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Abstract

Vesicles, or closed fluctuating membranes, have been modelled in two dimen-
sions by self-avoiding polygons, weighted with respect to their perimeter and
enclosed area, with the simplest model given by area-weighted excursions
(Dyck paths). These models generically show a tricritical phase transition
between an inflated and a crumpled phase, with a scaling function given by
the logarithmic derivative of the Airy function. Extending such a model, we
find realisations of multicritical points of arbitrary order, with the associated
multivariate scaling functions expressible in terms of generalised Airy inte-
grals, as previously conjectured by John Cardy. This work therefore adds to
the small list of models with a critical phase transition, for which exponents
and the associated scaling functions are explicitly known.
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(Some figures may appear in colour only in the online journal)
1. Introduction

Obtaining a thorough understanding of phase transitions is one of the main aims of sta-
tistical physics. For a continuous transition one would like to know the critical exponents
describing the singular power-law behaviour of thermodynamic quantities as the transition
is approached. Moreover, in the vicinity of such a transition it is generally believed that the
thermodynamic quantities depend only on a suitably scaled combination of the parameters in
terms of a universal scaling function [1]. Most progress has been made in two dimensions
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with the help of conformal invariance [2]. While these scaling functions can be easily obtained
numerically, there are only few instances for which one knows precise expressions, one clas-
sical example being the spin—spin correlations of the two-dimensional Ising model [3]. Based
on field-theoretic arguments, John Cardy postulated that by including many-body interactions
in a model of vesicles, a hierarchy of scaling functions could be found, but cautioned that due
to the technical limitations of the method used, ‘it is very difficult to say to what these higher
multicritical points might correspond physically’ [4]. In this letter, we give explicit examples
of a statistical mechanical model having precisely these scaling functions, thereby providing a
resolution to this problem.

2. Vesicles and self-avoiding polygons

A vesicle consists of a closed membrane formed from a lipid bilayer inside a watery solution.
Depending on parameters such as the temperature and the osmotic pressure difference between
the outside and the inside of the membrane, vesicles are found in different typical conforma-
tions [5]. Subject to thermal fluctuations, a vesicle of fixed surface area favours ‘crumpled’
configurations with relatively small volume if there is a large net pressure acting onto the out-
side of the membrane. On the other hand, if there is a net pressure acting onto the inside of the
membrane, then the vesicle tends to appear in an inflated shape with larger volume.

In [6], a two-dimensional model of vesicles was proposed in terms of ring polymers enclos-
ing an area. In this case, the length of the polymer plays the role of the surface area of the
vesicle, and the volume of the vesicle becomes the enclosed area. In [7, 8] the vesicles were
modelled as self-avoiding polygons (SAP) on the square lattice—see figure 1 for an example.
Note that any intrinsic property of the vesicle membrane such as stiffness is neglected in that
lattice model.

In order to analyse the model of SAP, one defines the area—perimeter generating function

POLg) =Y Y puax"q", (1)

m=0 n=0

where p,,,, is the number of SAP with perimeter m and area n, with two SAP being consid-
ered identical if they are the same up to translation. The qualitative behaviour of the radius
of convergence ¢.(x) of G(x, g), seen as a series in g for fixed values of x, was discussed in
[7, 8]. This quantity is closely related to the asymptotic growth rate of the partition function
Zu(x) = >0 Pmax™, and thus physically to the free energy per unit area in the thermo-
dynamic limit of infinite area. The model exhibits a phase transition at a value x, at which
q.(x) is not analytic. More precisely, it was shown that there exists a value x. > 0 such that
for 0 < x < x,, go(x) = 1; for x > x., g.(x) is a continuous function of x, g.(x) < 1 and
lim, . g.(x) = 0—see figure 2. For ¢ < g.(x), polygons with relatively small area domi-
nate the sum (1). This part of the (x, g)-plane is called the droplet phase. Analogously, the
region g > 1 is labelled the inflated phase. The region where g.(x) < g < 1 is described as
the ‘seaweed’ phase, in which the typical conformation consists of a space-filling, convoluted
polygon. Exact enumerations yield the estimate x. ~ 0.379 [9]. The point (x, g) = (x., 1) is
called a tricritical point [10].

