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MULTIPLE TIMESCALE PERTURBATION THEORY OF THE VAN DER 
POL OSCILLATOR 

by MOHAMED PUJEH 
 
ABSTRACT 
 
PROJECT FOCUS 
The project is an investigation of multiple timescale perturbation theory applied to 
solving the van der Pol oscillator. 
 
METHOD 
The project used Maple - the symbolic mathematical language, version 15.0 - to 
tackle the massive algebra generated by the perturbation expansion.  
 
RESULTS 
Multiple timescale perturbation theory approximates the van der Pol oscillator in 
simple periodic functions and calculates stability, limit cycle and frequency of the van 
der Pol oscillator. 
 
CONCLUSIONS 
The method adds value to analysis in that a pattern evolves in the solution to the van 
der Pol oscillator using multiple timescales perturbation theory. Exploiting this 
solution pattern, we can theoretically solve the van der Pol oscillator to any desired 
number of timescales. 
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PREFACE 

This project came about when I approached Professor Thomas Prellberg and asked 
him to supervise me for my MSc Project.  As an extension of the Dynamical Systems 
module beyond taught graduate level, Professor Prellberg suggested I read the article 
on the Long-term analysis of a swing using the two-timing method by Saebyok Bae. 
Next, he told me to study the two-timing perturbation method examples in Strogatz 
book:  Nonlinear Dynamics and Chaos and to work out the examples in the Strogatz 
book by hand in detail showing a full understanding of perturbation theory. 
When he was satisfied that I understood the two timing perturbation theory method, 
Professor Prellberg suggested I tried the three timescale for the linear harmonic 
oscillator. By this time, computations involved were increasingly tedious and 
Professor Prellberg suggested using a symbolic language like Maple for the three 
timing perturbation method analysis. Professor Prellberg wrote the Maple script for 
the three timescale for the linear harmonic oscillator. I adapted his Maple script to 
higher timescales to solve the van der Pol oscillator. Finally, Professor Prellberg 
suggested that I studied the pattern that had evolved in my solutions of the multiple 
timescale perturbation method for the van der Pol to solve the oscillator to 20-
timescales.  
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INTRODUCTION 
 

The van der Pol equation 2( 1) 0,x x x x    is a self-exited oscillator that exhibits 

different time scales as it builds up to a limit cycle. Van der Pol discovered that no 
matter the initial conditions, the oscillator converged to a limit cycle of magnitude 2. 
However, for 1,  and for trajectories close to the origin, the amplitude of 

oscillation grows very slowly, each oscillation with a different amplitude and period. 
This behaviour gives rise to the concept of multiple timescale of oscillation.  
For 1 , the oscillator goes into important oscillations known as relaxation 
oscillations where a so called crawl is followed by a sudden discharge. 
In this project, we employ multiple timescale analysis in perturbation theory to 
investigate the approximate solution to the van der Pol oscillator.  
Firstly, multiple times scale is applied to the linear oscillator to prove the validity of 
perturbation theory, followed by the method applied to two, three and four timescale 
to approximate the solution to the van der Pol oscillator. 
 The method of Average Equations is shown as an alternative method to solving the 
van der Pol oscillator. The concept of non-linear period is inextricably linked to 
multiple scales, and we use this idea to obtain linearised solutions to the van der Pol 
to higher timescales. 
 Lastly, we show how this method is extended to linearised solutions to n-time scales. 
There is a very good conformity in the results obtained by numerical integration and 
multiple timescale perturbation theory. 
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Chapter 1.0 

1.0 PERTUBATION THEORY 
 
We begin by introducing the requisite mathematical concept of perturbation theory. 
Bender and Orszag (1991:317) wrote that ‘perturbation theory is a collection of 
methods’ we can use to analyse systematically the global behaviour of solutions to 
both difference and differential equations.  
There are three steps to perturbation analysis. We list the three steps as defined 
verbatim in Bender and Orszag (1991:320). 
 

1. ‘Convert the original problem into a perturbation problem by introducing 
the small parameter .’ 

2. ‘Assume an expression for the answer in the form of a perturbation series 
and compute the coefficients of that series.’ 

3. ‘Recover the answer to the original problem by summing the perturbation 
series for the appropriate value of  .’ 

 
By way of illustration of the perturbation method, let us consider the general form of 
equations, Strogatz (2001), referred to as, weakly nonlinear oscillator, given below 
as:  
 ( , ) 0.x x h x x                                                                                                                      (1)   

Where 0 1 , and ( , )h x x  is called ‘an arbitrary smoothing constant’ , Strogatz 

(2001:215) . 

According to Strogatz (2001:215), equation (1) ‘represents small perturbations of the 

linear oscillator 0x x   and are therefore, called weakly nonlinear’. 

We note in passing, that the Duffing equation: 3 0,x x x                                      (2) 

and the van der  Pol equation 2( 1) 0,x x x x                                                            (3) 

are both examples of weakly nonlinear oscillators.  
 
Equation (1), however, can only be solved in terms of elementary functions 

when 0  .  According to perturbation theory, Bender and Orszag (1991) wrote that 

we should seek solution for ( , ) 0.x x h x x    in the perturbation expansion form of 

2

0 1 2( , ) ( ) ( ) ( ) ...x t x t x t x t                                                                                                (4) 

Equation (4) is called a perturbation series. Bender and Orszag (1991:317) wrote that 

it had the attractive feature that the left hand side (LHS) of equation (4)  can be 

computed in terms of the right hand side (RHS) as long as the problem obtained by 

setting 0,  is soluble. That is, equation (1) is soluble when 0  . Indeed, we know 

this is the case because equation (1) simplifies to a linear oscillator when 0,   which 

is soluble in terms of elementary functions. In addition, Bender and Orszag 

(1991:317) informs us to notice that equation (4) is local in   but global in ( , ).x t     
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Let us consider by way of example of the perturbation method,   the perturbation 

approximation to the damped linear oscillator, whose equation, with initial 

conditions, is given below as:  

2 0; (0) 0, (0) 1.x x x x x                                                                                            (5) 

Equation (5) is of the form stated in equation (1) and hence it is a weakly non-linear 

oscillator. However, the equation of the damped linear oscillator in equation (5) is a 

homogenous linear equation with constant coefficients. So, we can just go ahead and 

solve it in the conventional way. 

We assume that ,rtx e  is a solution to equation (5), where r is a constant. This 

means that when we find the value of r  later and substitute rtx e into equation (5) it 

will be soluble.  For now we shall substitute rtx e in equation (5) as it is and 

factorising we obtain:   

  2 2 1 0rte r r   , where  we have substituted for ,rtx re and 2 rtx r e  in equation 

(5)  and where ,x means that we differentiate with respect to t  once and x  means 

that we differentiate with respect to t , twice. 

Now either 0rte   or 2 2 1 0.r r    We choose the later as it is a quadratic equation 

and it allows us to solve for the value of the .r  Hence, we have: 

2 2 1 0.r r    

This form of the solution to equation (5) is called the auxiliary equation. 

Completing the square and factorising we have: 

2 2 2( ) (1 )r i     , where 2 1.i    

Taking the square root of both sides and solving for the constant, r  we have that: 

2 1/2(1 ) .r i      

If we write    as the real part and 2 1/2(1 ) ,    as the imaginary part, then we 

state without proof that the solution to equation (1) can be written in the general 

form of: 

cos sin .t te t e t    

Hence, 2 1/2 2 1/2( , ) cos(1 ) sin(1 ) .t tx t Ae t Be t                                                             (6) 

where A  and B  are constants. 

We can find the values of the constants A  and B  from the initial conditions we were 

given.  Substituting for the first initial condition, 
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(0) 0x  , we have that (0) .1.1 .1.0 0x A B   , hence we have 0A  , hence we can write 

the unfinished solution as   

2 1/2( , ) sin (1 ) .tx t Be t                                                                                                    (7) 

Differentiating the LHS and RHS of equation (7) with respect to t , we obtain:  

2 1/2 2 1/2 2 1/2( , ) sin(1 ) cos(1 ) (1 )t tx t Be t Be t            .  Substituting for the second 

initial condition: (0) 1x  , in this equation, ( , ) 1x t    on the LHS and 0t   in the 

RHS, we get: 

2 1/21 .(1 )B   .  Solving for B , we have that, 2 1/2(1 )B    , hence  equation (7) 

becomes: 

2 1/2 2 1/2( , ) (1 ) sin(1 ) .tx t e t                                                                                         (8) 

In equation (8), 2 1/2(1 ) te     is the amplitude of oscillation of the damped linear 

oscillator and 2 1/2(1 )    is the frequency of oscillation. We will call equation (8) the 

exact solution. 

We shall now apply perturbation theory to solve the damped linear oscillator in 

equation (5).  We assumed that in perturbation theory the solution is of the form:  

2

0 1 2( , ) ( ) ( ) ( ) ...x t x t x t x t       

Hence, substituting equation (4) into equation (5) we can now write equation (5) as: 

   
2

2 2

0 1 2 0 1 22

2

0 1 2

( ) ( ) ( ) ... 2 ( ) ( ) ( ) ...

( ) ( ) ( ) ...

d d
x t x t x t x t x t x t

dt dt

x t x t x t

    

 

       

   

  

Next, we differentiate the above equation term by term with respect to t  and we 

group terms according to the powers of , omitting all terms with coefficients 

of 2 and higher.  

Strogatz (2001: 219) advised that ‘a subscript notation for differentiation is more 

compact’, so we adopt the notation in his book from this point onwards. If we expand 

the equation above and collect like-terms we have the following: 

    0 1 2

0 0 1 0 12 0( ) 0.tt tt tx x x x x                                                                          (9) 

Since 0  , for the RHS of (9) to be equal to the LHS, the coefficient of each power of 

 should be equal to zero.  

