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Phase transitions in solvent-dependent polymer adsorption in three dimensions
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We consider the phase diagram of self-avoiding walks (SAWs) on the simple cubic lattice subject to surface
and bulk interactions, modeling an adsorbing surface and variable solvent quality for a polymer in dilute solution,
respectively. We simulate SAWs at specific interaction strengths to focus on locating certain transitions and their
critical behavior. By collating these new results with previous results we sketch the complete phase diagram and
show how the adsorption transition is affected by changing the bulk interaction strength. This expands on recent
work considering how adsorption is affected by solvent quality. We demonstrate that changes in the adsorption
crossover exponent coincide with phase boundaries.
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I. INTRODUCTION

Adsorption of polymers in dilute solution and the asso-
ciated critical behavior is a long-standing topic in statistical
physics [1–9]. The canonical model for such polymers is
the self-avoiding walk (SAW) on a regular lattice, allowing
for mean-field-theoretic analysis [10–12] as well as extensive
numerical simulation [13,14]. At high temperatures, a poly-
mer in a good solvent forms an extended coil configuration,
seeking to maximize entropy. Below a certain temperature Tads

it is energetically favorable for the polymer to be adsorbed
to an attractive surface where the fraction of the polymer
lying on the surface approaches unity. Solvent quality is an-
other influence on the conformational properties of polymers
in dilute solution and is modeled by a monomer-monomer
interaction. Polymers modeled by SAWs are therefore an
important model for considering the interplay between surface
and bulk interactions.

The relevant order parameter for adsorption of polymers is
the fraction of the polymer lying on the surface

un = 〈a〉
n

∼ nφ−1, (1)

where a is the number of monomers adsorbed to the surface,
n is the length of the polymer chain, and the scaling is de-
termined by the exponent φ. Clearly, φ = 1 in fully adsorbed
phases but takes on other values in other phases and at the
transitions between phases. In a good solvent, φ becomes a
crossover exponent at the critical temperature Tads controlling
critical behavior and it has been proposed [15,16] that φ =
1/2 for SAWs in any dimension, making φ superuniversal at
the adsorption transition. However, recent consensus due to
numerical simulation is that φ is not superuniversal [6,8,9,17].
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Numerical simulation is thus a useful tool in this field and can
be applied to other questions.

For the effect of the bulk interaction on polymer adsorp-
tion, recent work by Plascak et al. [18,19] has suggested that
altering the strength of the bulk interactions with respect to the
surface interactions has a significant effect on φ and the criti-
cal temperature Tads. For the case where the bulk interaction is
made increasingly repulsive the critical temperature decreases
slightly from the noninteracting case. While Ref. [18] claims
that φ also decreases slightly in the same limit, we have
used variations on the self-avoiding walk to mimic strongly
repulsive bulk interactions, finding no good evidence that φ

changes in this limit [20].
The complete phase diagram of SAWs with both surface

and bulk interactions has been extensively studied with nu-
merical simulations [21–23] and exact enumeration [24,25]
but some details remain in doubt. There are many phases and
it can be hard to isolate particular transitions due to finite-
size effects [17] and difficulties with determining the correct
signature of the transition [26]. In this article we look at the
entire phase diagram and present results of new simulations so
as to focus on attractive bulk interactions. The large changes to
φ and Tads as the bulk interaction strength is increased coincide
with the appearance of other phases where bulk collapse
is just as important as surface adsorption and the critical
temperatures are not Tads but are indicative of a transition
to these other phases. This implies a simpler picture of the
variation of φ with bulk interaction strength being constant on
phase boundaries between similar phases and discontinuously
jumping when the phase transition changes type: that is, the
normal universal behavior of exponents. Overall, we are able
to locate these other phase boundaries and thus sketch out the
entire phase diagram.