In [11, 12], exact enumeration data was used to analyse the singular behaviour of the
area—perimeter generating function of rooted SAP. In rooted SAP, there exists one distin-
guished point on the perimeter of the SAP, therefore the number of rooted SAP with perimeter
m and area n is mp,, ,, and the area—perimeter generating function is R(x, g) = x % P(x,q). 1t
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Figure 1. A self-avoiding polygon (SAP) on Z? of perimeter 52 and area 37.
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Figure 2. Qualitative picture of the phase diagram of the SAP model of vesicles. The
line g.(x) is the boundary of the droplet phase. The exponents v, and ¢ characterise
the singular behaviour of the generating function P(x, g) around the tricritical point.

was conjectured that in the vicinity of the point (x, g) = (x., 1), the singular part of this function
satisfies the scaling relation

R (x,e™) ~ F((xc — 1)) (e—0"), )

with the scaling function being, up to prefactors, given by the logarithmic derivative of the
Airy function, which is defined for z € C as [13]

1 Ooeiﬂ/S u3
Ai(z) = —/ exp| — —zu | du. 3)
270 [ pe-in/3 3

Physically, the parameter ¢ = —In(g) plays the role of an osmotic pressure acting onto the
outside of the vesicle.

In [4] it was argued via field theoretic methods that, upon introducing further interac-
tions into the SAP model, one should be able to observe multicritical points of higher order,
described by scaling functions of more than one variable. More precisely, upon introducing
¢ — 1 further interactions (w j)§:2, there should exist multicritical points in the vicinity of which
the singular part of the multivariate generating function of rooted SAP satisfies the scaling
relation

si 0 b 4 )
R (w,, ..., wp, X, q) = € Flane”, axe®, ..., al"), “4)
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where the variables (« j)[::1 depend on the parameters of the generating function, the crossover
exponents ¢; are given by

£+2—j
=)= ——— (1<j<d), 5
¢j ¢j( ) /12 ( J ) (5)
and 0 = M% is a critical exponent. The scaling function F(sy, sz, . . ., §¢) is expressible in terms

of generalised, higher-order Airy integrals, defined as

| poee ™/ s ¢ }
Ou(s1,52, ..., 8) = %/oce’i”/(“'% exp 2 ;sju du, (6)
However, no details of the interactions necessary to observe these multicritical points were
given in that reference.

Progress in the study of SAPs can be made by considering directed subclasses such as stair-
case polygons. In [20] it was shown that staircase polygons show the same phase diagram as
shown in figure 2, with a tricritical point around which the area—width generating function sat-
isfies the same scaling behaviour as the one conjectured to hold for rooted SAPs. Dyck paths
constitute an even more radical simplification of SAPs; their area—perimeter generating func-
tion has also been shown to satisfy the same scaling relation [17]. This motivates us to search
for a model of one-dimensional lattice paths with a multicritical point as the one conjectured
in [4] to hold for SAPs.

3. The model

One-dimensional lattice paths occur in many applications in probability theory, combinatorics
and statistical physics. For m € Ny = N U {0}, a one-dimensional lattice path of length m is a
sequence (Io, 1, . .., I,) of points of Z?, where for 0 < j < m, ri—r;; € {1} xS, with§ C
Z,[14]. One usually fixes ro = (0, 0). The path then stays in the right half-plane. Paths restricted
further to stay in the upper right quarter plane Ny x Ny are called meanders, paths which end
on the horizontal line Ny x {0} are called bridges, and paths which are both meanders and
bridges are called excursions. Lukasiewicz paths, which encode rooted ordered trees [15], are
excursions with S = {k € Z |k > —1}. Excursions with S = {—1} U {j|k < j < ¢}, where
k, 0 € Ny, are called (k, ¢)-Lukasiewicz paths [16]. Figure 3 shows a (1, 3)-Lukasiewicz path
of length 13, with the horizontal and vertical axes of Z? labelled by x and y, respectively. A
step in the direction (1, —1) is called a down-step and a step in direction (1, k), where k > 1
is called an up-step of length k. The height of a point is its distance from the x-axis, and the
height of a step is the height of its starting point. The heights of the up-steps in figure 3 are
marked by red dotted lines. Special subclasses of Lukasiewicz paths are Dyck and Motzkin
paths, corresponding to (k, ¢) = (1, 1) and (k, £) = (0, 1), respectively.
In this letter we consider the generating function

