanted;

unsigned int Steps;

/* 100 is multiplied by 10 raised to the power of the Probability Scale Factor to give the total
Probability Points. This enables support for fractional probabilities for straight on, left and
right. For example if we had straight on = 33.1, right = 33.5 and left = 33.4, we could set the
scale factor to 1.This would give 1,000 probability points: 331 (straight on), 335 (right) and
334 (left) = 1,000%/

unsigned short int ProbabilityScaleFactor;

// some information is useful even during VERBOSE_MODE
CallSuccessful = processCommandLine(argC, argV, *&Steps, *&SolutionsWanted, *&ProbabilityRight,
*§ProbabilityLeft, *&ProbabilityScaleFactor, *&Action, *&PLeftAsText, *&PRightAsText);

if(CallSuccessful == FALSE){
std: :cout<<TABl<<"Problem with processing command line. Quitting..."<<std::endl;
displayCommandLineInstructions();
return -1;

}

// Seed random number generator for use in initialisation of xoshirostarstar implementation.
srand(time(0));

// Initialise custom xoshiro256** random number generator
xoshiro256ss_init();

// Initialise class for calculating Analytics
std::vector<Analytics*> ProgramAnalytics;
ProgramAnalytics.resize(omp_get max threads());

// Ensure each thread has access to Analytics class, class uses the number of bins and bin range
defined in RandomWalkCommonHeader.h
for(unsigned short int i=0; i<omp_get max_threads(); i++){

ProgramAnalytics.at(i)=new Analytics(LOWEST BIN, HIGHEST BIN, NUMBER BINS);
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}
#if ENABLE_MULTIPLE THREADS()
launchThreads(Steps, SolutionsWanted, COMPRESSION FACTOR, ProbabilityRight,ProbabilityLeft,
ProbabilityScaleFactor, Timer, Action, PRightAsText,PLeftAsText, ProgramAnalytics);
#telse
threadMain(Steps,SolutionsWanted, COMPRESSION FACTOR, ProbabilityRight,ProbabilityLeft,
ProbabilityScaleFactor, Timer, Action, 0, PrightAsText, PLeftAsText,
ProgramAnalytics.at(0));
#endif

return NORMAL_ TERMINATION;
}

// Intermediate function to execute main() across multiple threads.
int launchThreads(unsigned int& Steps, unsigned int& SolutionsWanted, float Compression, float
ProbabilityRight,float ProbabilityLeft, unsigned short int ProbabilityScaleFactor, clock t& Timer,
std::string& Action, std::string& PRightAsText, std::string& PLeftAsText, std::vector<Analytics*>
&ProgramAnalytics) {

unsigned int FirstSolution;

unsigned int SolutionShare;

unsigned short int ThisThread;

unsigned short int Threads;

#pragma omp parallel default (shared) private(ThisThread, Threads, SolutionShare, FirstSolution)
{

ThisThread = omp_get thread num();

Threads = omp_get num_ threads();

SolutionShare = SolutionsWanted / Threads;

FirstSolution = ThisThread * SolutionShare;

if (ThisThread == Threads-1){ SolutionShare = SolutionsWanted - FirstSolution; }

threadMain(Steps, SolutionShare, Compression, ProbabilityRight, ProbabilityLeft,
ProbabilityScaleFactor,Timer, Action, ThisThread, PRightAsText, PLeftAsText,
ProgramAnalytics.at(ThisThread));
}

return NORMAL_ TERMINATION;
}

// Thread code split out of main
int threadMain(unsigned int& Steps, unsigned int& SolutionShare, float Compression, float
ProbabilityRight,float ProbabilityLeft, unsigned short int ProbabilityScaleFactor, clock t& Timer,
std::string& Action,unsigned short int ThisThread, std::string& PRightAsText, std::string&
PLeftAsText ,Analytics* ProgramAnalytics){

int CallSuccessful;

// Create and resize grid and its associated vectors of winding angle differences.
// Note we intentionally pass Steps rather than Steps + 1.

Grid SolutionGrid(Steps, COMPRESSION_ FACTOR, ProbabilityRight, ProbabilityLeft,
ProbabilityScaleFactor, ThisThread);

// some information is useful even during VERBOSE_ MODE.

std: :cout<<std::endl<<"VERSION "<<VERSION<<" THREAD: "<<SolutionGrid.getThread()<<" INITIALISING
GRID AT ("<<(float)(clock()-Timer)/CLOCKS PER SEC<<") seconds."<<std::endl;

CallSuccessful = SolutionGrid.initialise(Timer, Action);

if(CallSuccessful == FALSE) {std::cout<<TABl<<"Problem with initialisation.
Quitting..."<<std::endl; return -1;}

unsigned int Solution = 0;
unsigned int SolutionsFound;

unsigned int SolutionsWanted = SolutionShare;

#if ENABLE SAVE WINDING_ANGLES () || ENABLE_OUTPUT_WINDING_ ANGLES()
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// Create a vector to hold Winding angles.
std::vector<float> WindingAngles(SolutionsWanted);
#endif

/* Create vector of vectors to hold all solutions.

Float because we shall be recording winding angles. With more available memory would use doubles.

Add 1 to capture the centre position.Since no need for paths once we have the winding angles,
is an option to discard them as we are going along.*/
#if ENABLE_SAVE_SUCCESSFUL_PATHS ()

std::vector<std::vector<signed long>> WalkCollection(SolutionsWanted, vector<signed
long>(Steps+l));
telse

std: :vector<std::vector<signed long>> WalkCollection(l, vector<signed long>(Steps+1));
#endif

// some information is useful even during VERBOSE_MODE.

there

std::cout<<std::endl<<"VERSION "<<VERSION<<" THREAD: "<<SolutionGrid.getThread()<<" LOOKING FOR

SOLUTIONS AT ("<<(float)(clock()-Timer)/CLOCKS_PER_SEC<<") seconds."<<std::endl;

// Repeatedly call the grid findWalk function until the require number of solutions have been
found.
for(SolutionsFound = 0; SolutionsFound < SolutionsWanted; SolutionsFound++) {

#if ENABLE_VERBOSE_MODE ()

std: :cout<<std::endl<<std::endl<<TABl<<"Looking for Solution

"<<SolutionsFound+1<<"."<<std::endl;

#endif

#if ENABLE_SAVE_SUCCESSFUL_PATHS ()
Solution = SolutionsFound;
#endif

WalkCollection.at(Solution) = SolutionGrid.findwalk();

#if ENABLE SAVE WINDING_ANGLES()

WindingAnglEs.at(SqutionsFound) = (WalkCollection.at(Solution).at(Steps) /
pow(10,PRECISION DECIMAL POINTS)) * (180 / PI);
#endif