II. MODEL AND PHASE DIAGRAM

Single polymers are modeled as SAWs on the positive
half-space of the simple cubic lattice. The canonical partition
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FIG. 1. Schematic phase diagram for adsorbing and interacting
SAWs in three dimensions based on known critical points and
exponents. The phase diagram is in the ω-κ parametrization and is
overlaid with contours of fixed s and T (dashed lines).

function for walks of length n with m bulk interactions and a
surface interactions is

Zn(T ) =
∑
a,m

cn(a, m) exp

(
aεsurf + mεbulk

kBT

)
, (2)

where cn(a, m) is the density of states, −εsurf is the interaction
energy of a point in the SAW in contact with the surface and
−εbulk is the interaction energy of a pair of nonconsecutive
steps of the SAW on neighboring lattice points. There is some
freedom in how to parametrize the thermal or Boltzmann
factor in Eq. (2) depending on perspective and preference. In
Ref. [18] the authors use temperature T and energy ratio s =
εbulk/εsurf . In particular, εsurf defines the energy scale so that
large s means bulk interactions are energetically favorable,
small s means surface interactions are energetically favorable,
and negative s means bulk interactions are repulsive.

As an alternative, in our previous work we assign separate
Boltzmann factors to the bulk and surface interactions so
that the total thermal factor is written κaωm, where κ =
exp(εsurf/kBT ) and ω = exp(εbulk/kBT ). In this parametriza-
tion the energetically favored interaction is determined by the
larger of κ and ω and repulsive interactions are represented by
κ < 1 or ω < 1.

In the κ-ω picture, we show in Fig. 1 the schematic phase
diagram for adsorbing and interacting SAWs in three dimen-
sions based on known results. The dashed lines show how this
picture maps onto the s-T parametrization and the blue lines
demarcate the phases by joining the known values of the criti-
cal points. Starting from the pure-entropic desorbed-extended
(DE) phase at high temperature, in the case of a noninteract-
ing or repulsive surface (κ � 1) the polymer may undergo
a θ -point transition to the desorbed-collapsed (DC) phase,
which for the simple cubic lattice occurs at ω

(3D)
θ = 1.31

[27]. In both desorbed phases, the average surface fraction is
trivially zero, represented by φ = 0. Conversely, in the case
of zero or repulsive bulk interactions (ω < ω

(3D)
θ ), a polymer

in the DE phase may undergo the adsorption transition to
the adsorbed-extended (AE) phase. At the point of no bulk
interactions (ω = 1), the critical temperature Tads is equivalent
to κads = 1.33 [6], but there is a small shift in κads as ω is
varied below ω

(3D)
θ . For polymers fully adsorbed to the surface

φ = 1, but at the adsorption transition it is expected that
φ = 1/2, from mean-field predictions. The three-dimensional
case is slightly different with numerical evidence suggesting
a slight deviation from the mean-field value; recent Monte
Carlo studies converge near Grassberger’s value φ ≈ 0.48
[6,9,17,18] but other values are possible [28]. Further, there is
some disagreement over the value of φ as the bulk interaction
is changed from noninteracting (ω = 1) to strongly repulsive
(ω = 0) [20].

As κ → ∞ the model changes to a two-dimensional one,
and the polymer may undergo collapse to a two-dimensional
adsorbed-collapsed (AC) phase as ω increases. The square
lattice is the two-dimensional limit of the simple cubic lattice
and the collapse occurs at ω

(2D)
θ = 1.94 [29]. The collapse

transition in two dimensions is weaker than in three dimen-
sions and occurs at larger ω, for those models where the same
bulk interaction can be used.

Finally, there is another three-dimensional phase where
bulk and surface interactions are strong and the polymer
has the configuration of a surface-attached globule (SAG).
Comparing the volume of the globule to the fraction of its
surface area that rests on the interacting surface suggests that
φ = 2/3 in this phase [7]. In the limit of large ω and large n
the SAG-DC transition is expected to occur at κ = 1, but there
is still uncertainty as to where this boundary connects to the
3D collapse transition. However, this is not the main focus of
the current article.