The zeroth power of gives us: 
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0 0(1) : 0.tto x x                                                                                                               (10)   

and the first power of  gives: 

1 0 1( ) : 2 0.tt to x x x                                                                                                        (11) 

Next, we need to solve equation (10) and (11). Let us write equation (10) in compact 

form where differentiation is still with respect to t , hence equation (10) becomes:  

0 0 0.x x                                                                                                                                (12) 

Equation (12) is indeed a homogenous linear differential equation with constant 

coefficients. As we did above, let us assume that 
0

rtx e  is a solution to equation (12) 

where r a constant. The auxiliary equation is: 

2 1 0r    , Hence, we have 2 21r i   , which implies that r i  .  

Here, the real part, 0,   and the imaginary part, 1   . If as we assumed from above 

that the general solution for 0 ( )x t  is of the form:  cos sint te t e t   , then we can 

write  our solution to equation (12) in the convenient form:   

0( ) cos sinx t A t B t  .                                                                                                           (13) 

Where A and B are constants to be determined.  

If we utilised the initial conditions 0 0(0) 0; (0) 1,x x   given to find the values of the 

constants A and B, we have by substituting these values in equation (13) that: 

0(0) .1 .0 0x A B   . This implies that the value of 0A  . Hence Equation (13) 

becomes: 

0( ) sin .x t B t                                                                                                                           (14) 

If we differentiate equation (14) with respect to t  we have 0( ) cosx t B t . If we now 

apply the second initial condition, at 0,t  when 1,x   we have that 0(0) .1 1x B  , 

hence 1.B  Thus equation (14) is: 

0( ) sin .x t t                                                                                                                              (15) 

From equation (11) we have therefore that 1 1 02 .x x x     Substituting equation (15) 

in 1 1 02 ,x x x    we have: 

1 1 2cos .x x t                                                                                                                         (16) 

Equation (16) is a typical case of resonance we will consider soon. For now, we state 

without showing the working that equation (16) is:  
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1( ) sin .x t t t                                                                                                         

We only now have to substitute for, 0x  and 1x in equation (4) to obtain the solution:  

2( , ) sin sin ( ).x t t t t o                                                                                                  (17) 

We shall call equation (17) the perturbation theory solution. The graph of the exact 

solution and the perturbation theory solution is shown in Figure 1.0 below. 

 

Figure 1.0 [Maple] plots the exact 

solution, equation (8), in red and the 

perturbation theory solution, 

equation (17), in blue, for 0.1.   It is 

evident from Figure 1.0, that the plot 

of the perturbation theory solution 

and the exact solution agree well for 

small values of t , In fact, it can be 

shown that the perturbation theory 

solution works reasonably well for 

1
t


 ,  that is 10t , but it breaks 

down after that. 

 

Let us explore equations (8) and (17) further briefly. In the exact solution of equation 

(8), the amplitude of oscillation, 2 1/2(1 ) te     decays exponentially with time. In 

equation (17) of the perturbation theory solution, the amplitude of oscillation is t  

and this value we know increases as time, ,t  increases. The effect is a sine function 

that oscillates further and further away from the horizontal axis with time. In other 

words, the term, sint t ,  in equation (17), is the reason that ( , )x t  , (when 0.1  ) is 

unbounded for all t and grows with time. On the contrary, ( )x t  remains bounded for 

all t  in the exact solution. 



11 | P a g e   

Chapter 2.0 

2.1 RESONANCE 

 

To put this project in context, we need to talk about resonance. The phenomenon of 

resonance is well exemplified by the differential equation in equation (16).  It’s 

because of resonant interactions between consecutive orders that non-uniformity has 

appeared in the regular perturbation series. To see how this happens view the LHS of 

equation (16) as a simple harmonic oscillator with natural frequency 1, driven by a 

periodic, external, forcing frequency 1, on the RHS. The amplitude of oscillation for 

such a system is unbounded as t   because the oscillator continually absorbs 

energy from the periodic external force, thus, we say this system is in resonance with 

the external force. The solution, therefore, to such a system, represents this fact in 

the term ' sin 't t in equation (16).  The term ' sin 't t whose amplitude grows with time 

is called a ‘secular term’. Another way to explain equation (16) is that the so called 

secular term, ' sin 't t  appeared in the solution in equation (17) because the 

inhomogeneous term,  2cos t  is itself a solution of the associated homogeneous 

equation: 1 1 2cos .x x t    In general, secular terms always appear whenever the 

inhomogeneous term is itself a solution of the associated homogeneous differential 

equation. According to Bender and Orszag (1991) a secular term always grows more 

faster than the corresponding solution of the homogeneous equation by at least a 

factor of t   and the authors conclude: ‘that the appearance of secular terms 

demonstrates the non-uniform validity of perturbation expansion for large t ’  Bender 

and Orszag (1991:545). 

 

2.2 MULTIPLE TIMESCALE PERTURBATION THEORY  

Let us now turn our attention to multiple scale analysis. Shit, Chattopadhyay, and 
Chaudhuri (2012) wrote : ’...the method of multiple scale analysis is immensely 
popular as well as a very sophisticated and useful tool for constructing uniform or 
global approximate solutions for both small and large values of independent 
variables...’ The authors commented further that:  ‘The general principle behind the 
method is that the dependent variables are uniformly expanded in terms of two or 
more independent variables, nominally referred to as scales. A consistent feature of 
all multiple scales analysis is the choice of ordering scheme and the form of the 
power series expansion’. Citing, Bender and Orszag (1978);   Jordan and Smith 
(1977);  Nayfeh and  Mook (1979); Dyke (1964); Andrianov and Manevitch ( 2002) 
and   Cartmell, Ziegler and Forehand (2003), the authors conclude: ‘ multiple scale 
perturbation theory (MSPT) is a very effective technique among the approximate 
methods that can be applied, with varying degrees of success, to a huge range of  
problems in the field of physics and natural Sciences. However, in applying the 
method, Bender and Orszag (1991:549) warned that in the perturbation series 
expansion itself, ‘secular terms appear in all orders except the (1)o  (zeroth order) and 

violate the boundedness of the solution’.  Bender and Orszag (1991:549), wrote that:  
‘a short cut for removing the  most secular terms to all orders begins by introducing a 
new variable t   such that t  and  are assumed to be independent, and to seek 
approximate solutions of the form:   
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0 1( , ) ( , ) ( , ) ...x t x t x t                                                                                                   (18) 

This is known as the method of multiple scales. Bender and Orszag (1991:544) wrote 

that, ‘multiple-scale analysis is a useful technique for performing uniformly valid 

approximations to solutions of perturbation problems’ and  Strogatz (2001) 

concluded that multiple-scale method builds in the fact of multiple-time scales from 

the start to avoid lengthy calculations. Multiple scale analysis involving two variables 

as in t   where t  and  are assumed independent is called two-timing. In three 

timescales, we assumed three independent variables, e.g.: ,t   and   and the 

relationship between the variables are: t   and 2 .t   

 Figure 3.0 [Maple] shows a solution 

of the van der Pol oscillator in the 

( , )x x phase plane for 0.05  and the 

initial conditions (0) 0.1 (0) 0.x x   

For initial those conditions  close to 

the origin, the trajectory is a slowly 

winding spiral that takes many   

cycles for the amplitude to grow 

substantially. At least, the true 

solution exhibits two timescale, a fast 

time for the sinusoidal oscillations 

and a slow time over which the 

amplitude increase to reach the 

isolated periodic orbit.  

In fact, the true solution of the van 

der Pol oscillator is the sum of sine 

and cosine functions. In perturbation theory, this means that each linearised 

solution, jx  is a periodic solution with a different amplitude and period.  



13 | P a g e   

Chapter 3.0 

3.1 TWO TIMING METHOD 

 

We shall now go ahead to obtain a better solution to the damped linear oscillator 

defined in equation (5) than we obtained in equation (17). Here the emphasis is only 

to illustrate the method, so we shall seek only an approximate solution, omitting 

terms in 2 and higher. 

Since we are using the two timing method, we desire two time variables. We choose 

t and  and assumed they are independent variables and define .t   The next step 

is to differentiate equation (18) with respect to t  but treat both t  and  as 

independent variables. Using chain rule in partial differentiation on the RHS with 

respect to ,t  (the LHS is full differentiation with respect to t ) equation (18) becomes:  

0 0 1 1( , ) ...
x x x xd d

x t
t dt t dt

 
 

 

      
      

     
                                                                 (19) 

From above, we have that t  , hence if we differentiate   with respect to ,t  we have  

.
d

dt


                                                                                                                                 (20)  

Where t  and  are the so called fast and slow time respectively, Strogatz (2001). 

 We adopt a subscript notation for differentiation in Strogatz (2001:219) and write 

equation (19) as:  

  2

0 0 1 ( ).t t

dx
x x x x o

dt
                                                                                       (21) 

after grouping like terms and omitting terms in 2.  Also, differentiating, with respect 

to t  again, we have:  

  
2

2

0 0 12
( ) ( ) ( )t t t t

d x d dx
x x x x o

dt dt dt
   

 
            

 
 which gives 

   2

0 0 12 ( ).tt t ttx x x o                                                                                             (22) 

Here, we have multiplied out the brackets  ( )t t     and  0 0 1( )t tx x x     

writing the product of t and 0t x  as 0tt x , and t and 0x as 0t x  and so on. We 

group all the like terms together omitting terms in 2.  Substituting equation (21) 

where is x  and equation (22), which is x into equation (5), we have: 

  2

0 0 1 0 0 1 0 1(2 ) 2 ( ) ( ) 0tt t tt t tx x x x x x x x o                  .                       (23) 

 If we multiply out the brackets and collect like terms in powers of , omitting terms 

in 2 , we have:  
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  2

0 0 0 1 0 12 2 ( ) 0.tt t tt tx x x x x x o            We know that 1  but 0,  hence 

for the LHS of this equation to be equal to zero, either  

0 0(1) : 0.tto x x                                                                                                              (24) 

and 

1 1 0 0( ) : 2 2 0.tt t to x x x x                                                                                         (25) 

The general solution for equation (24) is similar to that given by equation (13) which 

is 0( ) cos sin .x t A t B t   However, with one difference: that, 
0x is a function of two 

variables t and and further that the constants A  and B are themselves functions 

of , the slow time. Hence, we write the general solution to equation (24) as:  

 

0( , ) ( )cos ( )sinx t A t B t    .                                                                                          (26) 

 

Differentiating equation (26) with respect to t , we have 0
0 sin cos .t

x
x A t B t

t


    


 

Differentiating a second time with respect to  , this time, and remembering 

that A and  B are functions of ,  we have that, 
2

0
0 sin cost

x
x A t B t

t





     

 
. 