#if ENABLE_OUTPUT_ANALYTICS()
ProgramAnalytics->push((WalkCollection.at(Solution).at(Steps) /
pow(10,PRECISION DECIMAL POINTS)) * (180 / PI));
#endif

#if ENABLE_OUTPUT_WINDING_ANGLES ()
std::cout<<std::endl<<"Solution: "<<SolutionsFound+1<<", Winding angle:
"<<WindingAngles.at(SolutionsFound)<<"."<<std::endl;
#endif
}

// some information is useful even during VERBOSE_ MODE.

std::cout<<std::endl<<"VERSION "<<VERSION<<" THREAD: "<<SolutionGrid.getThread()<<" COMPLETED AT

("<<(float) (clock()-Timer)/CLOCKS_PER SEC<<") seconds."<<std::endl;
std: :cout<<std::endl<<TABl<<"Solutions found: "<<SolutionsFound<<"."<<std::endl;
std: :cout<<std::endl<<TABl<<"Returned to the centre: "<<(unsigned int)
SolutionGrid.getReturnsToCentre()<<" times."<<std::endl;
std: :cout<<std::endl<<TABl<<"Loops encountered: "<<(unsigned int)
SolutionGrid.getLoopsEncountered()<<"."<<std::endl;
std: :cout<<std::endl<<TABl<<"Average loop length: "<<(float)
SolutionGrid.getAverageLoopLength()<<"."<<std::endl;

#if ENABLE_ANALYSIS MODE ()
/* Provide information about grid use coverage.
The results can be used to determine whether we get away with a smaller grid.*/
SolutionGrid.analyseResults();
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/* Investigation of behavioural variance with Professor's code
Investigate random generation of changes of direction.*/
std: :cout<<std::endl<<"VERSION "<<VERSION<<" THREAD: "<<SolutionGrid.getThread()<<"
VARIANCE ANALYSIS."<<std::endl;
unsigned long TotalDirectionEvents =
SolutionGrid.GoStraightOn+SolutionGrid.TurnLeft+SolutionGrid.TurnRight+SolutionGrid.OtherDirectionChang
e;
std::cout<<"Total Direction Events: "<<TotalDirectionEvents<<"."<<std::endl;
std::cout<<TABl<<"Turn Left: "<<SolutionGrid.TurnLeft<<" ("<<(float)
(100*SolutionGrid.TurnLeft)/TotalDirectionEvents<<"%) ."<<std::endl;
std::cout<<TABl<<"StraightOn: "<<SolutionGrid.GoStraightOn<<" ("<<(float)
(100*SolutionGrid.GoStraightOn)/TotalDirectionEvents<<"%) ."<<std::endl;
std: :cout<<TABI<<"Turn Right: "<<SolutionGrid.TurnRight<<" ("<<(float)
(100*SolutionGrid.TurnRight)/TotalDirectionEvents<<"%) ."<<std::endl;
std::cout<<TABl<<"Other Direction Change: "<<SolutionGrid.OtherDirectionChange<<" ("<<(float)
(100*SolutionGrid.OtherDirectionChange)/TotalDirectionEvents<<"%) ."<<std::endl;
#endif

#if ENABLE_SAVE_WINDING_ANGLES()
std::cout<<std::endl<<"VERSION "<<VERSION<<" THREAD: "<<SolutionGrid.getThread()<<" SAVING
"<<WindingAngles.size()<<" WINDING ANGLES AT ("<<(float)(clock()- Timer)/CLOCKS_PER SEC<<")
seconds."<<std::endl;
std::string WindingAngleResults = getWindingAngleFileName(Steps, SolutionsWanted,
PRightAsText, PLeftAsText, ThisThread);

writeWindingAnglesToStream(WindingAngleResults, WindingAngles);
#endif

#if ENABLE_OUTPUT_ANALYTICS()

// Some information is useful even during VERBOSE_MODE.

std: :cout<<std::endl<<"VERSION "<<VERSION<<" THREAD: "<<SolutionGrid.getThread()<<" SAVING
HISTOGRAM AT ("<<(float)(clock()-Timer)/CLOCKS_PER SEC<<") seconds."<<std::endl;

std::string HistogramResults = getHistogramFileName(Steps, SolutionsWanted, PRightAsText,
PLeftAsText, ThisThread);
std::string AnalyticResults = getAnalyticFileName(Steps, SolutionsWanted, PRightAsText,

PLeftAsText, ThisThread);

ProgramAnalytics->writeHistogramToStream(HistogramResults);
ProgramAnalytics->outputResults (AnalyticResults, Steps);

// some information is useful even during VERBOSE_MODE.

std::cout<<std::endl<<"Analytics:"<<" THREAD: "<<SolutionGrid.getThread()<<std::endl;

std: :cout<<std::endl<<TABl<<"Mean Winding Angle: "<<ProgramAnalytics-
>calculateMean()<<std::endl;

std::cout<<std::endl<<TABl<<"Winding Angle Variance: "<<ProgramAnalytics-
>calculateVariance()<<std::endl;

std::cout<<std::endl<<TAB1l<<"Winding Angle Variance in Radians: "<<ProgramAnalytics-
>calculateRadianVariance()<<std::endl;

std::cout<<std::endl<<TAB1l<<"Winding Angle Kurtosis: "<<(ProgramAnalytics-calculateKurtosis()
+3)<<std::endl<<std::endl;
#endif

#if ENABLE_LOG_FUNCTION_EXECUTION_ TIME() && !ENABLE MULTIPLE_THREADS()
SolutionGrid.displayExecutionTimes();

#endif

return NORMAL_TERMINATION;
}
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6.3 Grid.cpp

#include "Grid.h"

/* PUBLIC

Grid Constructor processes parameters passed to main() and then resizes its member vectors to the

appropriate size.*/
Grid::Grid(unsigned int Steps, float Compression, float ProbabilityRight, float ProbabilityLeft,

unsigned short int ProbabilityScaleFactor, unsigned short int ThreadNumber){
#if ENABLE_LOG_FUNCTION_EXECUTION TIME() && !ENABLE_MULTIPLE_ THREADS( )
// When displaying execution time, we will need to break out the times for initialiseLogger

and setUpProbabilities.

45

clock_t LocalTimer = clock();
initialiseLogger();
#endif

// First capture constructor parameters

Thread = ThreadNumber;

GridCompression = Compression;

setUpProbabilities (ProbabilityRight, ProbabilityLeft, ProbabilityScaleFactor);

/* We add 1 to the length because we want to represent the x = 0 and y = 0 axes withing the grid.wWe
add a further 2 to the length to create a 1 grid point safe zone all around the working grid.