The outstanding question in the study of adsorbing lattice
polymers in three dimensions is what happens to the adsorp-
tion transition when the bulk interaction is attractive, ω >

1. As ω is increased the pure-adsorption AE-DE transition
meets the pure-collapse DE-DC transition and the SAG-AE
transition at a multicritical point, where φ is believed to
return to its mean-field value of 1/2. The location and nature
of the SAG-AE boundary is less well understood. Precise
determination of the critical temperature along this boundary
is hindered by a number of factors. Since the transition is
both a surface and bulk transition, it is not obvious what is
the best signature of the transition. The methods we have
explored for the adsorption transition [17] do not work as
well here. The complexity of the phase diagram limits the
range of parameters that are sure to hit only the SAG-AE
boundary without probing other transitions in the system. This
is further complicated by the appearance of a series of layering
transitions in the weak solvent regime ω > ω

(3D)
θ [25,30,31].

These transitions are omitted in Fig. 1 since they only appear
in finite-size systems but are a concern in numerical simula-
tions. Further, the location of the boundaries is dependent on
n in finite-size simulations so trying to calculate scaling of
thermodynamic quantities over a range of κ and ω is difficult.
Nevertheless, we can make some progress toward mapping
out the missing parts of the phase diagram and confirming
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some signature properties of the phases, even if we do not
have a high degree of numerical precision for some quantities.

III. SIMULATIONS AND RESULTS

Walks are simulated using the flatPERM algorithm [32],
an extension of the pruned and enriched Rosenbluth method
(PERM) [27]. We have used this method previously to study
the adsorption transition without bulk interactions [17,20].
The simulation works by growing a walk on a given lattice
up to some maximum length Nmax. At each step the number
of bulk interactions m and surface contacts a are calculated
and the cumulative Rosenbluth and Rosenbluth weight [33]
is compared with the current estimate of the density of states
Wn,m,a. If the current state has relatively low weight the walk
is “pruned” back to an earlier state. On the other hand, if the
current state has relatively high weight, then microcanonical
quantities m and a are measured and Wn,m,a is updated. The
state is then “enriched” by branching the simulation into
several possible further paths (which are explored when the
current path is eventually pruned back). When all branches are
pruned a new iteration is started from the origin. FlatPERM
enhances this method by altering the prune or enrich choice
such that the sample histogram is flat in the microcanonical
parameters n, m, and a. Further improvements are made to
account for the correlation between branches that are grown
from the same enrichment point, which provides an estimate
of the number of effectively independent samples. We also
run ten completely independent simulations for each case to
estimate the statistical error. The main output of the simulation
is the density of states Wn,m,a which is an approximation to
the athermal density of states cn(a, m) in Eq. (2), for all n �
Nmax. In practice, thermodynamic quantities are determined
by specifying κ and ω and using the weighted sum

〈Q〉(κ, ω) =
∑

m,a Qm,aω
mκaWn,m,a∑

m,a ωmκaWn,m,a
. (3)

Producing flat histograms over both a and m simultane-
ously limits the maximum length n that can be simulated.
Alternatively, we can fix one of the weights, κ or ω, within
the simulation by including it as a constant factor in the total
weight of the sample at all growth steps and only flatten
over the other microcanonical parameter. Fixing κ or ω in
this fashion is equivalent to simulating along horizontal or
vertical lines in the phase diagram, respectively, and allows
much longer walks to be simulated.