Substituting for  0t x  and 0t x equation (25) becomes: 
 
 

 1 1 2 ( sin cos ) 2( sin cos )tt x x A t B t A t B t          . Collecting like terms and 

factorising for cos t  and sin t , we have: 

 1 1 2 ( )sin ( )cos .tt x x A A t B B t                                                                              (27) 

Since cos t  and sin t   are solutions to the equation on the LHS of equation (27), they 

are resonant terms – to remove them, we set the coefficient of cos t and sin t to zero to 

avoid secular terms in the solution.  Hence, we have the following equations: 

0.A A                                                                                                                              (28) 

0.B B                                                                                                                              (29) 

Elementary working gives the solutions to equation (28) and equation (29) as:  

( ) (0)A A e     and ( ) (0)B B e   . Where (0)A  and (0)B  mean the value of A and 

B when 0.    

To determine (0)A and (0),B we use 2

0 1( , ) ( ) ( ) ( ),x t x t x t o      and the initial 

conditions (0) 0, (0) 1,x x   as follows: 

 
2

0 1(0) 0 (0,0) (0,0) ( ).x x x o      Since 0,  The RHS of this equation is only zero 

when 0(0,0) 0,x   and 1(0,0) 0.x   Similarly from equation (21), we have that  

  2

0 0 1(0) 1 (0,0) (0,0) (0,0) ( ).t tx x x x o        This implies that 0(0,0) 1t x   since 
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the coefficient , 0 1(0,0) (0,0) 0.tx x   We know from above that 0(0,0) 0,x  and 

hence  0( ) ( )cos ( )sinx t A t B t   , enables us to determine (0).A  Substituting for 

0,t  we have 0,   and   

 
(0) 0.A                                                                                                                                (30)  

 
This implies ( ) 0.A    This means that ( ) 0A   for all values of the variable, .  

 

Similarly, combining 0( ) ( )cos ( )sinx t A t B t    and 0(0,0) 1,t x  we have:  

 
1 ( )sin ( )cos 1A t B t     , substituting 0t  , here, we have:   

(0) 1B  .                                                                                                                               (31)  

 

This implies ( ) .B e    Substituting for t  , equation (26) becomes:  

0( , ) sin .x t e t   Since we seek only an approximate solution and our aim is to show 

that perturbation theory works, we simply approximate equation (18) as: 
 

( , ) sin ( ).tx t e t o                                                                                                         (32) 

 
Equation (32) is the approximate two-timing method solution. If 1,  the two-

timing solution agrees well with the exact solution. 
 

Figure 3.0 [Maple] show the 
approximate two timing perturbation 
theory method solution to the Exact 
solution, when  0.1.   Though, we 
have omitted expressions with powers 
in   and higher, the two timing 
method still agree very well with the 
exact solution for 10t  as predicted 
by theory. 
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Chapter 4.0 

4.1 THE VAN DER POL OSCILLATOR 
 
Now that we have shown how to apply multiple scales in perturbation theory to 
weakly non-linear oscillators, let us apply the technique to solve the van der Pol 
equation. But firstly, a little about, van der Pol, the man, and his accomplishments. 
We are told in Wikipedia (2012), that his full name was Balthazar van der Pol and he 
was a Dutch electrical engineer and physicist and that he proposed the van der Pol 
oscillator whilst working at Philips. It is related that van der Pol found stable 
oscillations in electrical circuits employing vacuum tubes. These stable oscillators are 
now known as limit cycles. Then, vacuum tubes were used to control the flow of 
electricity in the circuitry of transmitters and receivers. 
Guckenheimer and Hoffman and Weckesser (2003) in the introduction to their 
paper, wrote on van der Pol and his accomplishments.  The authors claimed that in 
the first half of the twentieth century, van der Pol pioneered the fields of radio and 
telecommunications. As proof, they cited the works of Stumpers (1960) and works by 
van der pol and van der Mark (1927).  Guckenheimer, Hoffman and Weckesser 
(2003) wrote that ‘van der Pol experimented with oscillations in a vacuum tube 
triode circuit and concluded that all initial conditions converged to the same periodic 
orbit of finite amplitude. This behaviour was different from the behavior of solutions 
of linear equations, hence van der Pol proposed a nonlinear differential equation’, 

2( 1) 0x x x x    . Van der Pol (1920) referred to this equation as the unforced van 

der Pol equation. 
He studied the equation for 1  and van der Pol (1926) discovered important 
oscillations now known as relaxation oscillations. According to Guckenheimer, 
Hoffman and Weckesser (2003) ‘...these oscillations have become the cornerstone of 
geometric singular perturbation theory...’. 
Guckenheimer, Hoffman and Weckesser (2003)  citing, McMurran and Tattersall 
(1996), wrote that van der Pol’s work on nonlinear oscillations and circuit theory 
provided motivation for the works of notable scientists of his time. In summary, 
Guckenheimer, Hoffman and Weckesser (2003) wrote that since the 1920’s, ‘the van 
der Pol equation has been a prototype for systems with self-excited limit cycle 
oscillations. The equation has been studied from perturbations of harmonic motion 
to relaxation oscillations. In biology, the van der Pol equation has been used as the 
basis of a model of coupled neurons in the gastric mill circuit of the stomatogastric 
ganglion (citing Guckenheimer, Hoffman Weckesser (2000) and Rowat and 
Selverston (1996))’. 
Forger and Kronauer (2002) citing Wever (1972) wrote Wever was the first to use the 
van der Pol equation as a model of the human circadian clock and since then it been 
used as an accurate model of the human circadian system; Forger and Kronauer 
(2002) cited Gundel and Spencer (1999) and Jewett, Forger, and Kronauer (1999) to 
name a few. Guckenheimer, Hoffman and Weckesser (2003) wrote further, that ‘The 
Fitzhugh–Nagumo equation (citing FitzHugh (1961)) is a planar vector field that 
extends the van der Pol equation as a model for action potentials of neurons (citing 
Koch and Segev (1998). In seismology, the van der Pol equation has been used in the 
development of a model of the interaction of two plates in a geological fault (citing 
Cartwright and Eguiluz, et al, (1999))’. 
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4.2 SOME PROPERTIES OF THE VAN DER POL OSCILLATOR 
 
We summarise the main points in the last section.  

1. Van der Pol (1920) proposed the nonlinear differential equation in the form 
2( 1) 0x x x x     to describe self-excited, constants oscillations in a vacuum 

tube triode circuit. The van der Pol oscillator is an ordinary differential 
equation (ODE). 

2. For 1  and van der Pol (1926) discovered important oscillations known as 
relaxation oscillations. 

3. We state without proof that the energy of this ODE increases when the 

absolute value of x  is less that 1 ( 1)x   then decreases when the absolute 

value of x is greater than 1, ( 1)x  .  

4. The van der Pol oscillator has a single stable periodic orbit, or limit cycle. 
5. The van der Pol equation is a simple model of a beating heart. 
6. The van der Pol equation is used to model behaviour in the physical and 

biological sciences. 
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Chapter 5.0 

5.1 AMPLITUDE AND LIMIT CYCLE IN THE VAN DER POL 
OSCILLATOR: TWO-TIMING METHOD 
 
Now that we have confirmed the validity of the two-timing method in perturbation 
theory, we will use perturbation to show that the van der Pol oscillator has a stable 
limit cycle with radius = 2 ( )o   and a frequency, 1 ( )o   . 

 
We recall again that the equation of the van der Pol oscillator is given as: 

2( 1) 0.x x x x                                                                                                               (33) 

 
In perturbation theory, we assume that the solution is of the form:  
 

2

0 1( , ) ( , ) ( , ) ( ),x t x t x t o        where t   and .
d

dt


  For ease of writing, we will  

write ( , )x t    as x , as  this form causes no confusion. 

As before, we need to differentiate both sides of 2

0 1( , ) ( , ) ( ),x x t x t o      with 

respect to t  and substitute for x  and x  equation (33). As we have already derived x  
and x for two timing - equations (21) and (22) - we will not show the working again. 
As before, after substituting and collecting like terms in powers of ,  we have 

 2 2

0 0 1 1 0 0 02 ( 1) 0( ) 0.tt tt t tx x x x x x x               Since 0,   for the LHS of this 

equation to be zero, the coefficients of the powers of  has to be zero. Thus the  
 equations: 
 

0 0(1) : 0.tto x x                                                                                                               (34) 
2

1 1 0 0 0( ) : 2 ( 1) .tt t to x x x x x                                                                                   (35) 

 

Recall that x is a function of ,t but that 0x  and 1x  are both functions of t and .  

As above, the (1)o  equation is a simple harmonic oscillator. The general solution can 

be written in the form of equation (26),  which is 0( , ) ( )cos ( )sinx t A t B t    . 