The objective is to avoid an out of bounds error when we create the East, North, South and West
vectors.*/

Length = (unsigned int) (ceil(2*Steps*GridCompression)+1);

// Note that WalkSteps is 1 bigger than the Steps in RandomWalk::main(). This is so that we can
capture the centre point.

WalkSteps = Steps + 1;

if((Length % 2) == 0) Length += 1;
GridPoints = Length*Length;
Centre = (GridPoints - 1)/2;

Walk.resize(WalkSteps);
WalkPositionsVisited.resize(WalkSteps);
GridMapTrace.resize(GridPoints,UNVISITED);
Reporter.resize(WalkSteps*2, "");

CentreX = CentreY = (Length-1)/2;
BoundaryTest = ((3/2)*PiAsUnsignedInt)+1;

FacingEast->setStepSize(Length);
FacingNorth->setStepSize(1l);
FacingSouth->setStepSize(-1);
FacingWest->setStepSize(-Length);
RetracingSteps->setStepSize(0);

/* The first [] indicates the direction the walk went in to get to current point,
The second [] indicates the the walk is leaving in from the current point */

NewHeadings[0][0] = FacingNorth; // Facing North, straight on

NewHeadings[1][1] = FacingEast; // Facing East, straight on

NewHeadings[2][2] = FacingSouth; // Facing South, straight on

NewHeadings[3][3] = FacingWest; // Facing West, straight on

NewHeadings[0][1] = FacingEast; // Facing North, turn right (Clockwise)

NewHeadings[1][2] = FacingSouth; // Facing East, turn right (Clockwise)

NewHeadings[2][3] = FacingWest; // Facing South, turn right (Clockwise)

NewHeadings[3][0] = FacingNorth; // Facing West, turn right (Clockwise)

NewHeadings[0][3] = FacingWest; // Facing North, turn left (Counter clockwise)

NewHeadings[1][0] = FacingNorth; // Facing East, turn left (Counter clockwise)



NewHeadings[2][1] = FacingEast; // Facing South, turn left (Counter clockwise)

NewHeadings[3][2] = FacingSouth; // Facing West, turn left (Counter clockwise)
NewHeadings[0][2] = RetracingSteps; // Facing North, turning 180 degrees
NewHeadings[1][3] = RetracingSteps; // Facing East, turning 180 degrees
NewHeadings[2][0] = RetracingSteps; // Facing South, turning 180 degrees
NewHeadings[3][1] = RetracingSteps; // Facing West, turning 180 degrees

// some information is useful even when ENABLE_VERBOSE_MODE() is set to FALSE.

std: :cout<<TAB2<<"Grid Length: "<<Length<<", Grid Points: "<<GridPoints<<", Walk Steps including
Step 0 (the centre): "<<WalkSteps<<"."<<std::endl;

std: :cout<<TAB2<<"Centre position: "<<Centre<<", Centre coordinates:

("<<CentreX<<",b "<<CentreY¥<<")."<<std::endl;

#if ENABLE_LOG_FUNCTION_EXECUTION TIME() && !ENABLE_MULTIPLE_ THREADS( )
Logger.at(0).Invocations += 1;

Logger.at(0).TotalExecutionTime += (clock() - LocalTimer);
#endif
}
/* PUBLIC
This critical function finds solutions and returns them to the calling function (main()). It does

not know how many solutions are required. It uses many of Grid's private member functions.*/
std::vector<signed long> Grid::findwWalk(){
#if ENABLE_LOG_FUNCTION_EXECUTION TIME() && !ENABLE_MULTIPLE_ THREADS( )
// When displaying execution time, we will need to break out the times for initialiseWalk,
reset and Direction::takeOneStep.
clock_t LocalTimer = clock();
#endif

bool SolutionFound;

bool WalkLoopEncountered;

signed int CurrentX = 0; // Only used for displaying useful information.

signed int CurrentY = 0; // Only used for displaying useful information.

unsigned int LoopCounter = 0;

unsigned int Position = 0;

unsigned short int GoingInDirection = 0;

unsigned short int NowFacing =0; // This represents a different grid point to GoingInDirection.
Together they form a path across a grid point.

Direction* FacingDirection;

SolutionFound = FALSE;
while(SolutionFound == FALSE) {

/* Set all Grid points to unvisited (0) apart from the centre (starting) position (0,0) which
should be set to VISITED TWICE (900). Note that we call this even for "Step 0, when the only affect
is to set the centre (starting) position. This reset will also be executed if we have to restart
following a loop encountered event.*/
reset (*&LoopCounter) ;
Position = WalkPositionsVisited.at(0) = Centre;

if (initialiseWalk(*&GoingInDirection, *&NowFacing, *&Position) == FALSE)
fatalError("Grid::findWalk. Inititalise Walk failed.");

FacingDirection = NewHeadings[GoingInDirection][NowFacing];

#if ENABLE_VERBOSE_MODE ()
updateCoordinates (*&CurrentX, *&CurrentY, *&WalkPositionsVisited.at(0));
std::string News = " THREAD: " + to_string(Thread) + ". Step: 0. Centre
(starting) position:" + to_string(WalkPositionsVisited.at(0));
News = News + " (" + to_string(CurrentX) + "," + to_string(CurrentY) + ").
Position status after initialisation: " +
to_string(GridMapTrace.at(WalkPositionsVisited.at(0))) + ".\n";
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News = News + TAB3 + "Change in winding angle: " + to_string(Walk.at(0)) + ".
Cumulative winding angle: " + to_string(Walk.at(0)) + ".\n";
News = News + TAB3 + "Going " + getDirectionAsText(GoingInDirection) + ".
Reporter.at(0) = News;
#endif

"
r

LoopCounter = 1;
WalkLoopEncountered = FALSE;
while( (WalkLoopEncountered == FALSE) && (LoopCounter < WalkSteps) ){
FacingDirection = FacingDirection->takeOneStep(LoopCounter, *&Position,
Walk.at (LoopCounter-1), *&Walk.at(LoopCounter), *&WalkLoopEncountered);

// We record the positions visited so that we can reset GridMapTrace after each
solution is found.