To map out the SAG-AE transition we first performed
flatPERM simulations of SAWs on the cubic lattice up to
length n = 1024 at fixed values of κ in the range 1.4 � κ �
2.3 for a total of ten independent simulations, each producing
an average of 2.7 × 1011 samples. This range of κ avoids
complications from where the multicritical points and other
phases are expected to be. The transition is a bulk transition as
well as a surface transition, so we are not constrained to look
for a specific signature of the transition like in the case of the
adsorption transition. We estimate the location of the critical
point by the peak of the variance of the order parameter

var(m)

n
= 〈m2〉 − 〈m〉2

n
, (4)

T

s

AE AC

DE DC

SAG

FIG. 2. Phase diagram of Ref. [18] (black circles) overlaid
with schematic phase boundaries of Fig. 1 transformed to s-T
parametrization (blue dotted), contours of fixed ω (dotted rays) and κ

(dashed horizontal). Red squares mark the critical temperatures from
our fixed κ simulations and mark the SAG-AE transition.

as a function of ω and over a range of n. The transition
appears as a slightly broadened peak in the variance of the
microcanonical parameters but this approach allows data to
be collected at longer lengths. The positions of the peaks for
the range of n are extrapolated to infinite lengths assuming
a power law in accordance with standard finite-size scaling
theory. This process is repeated for each value of κ to obtain
a set of (ω, κ ) pairs marking the SAG-AE boundary. This
method is deliberately simple, partly due to the complications
addressed in Sec. II and partly because our chief interest is to
demarcate the SAG-AE boundary in contrast to other features
of the phase diagram and not to obtain precise estimates of the
transition temperature.

With these estimates of the location of the SAG-AE transi-
tion as (ω, κ ) pairs, we return to the question of parametriza-
tion of the phase diagram. In Fig. 2 we show the s-T phase
diagram from Ref. [18] (black circles) augmented with our
estimates of the SAG-AE transition transformed to the same
parameters (red squares). The blue dotted lines are the trans-
formed schematic phase boundaries from Fig. 1. Also shown
are contours of fixed ω (black dotted) and κ (black dashed) to
illustrate the transformation between parametrization and the
regions covered by each study.

It is immediately clear that results for s > 1 are actually
showing the SAG-DE transition, which is really a collapse
transition more like the θ transition, rather than a true surface
transition in the presence of weak bulk interactions. In fact the
weakly attractive bulk interaction regime, found at 1 < ω <

ωθ ≈ 1.31 in our parametrization, is contained entirely within
0 < s � 1, since the multicritical point is, coincidentally, very
near s = 1. In contrast, The SAG-AE transition, which is a
surface transition as well as a bulk transition, does occur near
s = 1 but at smaller T .

In addition to the critical temperatures, Ref. [18] observed
a large change to the value of φ in the s > 1 regime, attributed
to effects due to multicritical points. We can now see that the
s > 1 regime does not contain any adsorption transitions. We
also note that the conjectured boundary between the SAG and
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DC phases is indicated in Fig. 2 by large s and large T but
the DC phase is not well defined in this parametrization. For
finite systems there may be some observable effect due to
the appearance of the DC phase at finite T and a possible
multicritical point at large s, but we do not expect this to be
significant in the energy ranges considered here. Therefore
there are no further multicritical points to consider for s > 1.
Instead, we expect the value of φ to be entirely dependent on
the expected configurations of the SAG and DE phases and
not display any critical behavior. We can now see that this is
the normal behavior of the system in the SAG and DE phases
and the transition between them.

It is also apparent from Fig. 2 that the regime of weakly
attractive bulk interactions, known to be between ω = 1 and
ω = ωθ , is contained entirely within 0 < s < 1, and as such
has not yet been investigated. This regime is of interest for
matching the noninteracting and repulsive bulk interaction
regimes, where we know that φ ≈ 0.48, to the expected mean-
field value φ = 1/2 at the multicritical point. For other values
of s the phase diagram is better understood. Where s � 0 (or
ω � 1) the system is interpreted to have zero or repulsive bulk
interactions, since the surface interaction energy εsurf is used
as a reference. As the bulk interaction becomes more repulsive
the critical temperature decreases slightly. While Ref. [18]
found evidence that φ decreases in this regime, a study of
neighbor-avoiding walks that model the infinitely repulsive
limit imply that this could be within statistical and numerical
error [20]. Otherwise, the adsorption transition is reasonably
well understood in the case that the bulk interaction is below
the collapse point.