However, for ease in computation, we shall use the familiar, compact form of:   
 

 0 ( )cos ( ) .x r t                                                                                                           (36) 

  

( )r   and ( )  are the slowly-varying amplitude and phase of 0x  respectively. 

 
To find equations governing ( )r   and ( ),   we need to insert equation (36) into 

equation (35). From equation (36),  we should also determine 0t x  and 0.t x   

Substituting for these  in equation (35), we  get:  
 

     

 

2 2

1 1 2 ( )sin ( ) ( ) ( )cos ( ) ( )cos ( ) 1

( )sin ( ) .

tt x x r t r t r t

r t

          

  

                

    
 
Expanding the above equation,  we arrive at the expression below: 
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3 22 ( ) ( )cos ( ) 2 ( )sin ( ) ( )cos ( ) sin ( )

( )sin ( ) .

r t r t r t t

r t

            

  

        

      (37) 

 
We can simplify the notation in equation (37) if we let,  
 

( )t      and ( ) ,r r   and ( )   , hence we have:   

 
3 2

1 1 2 cos 2 sin cos sin sintt x x r r r r             .                                              (38) 

We employ the trigonometric identity,   2 1
cos sin sin sin3 ,

4
      to simplify 

equation (38) further and we arrive at: 
  

3 3

1 1

1 1
2 cos ( 2 )sin sin3 .

4 4
tt x x r r r r r                                                          (39) 

 
Recall that both cos and sin  are resonant terms in equation (39). That is, to avoid 
secular terms in our solution, we must set the coefficients of  cos  and sin  to zero 
on the RHS of equation (39) as these are themselves solutions to the associated 
homogeneous differential equation on the LHS of equation (39). 
 
Hence we have that:  
 

31
2 0.

4
r r r                                                                                                                   (40) 

2 0.r                                                                                                                               (41) 

 
We can rewrite equation (40) as: 

21
(4 ).

8
r r r                                                                                                                       (42) 

 
Strogatz (2001) stated that we can write equation (42) as a vector field. Professor 
Prellberg stated in lecture notes, Autumn 2011, that to solve such an equation for 
fixed points, that is those points for which 0;r   and writing ( ),r f r  we can write 

equation (42) as:    
 

21
( ) (4 ) 0.

8
f r r r    This means that 2(4 ) 0r r  . Solving for fixed points, we have  

* 0r   or * 2r   . However, we are only interested in the half-line 0.r   * 0r   is an 

unstable fixed point and * 2r   is a stable fixed point.  
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Figure 4.0,[Maple] 
clearly shows the 
phase plot of the 
vector field. All 
trajectories starting 
above 2 converge to 
2, and trajectories 
starting close to the 
origin converge to 2.  

Thus, 0r   is an 
unstable fixed point 

whilst 2r  is a 
stable fixed point. 

Hence,    2r    as 

.t   
From equation (41), 
we have that 0   

so   0 ,    where 

0  is a constant.  

Thus  

0 0( , ) 2cos( )x t t     

and therefore 
 

0( ) 2cos( ) ( ).x t t o                                                                                                     (43)  

as t   
 
Thus ( )x t  approaches a stable limit cycle of radius   2 ( ).o   Thus we conclude that 

the van der Pol oscillator has a stable limit cycle of radius 2. 

 Recall from above that   ,t      the angular frequency, .
d

dt


   

  
d d

t
dt dt




 
( )

1 .
d

dt

 
   

 

However,  
( ) ( )

.
d d d

dt d dt

    


 . Remembering that t  , we have ,

d

dt


   and 

therefore,   
( ) ( )d d

dt d

   



 .  

 
Hence, we have that 
 

1 .                                                                                                                               (44) 

 

But 
( )

0
d

d

 



  , through first order in . 

Thus, 21 ( )o   . 

Hence, we conclude that the van der Pol has angular frequency, 1.   
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Chapter 6.0 

6.1 THREE TIMING IN THE VAN DER POL OSCILLATOR 

Here, we define the van der Pol oscillator with initial conditions below as: 

2(1 ) 0 (0) 2 (0) 0.x x x x x x                                                                              (45) 

As in the example of two timing, our aim is to remove the most secular terms to all 

orders. However, as this is three timing, we must introduce an extra timescale, , as 

according to perturbation theory, this is the best way to remove the most secular 

terms. We define the three timescale with t   and 2 ,t  assuming that t ,    and  

  are independent variables. 

The perturbation theory expansion is in the form given below:  

2 3

0 1 2( , ) ( , , ) ( , , ) ( , , ) ( ).x t x t x t x t o                                                                  (46) 

If we obtain x  and x  from equation (46) by differentiating x with respect to t  once 

and twice, respectively, and substituting for x  and x  in equation (45), we obtain the 

following equation: 

 

2

0 0 1 0 1 0 0 0 2 1 2 0

2 2 3

0 0 1 0 1 0

( 2 ( 1) ) (2 2

( 1) ) 2 ( ) 0.

tt t tt t t tt t

t t

x x x x x x x x x x x x

x x x x x x o

   





 

                 

      
    (47) 

The computation is a bit tedious to do by hand and is obtained by maple and it can 
he checked in Appendix 1. 
As usual, for the LHS of equation (47) to be zero, the coefficient of powers of  must 

be equal to zero.  The zeroth order of epsilon gives 0 0 0tt x x    As stated earlier, the 

zeroth order equation is a simple harmonic oscillator. The general solution equation 
is:  
 

0( , , ) 1( , )cos 2( , )sin .x t F t F t                                                                                (48) 

 
Equation (48) is sometimes written in the equivalent compact from: 
 

 0( , , ) ( , )cos ( , ) .x t A t                                                                                         (49) 

 

where ( , )A    and ( , ),   are the slowly-varying amplitude and phase of 0x  

respectively. 
 
Similarly, we write the coefficient of the first power of equals to zero as:  
 

 2

1 0 1 0 02 ( 1) 0.t tt tx x x x x                                                                                         (50) 

 

Note that from equation (49), we have:  0 ( , )cos ( , )x A t      . As before, we only 

need to compute 0 ,t x  and 0t x from here and substitute them into equation (50). 



22 | P a g e   

Maple does the hard work so we don’t have to. Hence, equation (51) simplifies in 
Maple to:   
 

3 3

1 1

1 1
( 2 )sin( ) 2 cos( ) sin(3 3 ) 0.

4 4
t ttA A A t x A t x A t                          (51) 

Where, A  and   are ( , )A   and ( , )    respectively in equation (51). To solve 

equation (51) we must remove all secular terms. This means that we equate the 
coefficients of cos( )t  and sin( )t   to zero. We obtain the following equations 

below: 

 31
2 0.

4
A A A                                                                                                             (52) 

  2 0.A                                                                                                                            (53) 

 
Since 0,A  equation (53) appear to imply that   does not depend on .  Indeed, 

solving equations (52) and (53) simultaneously in Maple gives: 
 
  

_ 2( ).F                                                                                                                         (54) 

 

 
1/2

2
( , ) .

1 4 1( )
A

e F
 


 


                                                                                            (55) 

Equation (55) imply that as  
1/2

, 1 4 1( ) 1t e F    , and  therefore ( , ) 2.A     

(Recall that .t  )Hence,  
 
 

( , ) 2.A                                                                                                                              (56) 

 
Equation (49), simplify further to:  
 

 0 2cos ( ) .x t                                                                                                            (57) 

 

Substituting these new values of 0x in equation (56) and 2A  in equation (57) back 

into equation (50), we get  
 

 1 1 2sin 3 3 ( ) 0.ttx x t                                                                                              (58) 

 
Thus we see that all terms leading to secular terms in the solution have been 
removed. The solution to equation (58) in Maple is given below as:   
 

1

1
( , , ) 1( , )cos 2( , )sin sin(3 3 ( )).

4
x t F t F t t                                                     (59) 

 Thus we equation (59) reduces to:  
 

 1

1
sin 3 3 ( ) .

4
x t                                                                                                         (60) 
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Similarly, if we equate the coefficients of  

 2 to zero, we have below: 
 

 2

0 2 1 2 0 1 0 0 0 0 12 2 2 ( 1) .t tt t t tx x x x x x x x x x x                                             (61) 

 

Maple automatically substitutes for 0 ,x  1x  and all the partial differentiations to give: 

 

2 2

1 5 3
( 1 16 cos( ) cos(5 5 ) cos(3 3 ) 0,

4 4 4
ttt t x x t                                  (62)  

where ( ).    

 
As before, to solve equation (62), we equate the coefficients of resonant terms to 
zero, hence: 
 

 
1

4 0.
4

                                                                                                                    (63) 

Solving for in equation (63), we that 

 
1

( ) .
16

                                                                                                                   (64) 

where   is a constant. Substituting equation (64) into equations (57) and (60),  

 
equation (57) becomes 
 

 0

1
2cos( ).

16
x t                                                                                                       (65) 

 
and equation (60) becomes  
 

1

1 3
sin( 3 3 ).

4 16
x t                                                                                                  (66) 

 

Substituting the new values of 0x  and 1x  and  back into equation (61), Maple 

computes equation (61) as:  
 

 2 2

5 5 3 3
cos( 5 5 ) cos( 3 3 ) 0.

4 16 4 16
ttt x x t                                                 (67) 

 
Equation (67) is now devoid of all secular terms in the solutions and solving equation 
(67),  we obtain: 
 

2

5 5 3 3
cos( 5 5 ) cos( 3 3 ).

96 16 32 16
x t t            ,                                                (68) 

 
Hence, we can now write equation (46) as 
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                                                     (69) 
 
 
  
 

We can solve for the constant  in equation (69) utilising the initial conditions, 

(0) 2 (0) 0x x  . Substituting the value 0.5,  Maple computes the 

value 0.1396823540  . Substituting 0.1396823540  into equation (69), the three 

timing perturbation theory approximates the solution to equation (45) as: 

63 1 189
( ) 2cos( 0.1396823540) sin( 0.4190470620)

64 8 64

5 315 3 189
cos( 0.6984117700) cos( 0.4190470620).