WalkPositionsVisited.at (LoopCounter) = Position;
LoopCounter++;
}
/* We need to reset the grid following the successful identification of a solution or on

encountering a loop.*/
reset (*&LoopCounter) ;

if (LoopCounter == WalkSteps) SolutionFound = TRUE;
if (WalkLoopEncountered == TRUE) SolutionFound = FALSE;
}

#if ENABLE_LOG_FUNCTION_EXECUTION_ TIME() && !ENABLE MULTIPLE_THREADS()
Logger.at(6).Invocations += 1;
Logger.at(6).TotalExecutionTime += (clock() - LocalTimer);

#endif

#if ENABLE_VERBOSE_MODE ()

for(int NewsItem = 0; NewsItem < Reporter.size(); NewsItem++)
std: :cout<<Reporter.at (NewsItem);
#endif

return Walk;

}

/* PUBLIC
This critical function determines the winding angle for each grid element.
*/
int Grid::initialise(clock_t& Timer, std::string Action){
#if ENABLE_LOG_FUNCTION_EXECUTION TIME() && !ENABLE MULTIPLE_THREADS()
// When displaying execution time, we will need to break out the times for serialise and
loadWindingAngles.
clock_t LocalTimer = clock();
#endif

signed int VectorSize;

signed int XCoordinate;
signed int YCoordinate;
unsigned int AbsoluteX;
unsigned int AbsoluteY;

if((Action == "serialise")|(Action =="RAM")){ // The only difference between serialise and RAM is
that RAM doesnt output to file.
std: :cout<<TABl<<"Creating angle change data at ("<<(float)(clock()-
Timer)/CLOCKS_PER_SEC<<") seconds."<<std::endl;
GridMap.resize(GridPoints);

for(unsigned int LoopCounter = 0; LoopCounter < GridPoints; LoopCounter++) {

AbsoluteY = LoopCounter % Length;
AbsoluteX = (LoopCounter - AbsoluteY) / Length;
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XCoordinate = AbsoluteX - CentreX;
YCoordinate = AbsoluteY - CentreY;

GridMap.at (LoopCounter) = floor((atan2(YCoordinate, XCoordinate)+PI) * pow(1l0,
PRECISION_DECIMAL POINTS));
}

// We want the centre (starting) point to have a value of 0.
GridMap.at(Centre) = 0;

if (Action == "serialise"){
std: :cout<<TABl<<"Serealising grid map angles at ("<<(float)(clock()-
Timer)/CLOCKS_PER_SEC<<") seconds."<<std::endl;
serialise();
}
else{
std: :cout<<TAB1l<<"Grid map angles (into RAM) at ("<<(float) (clock()-
Timer)/CLOCKS_PER_SEC<<") seconds."<<std::endl;
}
}
else if(Action == "load"){
std::cout<<TABl<<"Loading angle change data at ("<<(float)(clock()- Timer)/CLOCKS_PER_SEC<<")
seconds."<<std::endl;
VectorSize = loadAngleChanges();
if(VectorSize != GridPoints) {std::cout<<TAB2<<"ERROR: Unexpected vector size
("<<VectorSize<<") vs. expected size("<<GridPoints<<")."<<std::endl;

#if ENABLE_LOG_FUNCTION_EXECUTION TIME() && !ENABLE MULTIPLE_THREADS()
Logger.at(3).Invocations += 1;
Logger.at(3).TotalExecutionTime += (clock() - LocalTimer);

#endif

return FALSE;}
¥

else{
std: :cOout<<TAB2<<"ERROR: Unrecognised initialisation action:"<<Action<<"."<<std::endl;

#if ENABLE_LOG_FUNCTION_EXECUTION TIME() && !ENABLE MULTIPLE_THREADS()
Logger.at(3).Invocations += 1;
Logger.at(3).TotalExecutionTime += (clock() - LocalTimer);

#endif

return FALSE;
}

#if ENABLE_LOG_FUNCTION_EXECUTION_ TIME() && !ENABLE MULTIPLE_THREADS()
Logger.at(3).Invocations += 1;
Logger.at(3).TotalExecutionTime += (clock() - LocalTimer);

#endif

return TRUE;
}

/* PRIVATE
We need to determine our initial direction of movement. We also need to ensure that the cumulative

winding angle is 0 at the centre (Step 0).*/
int Grid::initialiseWalk(unsigned short int& GoingInDirection, unsigned short int& NowFacing, unsigned

int& Position){
#if ENABLE_LOG_FUNCTION_EXECUTION TIME() && !ENABLE MULTIPLE_THREADS()
clock_t LocalTimer = clock();
#endif

NowFacing = NORTH;
GoingInDirection = NORTH;
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Walk.at(0) = (signed int) (0-GridMap.at(Position+l));

FirstStep = NowFacing;
GridMapTrace.at(Centre) = CENTRE_INITIAL_STATE;

/* We need to ensure that the Direction Class static class variables which track rotation are reset. We
can use the derived class chosen for Step 1.*/
NewHeadings[GoingInDirection][NowFacing]->reset();

Reporter.clear();
Reporter.resize((WalkSteps*2));

#if ENABLE_LOG_FUNCTION_EXECUTION TIME() && !ENABLE MULTIPLE_THREADS()
Logger.at(7).Invocations += 1;
Logger.at(7).TotalExecutionTime += (clock() - LocalTimer);

#endif

return TRUE;
}

/* PRIVATE
Load winding angle changes from file.
Called from initialise()*/
signed int Grid::loadAngleChanges(){
#if ENABLE_LOG_FUNCTION_EXECUTION TIME() && !ENABLE MULTIPLE_THREADS()
clock_t LocalTimer = clock();
#endif

long FileSize;
size t Index = 0;
std::string FileName = "Grid ST" + to_string(WalkSteps-1) + "CM" + to_string(COMPRESSION_ FACTOR);

while (TRUE) {
Index = FileName.find(".", Index);
if (Index == std::string::npos) break;
FileName.replace(Index, 1, "dot");

}

FileName = FileName + ".Map";
ifstream GridMapIn(FileName, ios::binary);

if(!GridMapIn.good()){
fatalError("Grid::loadAngleChanges. Attempt to load file " + FileName + " failed.");
}

else{
GridMapIn.seekg(0,ifstream::end);
FileSize = GridMapIn.tellg();
GridMapIn.seekg(0, ifstream::beg);
GridMap.resize(FileSize / sizeof(unsigned int));
GridMapIn.read((char*)&GridMap.at(0),FileSize);
GridMapIn.close();
}

#if ENABLE_LOG_FUNCTION_EXECUTION TIME() && !ENABLE MULTIPLE_THREADS()
Logger.at(5).Invocations += 1;
Logger.at(5).TotalExecutionTime += (clock() - LocalTimer);

#endif

return FileSize / sizeof(signed int);

}

/* PRIVATE
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At the start of each attempt to find a solution we must ensure that each grid position is set to
zero apart from the centre (starting) position.*/
void Grid::reset(unsigned int& StepsCompleted){
#if ENABLE_LOG_FUNCTION_EXECUTION TIME() && !ENABLE MULTIPLE_THREADS()
clock_t LocalTimer = clock();
#endif

// It is a great deal quicker to reset the grid positions visited during the previous solution /

attempt than reset the entire grid each time.