Our estimates of the critical point shown in Fig. 2 are a
clear signature of a transition occurring, but are not accurate
enough for determining other properties. This is because in
order to cover the whole SAG-AE boundary each point is
from only a single simulation instance and only considers the
variance of a single parameter. However, having established
the location of the phase boundaries we can focus on a specific
point in the phase diagram near the SAG-AE boundary in
order to investigate critical behavior.

For that purpose we ran two further simulations of SAWs
on the simple cubic lattice up to length 1024 at fixed weights
κ = 1.8 and ω = 1.6, corresponding to a horizontal and ver-
tical slice in the phase diagram, respectively. Each of these
simulations combined ten independent instances for 7.1 ×
1012 and 9.6 × 1012 total samples, respectively. This provides
greater accuracy, particularly regarding the scaling of the
order parameter 〈a〉 with length n. The value of the exponent φ

is determined from 〈a〉 by adding a correction-to-scaling term
to Eq. (1), i.e.,

un = 〈a〉
n

∼ nφ−1 f (0)(x)[1 + n−� f (1)(x) + · · · ], (5)

where the f (i) are finite-size scaling functions of the scaling
variable x = (Tads − T ) nφ and so are assumed to be constant
near the transition. The exponent � determines the first
correction-to-scaling term but its precise value has little effect
provided � � 1. Figure 3 shows the exponent φ across the
SAG-AE boundary in two ways: (a) a horizontal slice at fixed
κ = 1.8 over a range of ω and (b) along a vertical slice at
fixed ω = 1.6 over a range of κ . The intersection of these

FIG. 3. Exponent φ at (a) fixed κ = 1.8 and (b) fixed ω = 1.6,
across the SAG-AE boundary. In both cases results are consistent
with φ = 1 for the adsorbed phase and φ = 2/3 for the surface-
attached globule phase.

slices is near the SAG-AE boundary so with respect to this
point, in the AE phase at smaller ω and larger κ the exponent
is φ = 1, consistent with the walk being fully adsorbed to the
surface. For larger ω and smaller κ , the SAG phase, our data
is consistent with φ = 2/3. Despite the increased focus on a
single value of κ and ω we are unable to determine precisely
where the critical point is with enough accuracy to determine
if φ = 2/3, φ = 1 or some intermediate value at the transition.
A dedicated study would be required to resolve this question.

IV. CONCLUSION

In this article we have resolved outstanding issues in the
phase diagram of SAWs with bulk and surface interactions.
The transition from the DE phase to the DC phase is inde-
pendent of the surface interaction strength, and similarly, the
bulk interaction strength only weakly affects the location of
the transition to the AE phase and probably does not effect
the critical behavior, namely, the exponent φ. The collapse
transition between the AE and AC phases, representing ad-
sorption in two dimensions, occurs at higher values of the bulk
and surface interactions, meaning there is an additional phase
boundary joining the multicritical points. We have mapped
this boundary by varying the bulk interaction at fixed values
of the surface interaction. While finite-size effects inhibit our
ability to obtain highly accurate estimates of thermodynamic
parameters in each phase, we are able to show how the expo-
nent φ which controls the scaling of the order parameter varies
across this boundary. The behavior of φ is consistent with the
presence of a SAG phase and not due to multicritical scaling
as the system moves along the line of adsorption transition
points to the multicritical point where collapse occurs, as
suggested by Ref. [18].

All phases in this system have been identified but there are
some remaining questions about the details that we have not
yet addressed. Having distinguished the SAG-AE transition
as the bulk interaction is varied, future work can focus on the
multicritical points or on deeper analysis of each transition.
The region near ω

(3D)
θ for 1 < κ < κads requires careful atten-

tion to resolve where the DC-SAG transition joins the other
phase boundaries, particularly comparing finite n to infinitely
long chains. Understanding this transition will allow greater
focus to be put on the SAG-AE transition in order to locate
the phase boundary with enough accuracy to understand the
critical behavior of this transition.
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