384 64 128 64

x t t t

t t

     

     

                         (70) 

Note, however that  is an arbitrary constant determined by initial conditions. 

 

Figure 5.0(a) [Maple] 

shows the approximate 3-

timing plot in green 

against numerical 

integration in red for 

0.5  and 0.2.   We have 

plotted ( )x t  on the vertical 

axis against t on the 

horizontal axis for 

0...50.t   There is a very 

agreement between the 

results obtained by 

numerical integration and 

multiple timescale 

perturbation method. 

 

 

2 2

2

2

2

1 1 3
2cos( ) sin( 3 3 )

16 4 16

5 5
cos( 5 5 )

96 16
.

3 3
cos( 3 3 )

32 16

x t t t t

t t

t t o
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Figure 5.0(a) [Maple] 

shows the phase plot for 

the approximate 3-timing 

plot in green against 

numerical integration in 

red for and   we have 

plotted ( )x t on the vertical 

axis against ( )x t  on the 

horizontal axis. The phase 

plot of limit cycle obtained 

by numerical integration 

and agrees well with that 

obtained by multiple 

timescale perturbation 

method. 

 

 



26 | P a g e   

Chapter 7.0 

7.1 FOUR TIMESCALE IN THE VAN DER POL OSCILLATOR 
 

The computation involved in the four timescale for the van der Pol oscillator is 
tedious and more demanding than in the three timing. Again, we have used Maple to 
cope with the rigor of computation. The details for the four timescale are in Appendix 
2. 
As before, we use the same equation for the van der Pol as defined in equation (45) 
above, namely: 
 

2(1 ) 0 (0) 2 (0) 0.x x x x x x        

 
As above, we chose four variables this time, , ,t    and  and we assumed they are 

independent. We define the variables as follows: ,t   2t   and 3 .t   t  is called 

the fast time, , the slow time, ,  the super slow time and ,  the super slowest time. From 

multiple scales perturbation theory, the solution should be of the form: 
 

2 3

0 1 2( , ) ( , , , ) ( , , , ) ( , , , ) ( ).x t x t x t x t o                 

 
The procedure is the same as before. We need to derive x  and x in the above 
equation and substitute these into equation (45).  
 
The resulting equation is far too cumbersome to list all of its terms here. However, 
we list the coefficient of each power of  and equate each coefficient to zero. The 
following shows the hierarchy of equations: 
 

0 0(1) : (t, , , ) (t, , , ) 0.tto x x                                                                                   (71) 

 
2

1 0 0 0

1

( ) : (t, , , ) 2 (t, , , ) ( (t, , , ) 1)( (t, , , )

(t, , , ) 0.

t t

t

o x x x x

x

            

  

    

 
                        (72) 

 

 2 2

2 0 0 1

0 1 0 0 0

1 2

( ) : (t, , , ) (t, , , ) 1)( ( )(t, , , ) ( )(t, , , )

2 (t, , , ) (t, , , ) ( )(t, , , ) 2 ( )(t, , , ) ( )(t, , , )

2 ( )(t, , , ) ( )(t, , , ) 0.

t

t t

t tt

o x x x x

x x x x x

x x



 



            

              

     

     

    

    

          (73)                                                                           

 

3

0 3 3 0

1 1 0 1 0

2

0 0 1 2

( ) : 2 (t, , , ) (t, , , ) ( )(t, , , ) 2 ( )(t, , , )

2 ( )(t, , , ) ( )(t, , , ) 2 (t, , , ) (t, , , )( ( )(t, , , )

(t, , , ) 1 ( )(t, , , ) ( )(t, , , ) ( )(t,

t tt

t

t

o x x x x

x x x x x

x x x x

 

  

 

            

              

         

     

     

       

 2

0 2 1 0 1

2

, , )

2 (t, , , )( )(t, , , ) (t, , , ) (t, , , ) ( )(t, , , )

2 ( )(t, , , ) 0.

t t

t

x x x x x

x

 

              

  

    

   

      (74) 

The solution of the (1)o  equation as before is:  

_ 1( , , )sin( ) _ 2( , , )cos( ) 0.F t F t                                                                            (75) 



27 | P a g e   

Or we can write this in the compact form as before as: 

 0( , , , ) ( , , )cos ( , , ) .x t A t                                                                                (76) 

Where A  and  are functions of , , .    Next, we need to substitute the solution 0x  in 

equation (76) into the ( )o   equation, equation (72) above.  In Maple this yield: 

   

   

3

1

3

1

2 ( )( , , ) ( )( , , ) ( , , ) sin ( , , ) ( , , , )

2 ( , , ) cos ( , , ) ( )( , , ) ( )( , , ) sin 3 3 ( , , )

(

1

4

1

4

0)( , , , ) .tt

A A t x t

A t A t

x t

A



              

              

  

 
     

 

     









    (77) 

If we equate all the resonant terms in equation (77) to zero that is, the coefficients of 

 sin ( , , ) ,t     and  cos ( , , ) ,t     we have the equations:  

3

2 ( , , ) ( )( , , ) 0

2 ( )( , , ) ( )( , , ) ( , , ) 0.
1

4
A A

A

A





     

        

  

   
                                                         (78) 

Solving the two equations in (78) in Maple, we obtain the following results: 

 
 

1/2

2
( , , ) .

1 4 _ 1( , )
A

e F
  

 
 


                                                                            (79)  

and  

( , , ) 2( , ).F                                                                                                           (80) 

Since, we already know that the van der Pol oscillator has a stable limit cycle of 2, we 

set ( , , ) 2.A      

Equation (80) imply that   does not depend on  and is a function of    and    

only. Equation (76) is therefore further refined as: 

 0 2cos ( , ) .x t                                                                                                           (81) 

If we substitute 0x  in equation (81) into equation (72) again, we obtain:  

 1 1( )( , , , ) ( , , 2 0, ) sin 3 3 ( , , ) .tt x t x t t                                                       (82) 

Equation (82) has no secular terms, so we can solve for 1.x  Solving for 1x  in equation 

(82) in Maple, we have:  
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 1

1
( , , ) sin _ 2( , , )sin( ) _ 3( , , )cos( )( , ) .3

4
3tx F t F t                          (83) 

Hence  1 (3
1

sin
4

3 .( , )x t                                                                                    (84) 

Next, we substitute 
0x  and 

1x  in equations (81) and (82) respectively into equation 

(73), the 2( )o  equation.  Doing the computation in Maple, we obtain the following 

result: 

  
       

2 2

1 5 3
16 ( , ) 1 cos ( , ) cos 5 5 ( , ) cos 3 3 ( , )

4 4 4

( , , , ) ( )( , , , ) 0.tt

t t t

x t x t

        

     

         

  

   (85) 

Again, we equate all the resonant terms in equation (85) to zero, that is the 

coefficients of  cos ( , )t   and  sin ( , ) .t    The coefficient of  sin ( , )t    is 

zero, however the coefficient of  cos ( , ) ,t   yield:   

 
1

16 ( , ) 1 0.
4

                                                                                                            (86)  

 Solving for   in equation (86) in Maple, we have:   

 
1

( , ) _ 1( ).
16

F                                                                                                     (87) 

From equation (87), we again update results for 0x  and 1x  as follows: 

0

1
( , , , ) 2cos _ 1( ) .

16
x Ftt     

 
  

 
                                                                           (88) 

and  

1

1 3
( , , , ) sin 3_ 1( )

4 1
3 .

6
tx t F    

 
   

 
                                                                 (89) 

respectively. 

Again, we substitute equations (87), (88) and (89) back into equation (73). The 

Maple output is:  

2

2

5 5 3 3
( , , , ) cos 5 5 _ 1( ) cos 3 3_ 1( )

4 16 4 16

( )( , , , ) 0.tt

x t t F t F

x t

      

  

   
        

   

 

                  (90) 
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Since equation (90) contain no secular terms we go ahead and solve for 
2.x The 

solution to equation (90) in Maple is: 

2

5 5
( , , , ) _ 3( , , )sin( ) _ 2( , , ) cos( ) cos 5 5 _ 1( )

96 16

3 3
cos 3 3_ 1( ) .

32 16

x t F t F t t F

t F

          

 

 
     

 

 
   

 

(91) 

 
Hence,  

2

5 5 3 3
cos 5 5_ 1( ) cos 3 3_ 1( ) .

96 16 32 16
x t F t F   

   
         

   
                            (92) 

Lastly, we need to solve for 3x  in equation (74), the 3( )o   equation. We substitute 

equations (87), (88), (89) and equation (92) into equation (74). The answer in Maple 

is: 

3 3

1
4cos _ 1( ) (_ 1)( ) ( , , , ) ( , , , )

16

1 1 9 3
sin _ 1( ) sin 3 3_ 1( )

32 16 32 16

7 7 85 5
sin 7 7 _ 1( ) sin 5 5 _ 1( ) .

12 16 96 16

ttt F F x t x t

t F t F

t F t F

        

   

   

 
      

 

   
        

   

   
        

   

                             (93) 

Again, we need to equate resonant terms in equation (93) to zero and we arrive at: 

4 (_ 1)( ) 0.F                                                                                                                 (94) 

The solution to _ 1F  in equation (94) indicate that _ 1( ) _F C   where 

_ tan .C cons t  

Substituting for _ 1F  back into (93), we removed all resonant terms and we have: 

3 3

9 3
( , , , ) ( , , , ) sin 3 3_

32 16

7 7 85 5
sin 7 7 _ sin 5 5 _ .