for(unsigned int LoopCounter = 0; LoopCounter < StepsCompleted; LoopCounter++) {
GridMapTrace.at(WalkPositionsVisited.at(LoopCounter)) = UNVISITED;

}

#if ENABLE_LOG_FUNCTION_EXECUTION TIME() && !ENABLE MULTIPLE_THREADS()
Logger.at(8).Invocations += 1;

Logger.at(8).TotalExecutionTime += (clock() - LocalTimer);
#endif
return;
}
/* PRIVATE
Writes all grid angles to file.
Called from initialise() function when Action set to serialise.*/

void Grid::serialise(){
#if ENABLE_LOG_FUNCTION_EXECUTION TIME() && !ENABLE MULTIPLE_THREADS()
clock_t LocalTimer = clock();
#endif

size t Index = 0;
std::string FileName = "Grid ST" + to_string(WalkSteps-1) + "CM" + to_string(COMPRESSION_ FACTOR);

while (TRUE) {
Index = FileName.find(".", Index);
if (Index == std::string::npos) break;
FileName.replace(Index, 1, "dot");

}
FileName = FileName + ".Map";

ofstream GridMapOut(FileName, ios::out | ios::binary);
GridMapOut.write((const char*)&GridMap.at(0), GridMap.size() * sizeof(unsigned int));
GridMapOut.close();

#if ENABLE_LOG_FUNCTION_EXECUTION TIME() && !ENABLE MULTIPLE_THREADS()
Logger.at(4).Invocations += 1;
Logger.at(4).TotalExecutionTime += (clock() - LocalTimer);

#endif

return;

}

/* PRIVATE
By creating an array of probability weighted direction outcomes at the outset, we improve subsequent

efficiency during searcing for solutions. The scale factor lets us deal with non integer
probabilities.*/
void Grid::setUpProbabilities(float ProbabilityRight, float ProbabilityLeft, unsigned short int
ProbabilityScaleFactor) {

#if ENABLE_LOG_FUNCTION_EXECUTION TIME() && !ENABLE MULTIPLE_THREADS()

clock_t LocalTimer = clock();
#endif

// To simplify the code and reduce typing later, we first create and calculate the value of a
probality multiplier.
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unsigned int ProbabilityMultiplier = pow((unsigned short int)10, (unsigned short
int)ProbabilityScaleFactor);

// Now we scale ProbabilityPoints according to the ProbabilityMultiplier.
ProbabilityPoints = ProbabilityPoints * ProbabilityMultiplier;

// In case more decimal places have been used than are multiplied out by the scale factor, we use

floor the left and right probabilities.

DirectionChoices.resize(floor(ProbabilityRight*ProbabilityMultiplier), GO_RIGHT);

DirectionChoices.resize(floor( (ProbabilityLeft + ProbabilityRight)*ProbabilityMultiplier),
GO_LEFT);

DirectionChoices.resize((ProbabilityPoints), GO_STRAIGHT ON);

std: :cout<<TAB2<<"Probability Points: "<<ProbabilityPoints<<"."<<std::endl;

#if ENABLE_VERBOSE_MODE ()
std: :cout<<TAB3<<" DirectionChoices.size(): "<<DirectionChoices.size()<<"."<<std::endl;
std: :cout<<TAB3<<" Direction[0]: "<<DirectionChoices.at(0)<<". ";

if (ProbabilityRight > 0 && ProbabilityRight < 100){
// Last Right is before position ProbabilityPoints -1.
std: :cout<<" Direction["<<(ProbabilityRight*ProbabilityMultiplier)-1<<"]:
"<<DirectionChoices.at((ProbabilityRight*ProbabilityMultiplier)-1)<<". ";
}

if (ProbabilityRight > 0 && ProbabilityLeft > 0){
// First Left is not position 0.
std: :cout<<" Direction["<<(ProbabilityRight*ProbabilityMultiplier)<<"]:
"<<DirectionChoices.at (ProbabilityRight*ProbabilityMultiplier)<<". ";
}

if (ProbabilityLeft > 0 && (ProbabilityRight + ProbabilityLeft) < 100){
// Last Left is before position ProbabilityPoints -1.
std::cout<<" Direction["<<((ProbabilityRight+ProbabilityLeft)*ProbabilityMultiplier)-
1<<"]:"<<DirectionChoices.at(((ProbabilityRight+ProbabilityLeft)*ProbabilityMultiplier)-
)<<, vy

}

if((ProbabilityRight + ProbabilityLeft) > 0 && (ProbabilityRight + ProbabilityLeft) < 100){
// First Straight On is not position 0.
std: :cout<<" Direction["<<(ProbabilityRight+ProbabilityLeft)*ProbabilityMultiplier<<"]:
"<<DirectionChoices.at((ProbabilityRight+ProbabilityLeft)*ProbabilityMultiplier)<<". "
}

std::cout<<" Direction["<<(ProbabilityPoints-1)<<"]:
"<<DirectionChoices.at (ProbabilityPoints-1)<<"."<<std::endl;
#endif

#if ENABLE_LOG_FUNCTION_EXECUTION TIME() && !ENABLE MULTIPLE_THREADS()
Logger.at(2).Invocations += 1;
Logger.at(2).TotalExecutionTime += (clock() - LocalTimer);

#endif

return;

}
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6.4 Direction.cpp

#include "Direction.h"
#include "Grid.h"

// Define static member variables
std: :vector<bool> Direction::JustLeftCentre;
signed int Direction::CentreTransitChanges[4][4][2] = { { {-ThreeSixty,ThreeSixty}, {-Ninety,-Ninety}, {-
OneEighty,OneEighty}, {Ninety,Ninety} },

{ {Ninety,Ninety}, {-ThreeSixty,ThreeSixty}, {-
Ninety,-Ninety}, {-OneEighty,OneEighty} },

{ {-OneEighty,OneEighty}, {Ninety,Ninety}, {-
ThreeSixty,ThreeSixty}, {-Ninety,-Ninety} 3},

{ {-Ninety,-Ninety},{-OneEighty,OneEighty},
{Ninety,Ninety}, {-ThreeSixty,ThreeSixty} } };
std::vector<signed int> Direction::PartialRotationEnteringTransit;
std::vector<signed int> Direction::TransitChange;