12 16 96 16

ttx t x t t C

t C t C

      

 

 
      

 

   
          

   

                                              (95) 

Note that we have set the term 
1 1

sin _ 1( ) 0.
32 16

t F 
 
   

 
 as this is a secular term. 

The solution to equation (95) in Maple is shown below:   
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3

85 5
( , , , ) _ 3( , , )sin( ) _ 2( , , ) cos( ) sin 5 5 _

2304 16

9 3 7 7
sin 3 3_ sin 7 7 _ .

256 16 576 16

x t F t F t t C

t C t C

         

 

 
     

 

   
        

   

  (96) 

 

And hence,  

3

85 5 9 3
sin 5 5 _ sin 3 3_

2304 16 256 16

7 7
sin 7 7 _ .

576 16

x t C t C

t C

 



   
           

   

 
    

 

                                 (97) 

 
Therefore the full 4-timescale perturbation theory solution to equation (45) is:  
 

2

3

1 1 3
( , ) 2cos _ sin 3_

16 4 16

5 5 3 3
cos 5 5 _ cos 3 3_

96 16 32 16

85 5 9 3
sin 5 5 _ sin 3 3_

2304 16 256 16
.

7 7
sin 7 7 _

6

3

57 16

x t C C

t C t C

t C t C

t

t t

C

   

  

 





   
       

   

    
         

    

    
        

    
  
    

  

 

                                        (98) 

The computation is contained in Appendix 2.0. 

 

Figure 6.0(b), [Maple] phase plot ( , )x x of 

van der Pol numerical integration in red 

vs. approximate solution in green. 

Figure 6.0(b), [Maple] plot ( , )x t of van der 

Pol numerical integration in red vs. 

approximate solution in green. 
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Chapter 8.0 

8.1 AVERAGED EQUATIONS 

As the reader may have noticed the same steps keep recurring in the solutions to the 

van der Pol. According to Strogatz (2000:223) this is true of weakly nonlinear 

oscillators in general. We can therefore speed up things by deriving some general 

formulas. The best way to illustrate the method is to work through an example. We 

will use the 4-timescale and the van der Pol oscillator. 

Consider again the weakly non-linear equation for the van der Pol again given below 

as  

 2(1 ) 0 (0) 2 (0) 0.x x x x x x                

Recall that Strogatz (2001:215) wrote that the general form of weakly nonlinear 

equations is:  ( , ) 0,x x h x x   defined in equation (1) above. For the van der Pol 

oscillator, h  are all terms in the perturbation expansion affected by the quantity  
2(1 ) .x x   Hence, the usual 4-timing equations can now be written as: 

 0 0(1) : (t, , , ) (t, , , ) 0.tto x x                                                                                 (99) 

1 0 1( ) : (t, , , ) 2 (x )(t, , , ) (x )(t, , , ) 0.t to x h                                             (100) 

 where   2

0 0= (t, , , ) 1 ( )(t, , , ).th x x                                                                   (101) 

Similarly, the second and third order of   equations are:  

2

2 0 1 0

0 0 1 2

( ) : (t, , , ) 2 (t, , , ) (t, , , ) ( )(t, , , )

2 ( )(t, , , ) ( )(t, , , ) 2 ( )(t, , , ) ( )(t, , , ) 0.

t

t t tt

o x h x x x

x x x x  

            

           

  

      
       (102)                                                                     

where   2

0 0 1(t, , , ) 1 ( )(t, , , ) ( )(t, , , )th x x x                                           (103)  

 

3

0 3 3 0

1 1 0 1 0

1 2

( ) : 2 (t, , , ) (t, , , ) ( )(t, , , ) 2 ( )(t, , , )

2 ( )(t, , , ) ( )(t, , , ) 2 (t, , , ) (t, , , )( ( )(t, , , )

( )(t, , , ) 2 ( )(t, , , ) 0.

t tt

t

t t

o x x x x

x x x x x

x x h

 

  



            

              

     

     

     

    

     (104) 

where :  

  

 

2

0 0 1 2

2

0 2 1 0

(t, , , ) 1 ( )(t, , , ) ( )(t, , , ) ( )(t, , , )

2 (t, , , )( )(t, , , ) (t, , , ) (t, , , ).

t

t

h x x x x

x x x x

            

           

      

  
                (105) 

The solution of the (1)o  equation is given in equation (76) as: 

 0( , , , ) ( , , )cos ( , , ) .x t A t                                                                                    
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Substituting equation (76) into equation (100), the  ( ),o  we have that:  

   1

1

( , , , ) 2 ( )( , , )sin ( , , ) 2 ( , , )cos ( , , )

( )( , , ) ( )( , , , ) 0.tt

x t A t A t

x t h





              

     

    

    
         (106) 

To extract the terms in ,h proportional to  cos ( , , ) ,t     and  sin ( , , )t    , 

we borrow some ideas from Fourier series. 

Notice that h  is a 2 - periodic function of ( , , )t    . Let ( , , ).t      

From Fourier analysis, ( ),h   can be written as a Fourier series 

0 1

( ) cos sin .k k

k k

h a k b k  
 

 

                                                                                        (107) 

Where the Fourier coefficients are given by:  

2

0

0

1
( ) .

2
a h d



 


                                                                                                          (108)    

2

0

1
( )cos 1.ka h k d k



  


                                                                                     (109) 

2

0

1
( )sin 1.kb h k d k



  


                                                                                       (110) 

Substituting ( , , ),t     in equation (106), it reduces to: 

1

1

( , , , ) 2 ( )( , , )sin( ) 2 ( , , )cos( ) ( )( , , )

( )( , , , ) 0.tt

x t A A

x t h

              

  

    

  
                          (111) 

Considering only resonant terms in equation (111) we have:  

2 ( )( , , )sin( ) 2 ( , , )cos( ) ( )( , , ) 0.A A h                                                   (112) 

and substituting for h in equation (107), equation (112) gives:  

0

1

2 ( )( , , )sin( ) 2 ( , , ) cos( ) ( )( , , ) cos

sin 0.

k

k

k

k

A A a k

b k

            











     

 




                       (113) 

1 0 1

2

1

2

2 ( )( , , )sin( ) 2 ( , , ) cos( ) ( )( , , ) ( cos cos )

( sin sin ) 0.

k

k

k

k

A A a a a k

b b k

             

 









       

  




 (114) 
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We discard all terms in 
2

cos ,k

k

a k




 and 
2

sin ,k

k

b k




 as there are no resonant terms in 

them. 

Hence the only resonant terms in equation (114) are:  

1 12 ( )( , , )sin( ) cos 2 ( , , )cos( ) ( )( , , ) sin 0.A a A b                      Grouping 

like terms in sin( ),  and cos( ),  we have: 

   1 12 ( )( , , ) sin( ) 2 ( , , ) ( )( , , ) cos( ) 0.A b A a                  
 

Therefore to avoid secular terms in the solution, we have 

12 ( )( , , ) 0.A b                                                                                                          (115) 

12 ( , , ) ( )( , , ) 0.A a                                                                                             (116) 

Equation (115) gives 

1( )( , , ) .
2

b
A                                                                                                                  (117) 

 and equation (116) gives: 

1( , , ) ( )( , , ) .
2

a
A      


                                                                                            (118) 

If we substitute for 1b in equation (117), from equation (110), the third Fourier 

coefficient equation, we have that: 

 
2

1

0

1
( )( , , ) ( )sin sin .

2 2

b
A h d h



       


                                                            (119) 

Similarly, substituting for 1a  in equation (118) from equation (109), the second 

Fourier coefficient equation, we obtain 

2

1

0

1
( , , ) ( )( , , ) ( )cos cos .

2 2

a
A h d h



         


                                       (120) 

From equation (101),  2

0 0( ) = (t, , , ) 1 ( )(t, , , )th h x x         . Substituting for 

 0 ( , , )cos ( , , )x A t         in equation (101), Maple gives the following output:  

3 3( )( , , ) ( , , )
1 1

( ) (3 ).( , ,
4

)
4

)(A sin sh A A in          
 

  
 
                                (121) 
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We are only interested in terms in ( )sin   in equation (121) as the term in (3 )sin  do 

not contribute to secular terms. Therefore, combining equations (119) and (121), we 

have:  

3 2( )( , , ) sin( ) ( )( , , ) ( , .
1

( )
4

, )A siA h A n           
 

    
 
                         (122) 

Where the angle bracket .  denote an average over one cycle of .    

From tables, the averaged value of 2( )
1

,
2

sin    hence 

31
( )( , , ) ( , , ) ( )( ,

8
, .

2

1
)AA A                                                                             (123) 

We can contract equation (123) to:  

31
( )( , , ) .

2

1

8
A A A                                                                                                 (124) 

where ( , , ).A A     

Similarly, 

3( , , ) ( )( , , ) cos( ) ( )( , , ) ( ,
1

( )cos) (
4

, ) .A Ah A sin              
 

     
 

 (125) 

From tables, the value of the average ( )cos( ) 0,sin     hence,  

( , , ) ( )( , , ) 0.A                                                                                                      (126) 

To solve equations (124) and equations (126), we  write ( )( , , ),A     to mean 
A






,  

where ( , , ),A A     and hence equation (124) becomes:  

 31
.

2 8

1A
A A








                                                                                                              (127) 

The differential equation (127) separates as:  

2

8
.

(4 )

A

A A



 

                                                                                                            (128) 

Expanding the right hand side of equation (128) into partial equations yields the 

following expression:  

1 1 1
8 .

4 8(2 ) 8(2 )
A

A A A

 
   

  
                                                                                     (129) 
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2 1 1
.