/* PUBLIC
Direction Constructor. By setting its member variables equal to passed parameters, its subclasses
get their differemt behaviours.*/
Direction::Direction(Grid* ThisGrid, unsigned short int CompassPoint, unsigned short int Adjustment) {
GoingInDirection = CompassPoint;
CameFromDirection = (GoingInDirection + 2) % 4;
SolutionGrid = ThisGrid;
this->Adjustment=Adjustment;

if (JustLeftCentre.size()!=omp get max_threads()) JustLeftCentre.resize(omp_get max_ threads(),
FALSE);

if(PartialRotationEnteringTransit.size()!=omp_get max_ threads())
PartialRotationEnteringTransit.resize(omp_get max threads(), 0);

if (TransitChange.size()!=omp get max_threads()) TransitChange.resize(omp_get max_ threads(), 0);

}

/* PUBLIC

Derived class constructors simply invoke the base class (Direction) constructor.*/
DirectionError::DirectionError(Grid* ThisGrid, unsigned short int CompassPoint,unsigned short int
Adjustment) : Direction(ThisGrid, CompassPoint, Adjustment){}
East::East(Grid* ThisGrid, unsigned short int CompassPoint,unsigned short int Adjustment):
Direction(ThisGrid, CompassPoint, Adjustment){}
North::North(Grid* ThisGrid, unsigned short int CompassPoint,unsigned short int Adjustment):
Direction(ThisGrid, CompassPoint, Adjustment){}
South::South(Grid* ThisGrid, unsigned short int CompassPoint,unsigned short int Adjustment):
Direction(ThisGrid, CompassPoint, Adjustment){}
West::West(Grid* ThisGrid, unsigned short int CompassPoint,unsigned short int Adjustment):
Direction(ThisGrid, CompassPoint, Adjustment){}

/* PUBLIC

This function is needed to reset the Direction classes static state variables which are shared by
all sub class instances.*/
void Direction::reset(){

JustLeftCentre[SolutionGrid->Thread] = FALSE;
PartialRotationEnteringTransit[SolutionGrid->Thread] = 0;
TransitChange[SolutionGrid->Thread] = 0;
+

/* PUBLIC

This function is needed because Length isn't known when the subclasses of Direction are created and
the Direction constructor is called.*/
void Direction::setStepSize(unsigned int Length){
StepSize = Length;
}
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/* PUBLIC

However,

attributes.*/
Direction* Direction::takeOneStep(unsigned int& Step, unsigned int& Position, signed longé&

CurrentWindingAngle,

This key function is not overriden by the derived classes East, North, South and West.
the derived classes have different behaviour due the specific values of their member

signed long& UpdatedWindingAngle, bool& WalkLoopEncountered) {

#if ENABLE_LOG_FUNCTION_EXECUTION TIME() && !ENABLE_MULTIPLE_ THREADS( )
// When displaying execution time, we will need to break out the times for initialiseWalk,

getNewDirection navigate and reset.
clock_t LocalTimer = clock();
#endif

#if ENABLE_VERBOSE_MODE () || ENABLE_ANALYSIS MODE()
std::string News;

signed int CurrentX = 0; // Only used for displaying useful information.
signed int CurrentY = 0; // Only used for displaying useful information.

std::string ArrivalText = ". ERROR: Somehow this text has not
#endif
signed long ChangeInWindingAngle;

// 1. Update GridMapTrace.at(Position) with GoingInDirection.
SolutionGrid->GridMapTrace.at(Position) += GoingInDirection;
#if ENABLE_VERBOSE_MODE ()

//std::cout<<" Position status on leaving: "<<SolutionGrid-
>GridMapTrace.at (Position)<<"."<<std::endl;

News="Postion status on leaving: " + to_string(SolutionGrid-

"\n\n";
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SolutionGrid->Reporter.at((2*Step)-1)=News;
#endif

// 2. Take Step
Position += StepSize;

// 3. Evaluate the transit history of the new position.
if (Position != SolutionGrid->Centre){
// We are not back at the centre.
if(SolutionGrid->GridMapTrace.at(Position) == UNVISITED) {
// 3.a Arriving at this off centre position for the first
#if ENABLE_VERBOSE_MODE ()
ArrivalText = ". New position: ";
#endif

// 3.a.l. Calculate the change in winding angle.
// 3.a.l.i. Determine if this is the very first step.
if(Step == 1){

been updated. Position:

>GridMapTrace.at (Position)) +

time.

ChangeInWindingAngle = (signed long)SolutionGrid->GridMap.at(Position) -

(signed long)SolutionGrid->GridMap.at(Position-StepSize);

/* Ensure that future steps know we have not just left the centre.
Note that the following line is not really required since reset() sets
JustLeftCentre to FALSE,as does the JustLeftCentre.resize() call in the

constructor.*/
JustLeftCentre[SolutionGrid->Thread] = FALSE;
}

// 3.a.l.ii. Determine if we have just passed back through the centre.

else if (JustLeftCentre[SolutionGrid->Thread] == TRUE){

ChangeInWindingAngle = TransitChange[SolutionGrid->Thread] +

PartialRotationEnteringTransit[SolutionGrid->Thread];

// Ensure that future steps know we have not just left the centre.

JustLeftCentre[SolutionGrid->Thread] = FALSE;
}

// 3.a.l.iii. An ordinary step.



else{
ChangeInWindingAngle = (signed long)SolutionGrid->GridMap.at(Position) -
(signed long)SolutionGrid->GridMap.at(Position-StepSize);

// We need to adjust for any movement across the 0:2*Pi boundary

if (ChangeInWindingAngle > SolutionGrid->BoundaryTest) ChangeInWindingAngle =
ChangeInWindingAngle - (signed long) (2*SolutionGrid->PiAsUnsignedInt);

else if(ChangeInWindingAngle < -SolutionGrid->BoundaryTest)

ChangeInWindingAngle = ChangeInWindingAngle + (signed long) (2*SolutionGrid-
>PiAsUnsignedInt);
}
/* 3.a.2. Use CameFromDirection (equals GoingInDirection looking backwards).
NOTE: This is plain =, not += . This is different from below.*/
SolutionGrid->GridMapTrace.at(Position) = CameFromDirection;

// 3.a.3. Change Direction with random selection.