(2 ) (2 )
A A A

A A A
     

                                                                                   (130) 

2ln ln 2 ln 2 .A A A                                                                                               (131) 

Hence, equation (128) becomes: 

2

ln tan .
(2 )(2 )

A
cons t

A A
 

 
 

The initial conditions (0) 1; (0) 0x x   imply that (0) 1.A   

Hence, we have that the 
1

ln tan ;
3

cons t
 

 
 

  hence,  tan ln3.cons t    

This implies that 
2

ln ln 3
(2 )(2 )

A

A A
 

 
 = 

23
ln

(2 (2 )

A

A A


 
, hence 

 
2

2 2

2

3
(4 ) 3 .

(4 )

A
e e A A

A

    


                                                                                           

2 23 4 .A e A e      

 2 3 4 .A e e     

Solving for ,A  we have: 

 

1/2

4
.

3

e
A

e





 
  
 
 

 

1/2

2
( , , ) .

(1 3 )
A

e 
  





                                                                                                  (132) 

 0 1/2

2
( , , , ) cos ( , , ) ( ).

(1 3 )
x t t o

e 
      


  


                                                    (133) 

To simplify ( , , ),    we guess from: ( , , ) ( )( , , ) 0,A          that 

since ( , , ) 0A     , then ( )( , , ) 0,       or that 0






.  

This implies that the function    does not depend on  .  Also, ( )(0) 0   and we 

have equation (133) as:   

 0( , , , ) 2cos ( , ) ( ).x t t o                                                                                  (134) 
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 where 2A in equation (132) as before, as t  . This is again the stable limit 

cycle of the van der Pol oscillator derived by the method of averaged equations. 

Substituting equation (134) into the ( )o   equation above, we have: 

1 1 2 (( , , , ) ( )( , , , ) .3 ) 0ttx t x t sin                                                                          

Solving equation (135) for
1x , we obtain the solution: 

1

1
_ 2( , , )sin( ) _ 3( , , )cos( ) sin(3 ).

4
x F t F t                                                        (135) 

and we simply write this result as: 

 1

1 1
sin sin .

4 4
(3 ) (3 3 ( , )tx      where ( , )t     

Similarly, for the 2( ),o  we have: 

2

2 0 1 0 0

0 1 2

o( ): (t, , , ) 2 (t, , , ) (t, , , ) ( )(t, , , ) 2 ( )(t, , , )

( )(t, , , ) 2 ( )(t, , , ) ( )(t, , , ) 0.

t t

t tt

x x x x x

x x x h



 

               

        

   

     
       (136) 

Substituting for 0x  and 1x  in equation (136), Maple simplifies the expression to: 

     2

2

1 1
1 8 ( , ) cos ( , ) ( , , , ) cos 5 5 ( , )

2 2

( )( , , , ) .tt

t x t t

x t h

         

  

        

 

                 (137) 

The resonant term is only:  
1

1 8 ( , ) cos( )
2

       and we have 1 cos( ).h a    

combining the two cosine functions, equation (137) can be written as: 

  1

1
1 8 ( , ) cos( ) cos( ) 0,

2
a           where ( , ).t     

Again, to avoid secular terms in the solution, we equate the coefficients of cos( ) 0  , 

hence,  

  1
1

1 1
( , ) 2 1 .

8 4 8

a
a  



  
        

  
                                                                    (138) 

We need to find 1a from: 

2

0

1
( )cos 1;ka h k d k



  


  and substitute this into equation (138). After a little 

manipulation, equation (138) simplifies to: 
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cos( ) 1
.

2 8

h 




  


                                                                                                     (139) 

 

In Maple, equation (103), is computed as:    

      
3 3 3

cos ( , ) cos 5 5 ( , ) cos 3 3 ( , ) .
4 4 4

h t t t                                    (140)

 

As before, we are only interested in the coefficient of ,h  in equation (140) that leads 

to secular terms   
3

cos ( , ) .
4

t      

Equation (139) can now be written as: 

23 1
cos ( ) ,

8 8





 


 where the averaged value 2 1

cos ( )
2

  , hence  

3 1 1
.

16 8 16


  


 Thus we have: 

1

16
    , hence,  

1
( , ) _ 1( ).

16
F                                                                                                        (141) 

To solve for 2 ,x  we realised that for our solution to remain bounded for all ,t  we only 

need solve the differential equation:  

     2

2

3 3 1
cos 5 5 ( , ) cos 3 3 ( , ) ( , , , ) cos 5 5 ( , )

4 4 2

( )( , , , ) 0.tt

t t x t t

x t

        

  

         

 

    (142) 

    2 2

5 3
cos 5 5 ( , ) cos 3 3 ( , ) ( , , , ) ( )( , , , ) 0.

4 4
ttt t x t x t                    (143) 

Substituting for 
1

( , ) _ 1( ),
16

F       from equation (141), equation (143)   

2

2

5 5 3 3
cos 5 5 _ 1( ) cos 3 3_ 1( ) ( , , , )

4 16 4 16

( )( , , , ) 0.tt

t F t F x t

x t

      

  

   
          

   

 

             (144) 

Solving equation (144), we have that: 
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2

5 5
( , , , ) _ 1( , , )sin( ) _ 2( , , ) cos( ) cos 5 5 _ 1( )

96 16

3 3
cos 3 3_ 1( ) .

32 16

x t F t F t t F

t F

          

 

 
     

 

 
   

 

 

Hence,  

2

5 5 3 3
cos 5 5_ 1( ) cos 3 3_ 1( ) .

96 16 32 16
x t F t F   

   
         

   
 

To solve for 3x  we substitute for the values already calculated for 0 ,x 1x  and 2x  in the 

3( )o   equation above to obtain: 

3 3

1
4cos _ 1( ) (_ 1)( ) ( , , , ) ( , , , )

16

9 3 3 7
sin 3 3_ 1( ) sin 7 7 _ 1( )

32 16 16 16

3 5
sin 5 5 _ 1( ) .

16 16

ttt F F x t x t

t F t F

t F h

        

   

 

 
      

 

   
        

   

 
    

 

                            (145) 

If we let 
1

_ 1( ) ,
16

t F  
 

   
 

 the above equation becomes: 

3 3

9 3
4cos( ) (_ 1)( ) ( , , , ) ( , , , ) sin(3 ) sin(7 )

32 16

3
sin(5 ) 0.

16

ttF x t x t

h

         



      

  

           (146) 

As we did above, we can write the resonant terms in cos( )  as: 

14cos( ) (_ 1)( ) cos( ) 0.F a                                                                                       (147) 

To solve equation (147) we equate the coefficients of cos( ) to zero and we have that 

14 (_ 1)( ) 0F a    , hence, similarly: 

1 1
(_ 1)( ) cos( ) .

4 2

a
F h  


                                                                                      (148)  

From equation (105) we can evaluate in Maple that:  

9 1 19 67
sin(3 ) sin( ) sin(7 ) sin(5 ).

16 32 48 96
h                                                              (149) 

Again we are only interested in those terms in h which give rise to secular terms, thus 
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1
(_ 1)( ) sin( )cos( )

64
F      . From tables, the average sin( )cos( ) 0     hence,  

_ 1( ) _ ,F C    where _ tanC cons t  and 
1

_ .
16

C     

To solve 
3 ,x  we solve the differential equation   

3 3

9 3 3 7
( , , , ) ( , , , ) sin 3 3_ sin 7 7 _

32 16 16 16

3 5 9 3 19 7
sin 5 5 _ sin 3 3_ sin 7 7 _

16 16 16 16 48 16

67 5
sin( 5 5 _ 0.

96 16

ttx t x t t C t C

t C t C t C

t C

       

  



   
          

   

     
             

     

 
    

 

   (150) 

If we let 
1

_ ,
16

t C      equation (150) becomes: 

3 3

9 3 3 9
( , , , ) ( , , , ) sin(3 ) sin(7 ) sin(5 ) sin(3 )

32 16 16 16

19 67
sin(7 ) sin(5 ) 0.

48 96

ttx t x t         

 

     

  

          (151) 

Adding like terms we have: 

3 3

9 7 85
( , , , ) ( , , , ) sin(3 ) sin(7 ) sin(5 ) 0.

32 12 96
ttx t x t                                    (152) 

Solving for 3 ,x  we have: 

3

85 5
( , , , ) _ 3( , , )sin( ) _ 2( , , ) cos( ) sin 5 5 _

2304 16

9 3 7 7
sin 3 3_ sin 7 7 _ .

256 16 576 16

x t F t F t t C

t C t C

         

 

 
     

 

   
        

   

 (153) 

Hence, we write: 
 

3

85 5 9 3
sin 5 5 _ sin 3 3_

2304 16 256 16

7 7
sin 7 7 _ .

576 16

x t C t C

t C

 



   
         

   

 
   

 

                                 (154) 

 

Thus the values for 0 ,x  1,x 2x and 3x obtained in the averaged equations method are 

the same as we obtained in the 4-timescales for the van der Pol. 
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Chapter 9.0 

9.1 PERIOD AND MULTIPLE TIMESCALE IN THE VAN DER POL 

OSCILATOR 

In this chapter, we will combine period, angular frequency and multiple timescale of 
the van der Pol. 
We recall from equation (3) above, that, the van der Pol oscillator can be written as 
  

2(1 ) 0.x x x x        

 
We can define the period, an independent variable in this case as: 

  

T t                                                                                                                              (155) 

Our aim is to rewrite equation (3) in terms of the new independent variable, .T  We 

know from multiple timescale perturbation theory that each linearised solution, jx  

for 0,1...j   is a periodic solution with a different amplitude and period. Then, we can 

write jx as a function of the independent variable, ,T  where ( )j jx x T  is periodic of 

period 2 in T and does not depend on .   
We define the angular frequency, ,  of the van der Pol oscillator as the stretched 

time variable, where: 
 

2 3

1 2 31 ...                                                                                                      (156) 

 

is a real positive constant to be determined later. 