#if ENABLE_ANALYSIS MODE()
/* Investigation of behavioural variance with Professor's code.
Investigate random generation of changes of direction.*/
Choice =
SolutionGrid-DirectionChoices.at(nextRandomDirectionChange(SolutionGrid-
>ProbabilityPoints));
switch (Choice){
case GO_STRAIGHT ON: SolutionGrid->GoStraightOn += 1; break;
case GO_RIGHT: SolutionGrid->TurnRight += 1; break;
case GO_LEFT: SolutionGrid-> TurnLeft += 1;break;
default: SolutionGrid->OtherDirectionChange += 1;

}

if (Choice == GO_STRAIGHT_ON) NowFacing = GoingInDirection;

else NowFacing = (GoingInDirection + Choice + Adjustment) % 4;
telse

Choice = SolutionGrid-
>DirectionChoices.at (nextRandomDirectionChange(SolutionGrid-
>ProbabilityPoints));

// The normal case. No analysis. No testing. Just a standard run

if (Choice == GO_STRAIGHT ON) NowFacing =GoingInDirection;
else NowFacing = (GoingInDirection + Choice +Adjustment) % 4;
#endif
}
else{

// 3.b. Arriving at this off centre position for the second time.
#if ENABLE_VERBOSE_MODE ()

ArrivalText = ". Previously visited off centre position: ";
#endif

// 3.b.1l. Calculate the change in winding angle. Note we do not need to test for STEP =

// 3.b.1.i. Determine if we have just passed back through the centre.
if (JustLeftCentre[SolutionGrid->Thread] == TRUE) {
ChangeInWindingAngle = TransitChange[SolutionGrid->Thread] +
PartialRotationEnteringTransit[SolutionGrid->Thread];

// Ensure that future steps know we have not just left the centre.

JustLeftCentre[SolutionGrid->Thread] = FALSE;
}

// 3.b.1.ii. An ordinary step.

else{

ChangeInWindingAngle = (signed long)SolutionGrid->GridMap.at(Position) -
(signed long)SolutionGrid->GridMap.at(Position-StepSize);

// We need to adjust for any movement across the 0:2*Pi boundary
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if (ChangeInWindingAngle > SolutionGrid->BoundaryTest) ChangeInWindingAngle =
ChangeInWindingAngle - (signed long) (2*SolutionGrid->PiAsUnsignedInt);

else if(ChangeInWindingAngle < -SolutionGrid->BoundaryTest)
ChangeInWindingAngle = ChangeInWindingAngle + (signed long) (2*SolutionGrid-
>PiAsUnsignedInt);

}

/* 3.b.2. Use CameFromDirection (equals GoingInDirection looking backwards).
NOTE: This is +=, not plain = . This is different from above.*/
SolutionGrid->GridMapTrace.at(Position) += CameFromDirection;

// 3.b.3. Change Direction by subtraction from VISITED TWICE.
NowFacing = VISITED TWICE - SolutionGrid->GridMapTrace.at(Position);
}

}

else{
// 3.c.l. For testing /analysis purposes we keep track of all the times we have returned to
the Centre for the entire run.
SolutionGrid->ReturnsToCentre += 1;

// 3.c.2. Determine the change in winding angle. For the return to centre step, this is the
partial or fractional loop rotation value.
ChangeInWindingAngle = -(CurrentWindingAngle) % (2*SolutionGrid->PiAsUnsignedInt);

/* 3.c.3. Use CameFromDirection (equals GoingInDirection looking backwards).
NOTE: This is +=, not plain = . This is different from above.*/
SolutionGrid->GridMapTrace.at(Position) += CameFromDirection;

// 3.c.4. The normal case. No analysis. No testing. Just a standard run.

Choice = SolutionGrid-DirectionChoices.at(nextRandomDirectionChange(SolutionGrid-
>ProbabilityPoints));

// The normal case. No analysis. No testing. Just a standard run

if (Choice==GO_STRAIGHT ON)NowFacing =GoingInDirection;

else NowFacing = (GoingInDirection + Choice +Adjustment) % 4;

// 3.c.5. Determine whether we are back for the first time (or the second and last time).
if(SolutionGrid->GridMapTrace.at(Position) < VISITED TWICE && (NowFacing != SolutionGrid-
>FirstStep)){
// 3.c.5.1i. We are back at the centre for the first time.
#if ENABLE_VERBOSE_MODE ()
ArrivalText = ". Back at Centre (Starting) position for the first time: ";
#endif

// 3.c.5.1.2. We need to determine the angle of rotation at the point of reaching the
centre.
unsigned short int DirectionOfRotation;
if (CurrentWindingAngle > 0) DirectionOfRotation = COUNTER_CLOCKWISE; else
DirectionOfRotation = CLOCKWISE;

// 3.c.5.1.3. We need to select the change of direction that must be supplied and store it

where it can be obtained next step.

TransitChange[SolutionGrid->Thread] = CentreTransitChanges[CameFromDirection]
[NowFacing][DirectionOfRotation];

// 3.c.5.1i.4. We need to store the partial angle where it can be obtained next step.
PartialRotationEnteringTransit[SolutionGrid->Thread] = (signed int) -
ChangeInWindingAngle;

// 3.c.5.i.5. Finally, we need to flag for the next step that we have just leftthe centre.
JustLeftCentre[SolutionGrid->Thread] = TRUE;
}
else{
// 3.c.5.ii. We are back at the centre for the second time.
#if ENABLE_VERBOSE_MODE ()
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ArrivalText = ". Back at Centre (Starting) position for the second time: ";
#endif

// 3.c.5.ii.1. In order for both the display of NowFacing and the return line to function
properly, we must have a valid NowFacing.*/
NowFacing = CameFromDirection;

// 3.c.5.1ii.2 We must set the LoopEncountered flag = TRUE.
WalkLoopEncountered = TRUE;

// 3.c.5.ii.3 Increment LoopsEncountered and, for interest, update the aggregate loop
length so that we can later calcuate the average.

SolutionGrid->LoopsEncountered += 1;

SolutionGrid->AggregateLoopLength += Step;

}
}

// 4. Update Winding Angle
UpdatedWindingAngle = (signed long) (CurrentWindingAngle + ChangeInWindingAngle);

// 5. Return New Direction
#if ENABLE_VERBOSE_MODE ()
SolutionGrid->updateCoordinates (*&CurrentX, *&CurrentY, *&Position);

News = " THREAD: " + to_string(SolutionGrid->Thread) + ". Step: " + to_string(Step) +
ArrivalText + to_string(Position);
News = News + " (" + to_string(CurrentX) + "," + to_string(CurrentY) + "). Came from the " +

SolutionGrid->getDirectionAsText (CameFromDirection);
News = News + ". Position status having arrived: " + to_string(SolutionGrid-
>GridMapTrace.at(Position)) + ".\n";
News = News + TAB3 + "Change in winding angle: " + to_string(ChangeInWindingAngle) + ".
Cumulative winding angle: " + to_string(UpdatedWindingAngle) + " (";
News = News + to string((float) (UpdatedWindingAngle / (pow(10,PRECISION_DECIMAL POINTS)) *
(180 / PI))) + ".\n"
if (ArrivalText != ". Back at Centre (Starting) position for the second time: "){
News = News + TAB3 + "Going " + SolutionGrid->getDirectionAsText (NowFacing) + ".";
}
SolutionGrid->Reporter.at(2*Step) = News;
#endif

I <.