 

Perturbation Theory still requires that we seek solutions of the form: 

2 3

0 1 2 3( ) ( ) ( ) ( ) ( )...x T x T x T x T x T                                                                          (157) 

 

Rewriting the equation of the van der Pol oscillator: 2(1 ) 0x x x x    via: 

 

.
d d

dt dT
                                                                                                                         (158) 

 
we obtain: 
 

2 2( ) ( ) ( ( ) 1) ( ).x T x T x T x T                                                                                    (159) 

 
Equation (159) is the form of the van der Pol oscillator that contains the nonlinear 
period ,T defined in equation (155), as the stretched time variable, and the angular 

frequency, ,  as defined in equation (156). 
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9.2  7- TIMESCALE OF THE VAN DER POL OSCILLATOR 
 

The way we solve equation (159) is the same as we solved 2(1 ) 0x x x x     above 

before. We are required to substitute equations (156) and (157) into equation (159). 
This will give us an equation with too many terms. We have done the tedious 
computation in Maple. As usual, we must collect like terms in powers of   and 
equate the coefficients of each power of    to zero. The full Maple script showing the 
entire computation and results is contained in Appendix 3.0.  
 
As above, the coefficient of the zeroth power of   is: 
  

2

0 02
( ) ( ).

d
x T x T

dT
                                                                                                             (160) 

 
The solution is of the general form: _ 2cos( )C T  where _ 2C is a constant to be 

determined. For the van der Pol oscillator, we have shown before that _ 2 2.C    

Our aim is not to go through the laborious working systematically, but rather to show 
the linearised solutions in terms of the period, ,T  and the angular frequency, .  

 
Following from the above examples, to approximate to 7-timescale, we mean to 

compute 0 6( ) ... ( )x T x T omitting terms in 7 , and higher.  We list only the first 5 

solutions for illustration. The complete solution is in Appendix 3.0 
 

0( ) 2cos( );x T T        1 0.                                                                                              (161) 

 

1 2

1 1
( ) sin(3 ); .

4 16
x T T                                                                                           (162) 

 

2 3

1 3 5
( ) cos( ) cos(3 ) cos(5 ); 0.

64 32 96
x T T T T                                                      (163) 

 

3 4

15 85 7 17
( ) sin(3 ) sin(5 ) sin(7 ); .

512 2304 576 3072
x T T T T                                      (164) 

 

4

5

23 101 1865 1379
( ) cos( ) cos(3 ) cos(5 ) cos(7 )

49152 12288 110592 110592

61
cos(9 ); 0.

20480

x T T T T T

T 

    

 

;            (165) 

 
It is easy to see from equations (161) – (165) that a solution pattern emerges.  

0 ( )x T is a cosine function in ,T  and 1( )x T is a sine term in  .T  For 2,j   there are 

1j   cosine terms in .jx The first term, cos( ),T  the second term, cos(3 ),T and so on. 

For example when 2,j   there are 3 cosine terms. The three terms are 

cos( ), cos(3 ),T T  and cos(5 ),T  and tan .j cons t    When j is odd, for 2,j  ( )jx T  has 
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only j sine terms. The first term, sin(3 ),T  the second, sin(5 ),T  the third sin(7 ),T and 

so on and 0.j     

The solutions above can be written in the general forms below:  
 

0 0,1 1( ) cos( ); 0.x T T     

1 1,1 2 1( ) sin(3 ); .x T T     

2 2,1 2,2 2,3 3( ) cos( ) cos(3 ) cos(5 ), 0.x T T T T        

3 3,1 3,2 3,3 4 2( ) sin(3 ) sin(5 ) sin(7 ); .x T T T T         

 

Where ,m n  are constants to be determine for 0,1...m   and 1,2...n    

Suppose, we desire the approximate solution 3

0 1 2( , ) ( ) ( ) ( ) ( ).x t x T x T x T o      We 

have determined from above that 1 3 0,    hence, 2

2.T t t    Similarly, if we 

desire the solution 6

0 1 2 3 4 5( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),x t x T x T x T x T x T x T o         then 
2 4

2 4.T t t t       since 1 3 5 0,     and so on. 

 

Hence, strictly, 2 4

2 41 ...                                                                             (166) 
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Chapter 10.0 

10.1 N-TIMESCALE OF THE VAN DER POL OSCILATOR 
 
We shall combine all the concepts we have learnt so far to approximate the van der 
Pol oscillator to 16-timescale. Following the example above, this means we wish to 

compute 0 15( ) ... ( ).x T x T  The working is shown in the Maple script in Appendix 4.0. 

The method is the same as above: 
 
From equation (157), our solution should be of the form:  
 

 

  2

0,1 1,1 2,1 2,2 2,3

15,1 15,2 15,3 15,4

15,5 15,6 15,7 15,8

15,9 15,10

( ) cos( ) sin(3 ) cos( ) cos(3 ) cos(5 )

sin(3 ) sin(5 ) sin(7 ) sin(9 )

sin(11 ) sin(13 ) sin(15 ) sin(19 )
...

sin(21 ) sin

x T T T T T T

T T T T

T T T T

T

      

   

   

 

    

   

  


 

15 16

15,11 15,12

15,13 15,14 15,15

( ).
(23 ) sin(25 ) sin(27 )

sin(29 ) sin(31 )

o
T T T

T T

 
 

  

 
 
 

  
 
    

      (167) 

 

And 2 14

2 14... .T t t t       

 
Substituting equations (155), (166)  and (167) into equation (5) and collect like terms 
in powers of   and equating coefficients to zero, the first term to solve is: 
 

3 3

0,1 0,1 1,1 0,1

1 1
sin( ) 8 sin(3 ) 0.

4 4
t t   

   
        
   

                                                      (168) 

 
To solve equation (168), we note that the LHS of equation (168) is zero only if the 
coefficients of the trigonometric terms are zero, hence we compute: 

0,1 1,1

1
2; .

4
                                                                                                               (169) 

 
 and we solve iteratively.  If we equate coefficients of the second power of   to zero as 
well and solve for constants, we have: 
 

1 2,2 2,3

1 3 5
; ;

32 32 96
                                                                                   (170) 

 
Similarly, equating coefficients of the third power of   to zero and solving for 
constants we:  
 

2,1 3,1 3,2 3,3

1 15 85 7
; ; ; .

64 512 2304 576
                                                                  (171)  

 

Substituting for constants in equation (167) up to the third power of , we have: 
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2

3

1 1 3 5
( ) 2cos( ) sin(3 ) cos( ) cos(3 ) cos(5 )

4 64 32 96

15 85 7
sin(3 ) sin(5 ) sin(7 ) ...

512 2304 576

x T T T T T T

T T T

 



 
     

 

 
    
 

                     (172) 
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Chapter 11.0 

11.1 CONCLUSION 
 

The van der Pol is a weakly nonlinear equation. It cannot be solved in explicit form. 

The method of multiple scales perturbation theory is able to produce a very good 

approximation to the solution of the van der Pol oscillator.  We can use multiple 

timescale perturbation theory to calculate limit cycle, stability and frequency of the 

van der Pol oscillator. 

However, the computation involved is tedious and the algebra quickly becomes huge. 

Above two timing, we require a computer and software, to tackle the algebra involved 

easily.  In addition, the method of Averaged Equations provides an equally powerful 

alternative method to approximating solutions to weakly nonlinear equations like the 

van der Pol oscillator. 

At higher timescale, we learn something useful about the behaviour of the van der 

Pol oscillator;  however, an untoward consequence is the massive amount of algebra 

the expansion produces. In practice, we must consider whether multiple ‘timescales’ 

might complicate the algebra for no real gain at all. We found, for example, in the 

case of the linear oscillator, that we could obtain a good approximation to the exact 

solution without the need to go above two timing.  Nonetheless, in multiple timescale 

perturbation, we learnt something useful about the solution, even though the 

symbolic computation grew rapidly at higher timescale.  

Nonetheless, multiple timescale perturbation remains a useful and powerful 

mathematical method for finding approximate solutions to differential equations like 

the van der Pol that cannot be solved exactly. 
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Chapter 12.0 

12.1 APPENDIX 
 
Appendix 1 – Maple worksheet – 3- timescale. 
Appendix 2 – Maple worksheet – 4- timescale. 
Appendix 3 – Maple worksheet – 7- timescale. 
Appendix 4 – Maple worksheet – 16 – timescale. 
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Chapter 13.0 

13. 1 GLOSSARY 
 
Amplitude 
The maximum displacement of a vibrating system from its rest position. 
Dynamical System 
A dynamical system is a system that evolves with time. 
Electronic oscillator 
An electronic circuit that produces a repeating and vibrating electronic signal. 
Fixed points: 
For a vector field on a line, points where the vector is zero and there is no flow. 
Frequency 
The number of oscillations in unit time. 
Harmonic oscillator 
A system that, when displaced from its equilibrium position, will experience a restoring force 
proportional to the displacement.  
Isolated periodic cycle 
A stable limit cycle. 
Maple 
A symbolic mathematical language created by maplesoft. 
Ordinary differential equation (ODE) 
An equation containing a function of one independent variable and its derivatives. 
Oscillations 
A displacement that repeats itself in a regular manner. 
Perturbation theory 
A method to find an approximate solution to a problem which cannot be solved exactly, but 
close to one whose exact solution we know. 
Phase plane 
A phase plane is a 2-dimensional plot of certain characteristics of certain kinds of differential 
equations.  
Phase portrait 
A geometric depiction of the trajectories of a dynamical system in the phase plane. 
Relaxation oscillations 
Stable oscillations also called, limit cycles.  
Resonance 
When the forcing frequency is equal to the natural frequency of an oscillation system 
resonance occurs. 
Trajectories 
A time-order set of states of a dynamical system. 
Vector field 
The vector field in the x-y plane, is a set of arrows with magnitude and direction each 
representing a point in the plane. 
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