#if ENABLE_ANALYSIS MODE ()
SolutionGrid->updateCoordinates (*&CurrentX, *&CurrentY, *&Position);
SolutionGrid->trackGridUse(Step, CurrentX, CurrentY);

#endif

#if ENABLE_LOG_FUNCTION_EXECUTION TIME() && !ENABLE MULTIPLE_THREADS()
SolutionGrid->Logger.at(9).Invocations += 1;
SolutionGrid->Logger.at(9).TotalExecutionTime += (clock() - LocalTimer);

#endif

return SolutionGrid->NewHeadings[GoingInDirection][NowFacing];

}

/* PUBLIC
We need to override the base class virtual function to call fatalError in this case. All other
derived classes use the base class virtual function.*/
Direction* DirectionError::takeOneStep(unsigned int& Step, unsigned int& Position, signed long&
CurrentWindingAngle, signed long& UpdatedWindingAngle, bool& WalkLoopEncountered) {
fatalError("DirectionError: :takeOneStep. Requested to retrace steps.");
return this;

}
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6.5 Analytics.cpp

#include "Analytics.h"

#include <cmath>
#include <iostream>

/* PUBLIC
Analytics Constructor uses its parameters to resize BinData and set BindwWidth.*/
Analytics::Analytics(double Left, double Right, unsigned int Bins) : LeftBoundary(Left),
RightBoundary(Right), NumberOfBins(Bins){
clear();

if (Right <= Left) fatalError("Histogram::Histogram(). Called with right <= left.");
if(Bins == 0) fatalError("Histogram::Histogram(). Called with nBins == 0.");

BinWidth = (Right-Left) / Bins;

/* Histogram will contain nBins between left and right.
There will also be 2 overspill bins, one for data < left, and one for data >= right.*/
BinData.resize(Bins+2);

}

/* PUBLIC
Calculate Kurtosis of winding angles.*/
const double Analytics::calculateKurtosis(){
return double ((NumberOfAngles)*M4 / (M2*M2)) - 3.0;

}

/* PUBLIC
Calculate Mean of winding angles.*/
const double Analytics::calculateMean(){
return Ml;

}

/* PUBLIC
Calculate Variance of winding angles in radians.*/
const double Analytics::calculateRadianVariance() {
return radian_M2/(NumberOfAngles-1.0);

}

/* PUBLIC
Calculate Skewness of winding angles.*/
const double Analytics::calculateSkewness(){
return sqgrt(double(NumberOfAngles)) * M3 / pow(M2, 1.5);

}

/* PUBLIC
Calculate Standard Deviation of winding angles.*/
const double Analytics::calculateStandardDeviation(){
return sqrt( calculateVariance() );

}

/* PUBLIC
Calculate Variance of winding angles.*/
const double Analytics::calculateVariance(){
return M2/ (NumberOfAngles-1.0);

}

/* PUBLIC

Clear intermediates and number of data values.*/
void Analytics::clear(){

NumberOfAngles = 0;
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Ml = M2 = M3 = M4 = radian M2 = 0.0;

return;

}

/* PUBLIC
Format results in Histogram.*/

const void Analytics::getHistogramResults(vector<double>& binBoundaries, vector<long>& binData){
binBoundaries.resize(NumberOfBins + 2);

for (unsigned int i = 0; i <= NumberOfBins; ++i){
binBoundaries[i] = LeftBoundary + static_cast<double>(i) * BinWidth;

}
binBoundaries[NumberOfBins + 1] = VERY_BIG;
binData = BinData; // Copy the whole vector
return;
}
/* PUBLIC

Output Analytics to Stream.*/
void Analytics::outputResults(std::string AnalyticResults, unsigned int Steps){
ofstream AnalyticResultsOutput(AnalyticResults);

std: :cout<<TABl<<AnalyticResults<<std::endl;

if (!AnalyticResultsOutput){
std::cout<<"Failed to open the file."<<std::endl;

}
else{
AnalyticResultsOutput << "Excess_Kurtosis" << ", " << "Kurtosis" << ", " << "Variance" << ", "
<< "Radian_Variance" << ", " << "Mean" << ", " << "Steps" << std::endl;
AnalyticResultsOutput << calculateKurtosis() << ", " << calculateKurtosis()+3 << ", " <<
calculatevariance() << ", " << calculateRadianVariance() << ", " << Ml << ", " << Steps << std::endl;
AnalyticResultsOutput.close();
}
return;
}
/* PUBLIC

Calculate intermediate terms for analytics without storing individual winding angles.*/
void Analytics::push(float x){
double delta, delta n, delta_n2, terml, radian terml;
long long nl = NumberOfAngles;
NumberOfAngles++;
delta = x - Ml;
delta_n = delta / NumberOfAngles;
delta n2 = delta_n * delta n;
terml = delta * delta_n * nl;
radian_terml = (delta*(PI/180)) * (delta n*(PI/180)) * nl;
M1 += delta n;
M4 += terml * delta n2 * (NumberOfAngles*NumberOfAngles - 3*NumberOfAngles + 3) + 6 * delta n2 *
M2 - 4 * delta n * M3;
M3 += terml * delta n * (NumberOfAngles - 2) - 3 * delta n * M2;
M2 += terml;
radian M2 += radian_terml;

//Histogram: Note that if x lies on a boundary, then it gets put in the bin to the RIGHT.

if ( x < LeftBoundary ){
++BinData[0];
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else if ( x >= RightBoundary ){
++BinData[NumberOfBins + 1];
}
else{
const int iBin = static_cast<int>((x - LeftBoundary) / BinWidth) + 1;
++BinData[iBin];
}

return;

}

/* PUBLIC

Return the number of data values pushed to Analytics Class.*/

const long long Analytics::returnNumberOfDataValues(){

return NumberOfAngles;

}

/* PUBLIC

Output Histogram to Stream.*/

const void Analytics::writeHistogramToStream(std::string HistogramResults){
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ofstream HistogramResultsOutput(HistogramResults);
std: :cout<<TABl<<HistogramResults<<std::endl;

if(!HistogramResultsOutput){
std::cout<<"Failed to open the file."<<std::endl;
}
else{
vector<double> binBoundaries;
vector<long> binData;
getHistogramResults (binBoundaries, binData);

vector<double>::const_iterator BoundaryIterator = binBoundaries.begin();
vector<long>::const_iterator Datalterator = binData.begin();

for( ; BoundaryIterator != binBoundaries.end(); ++BoundaryIterator, +
+Datalterator ){
HistogramResultsOutput << setw(10) << *BoundaryIterator << ", " <<
setw(1l0) << *Datalterator << std::endl;
}
HistogramResultsOutput.close();
}
return;

}