Gi(w,x,q) = Z c(j1ye-s Jom, n)w{1 .. .w’;[xmq", (7
M, seen
where we abbreviate wy, ..., w; = w and where c(ji,...,js;, m,n) is the number of (1, ¢)-

Lukasiewicz paths with m up-steps, of which j; have length one, j, have length two etc, and the
sum of the heights of all the up-steps, which is an area-like quantity, is n. For example, the path
shown in figure 3 has the weight wfw2w3x5q5 in the generating function Gs(w, w,, w3, X, q).
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Y

Figure 3. A (1, 3)-Lukasiewicz path of length 13.

One can set w; = 1 without loss of generality. In the following we therefore write
Go(1,wa,...,wex,q) = Ge(wa, ..., wy, X, q).

4. Previous results

In [17], the asymptotic behaviour of G|(x, g) in the limit ¢ — 1~ was analysed, despite the
parameters being interpreted slightly differently there. It was shown that, in the vicinity of the
tricritical point (x, g) = (x, 1) withx, = %, the singular part of the generating function satisfies
the scaling relation

GI"™ (x,e™) = 'F((xe — )7, (8)
where 0 = 1, ¢ = % and F(s) = by 5 In(Ai(b;s)), with positive constants by and b;. Consis-
tently with the solution G(x, 1) = ﬁ(l — +/1 — 4x), equation (8) implies with the asymptotic
expansions of the Airy function and its derivative [13] that G}"¥(x, 1) ~ 2(x, — x)7, where

v = % = % Up to different constants by and by, the scaling relation (8) is identical to the one
in equation (2) that was conjectured to hold for rooted self-avoiding polygons.

5. Result

In [18], it was shown rigorously that in the vicinity of the multicritical point (wy, x, q) =
(—é, %, 1), the singular part of G, (w», x, ) satisfies the scaling relation

Gy (ws, x,q) = F(a1e, ape), 9)

where the scaling variables «; and «, are analytic functions of w; and x, 8 = %, ¢ = %, and
¢y = % The scaling function F is expressible via ©,(sy, s2), where the definition of ©, is given
by equation (6).

This result is generalised in this letter. More specifically, we show that in the model of (1, ¢)-
Lukasiewicz paths for arbitrary ¢ > 2, there exists a multicritical point (wy, . . ., wy, X, ¢), with
x=U+1)""g=1and

2 1\ 41
wk:£(£+1)<£+1> (kil) Csk<D, (10)

in the vicinity of which the generating function G,(w», . . ., wy, x, q) satisfies a scaling relation
of the form of equation (4) with the same scaling function and the same critical exponents as
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predicted in [4]. We thus present an exactly solvable model representing a concrete realisation
of the multicritical scaling postulated in that reference.

6. Method

To obtain an asymptotic expression for Gy(wo, . . ., wy, x, g) in the limit ¢ — 1~ for arbitrary
¢ > 2, one proceeds analogously to [17, 18]. From a simple factorisation argument [16] one
obtains the functional equation

’ k
Gw,x,q) = 1 + xGi(w, x,q) | > _wi] [ Guw.q'x,q) | - (11
k=1 j=1
We linearise equation (11) by using the ansatz
P(gx)
G’ LRI ) SR42} - b 12
o(w we, X, q) B (12)
where ®(x) = ®(wy, . .., wy, x, q). The solution of the linearised equation is then given by the
g-hypergeometric series [19]
T @i n 2
D(x) =y ———r(—20)"q" ", (13)
Z (g @n

n=0

where (z;q), = H;’;(l, (1 — z¢’) is the g-Pochhammer symbol and the parameters (w)._!
satisfy

(-1 (-1 -1

k—1
we=CDYT N o N J[w, @<k<o. (14)

=1 jp=ji+1 Jk—1=Jk—2+1 p=1
Using the identity

(—1+g(®)

-~ 1 —Res[(zq¢liz=q9"], (15)
(@ Dn(q: @)oo [ )
we obtain for k € Z the integral expression

z % (logq(z)+1)710gq(.x)

A
(q'x) = — / :
2mi Je gk (Hﬁ;ll (w;/z; q)oc) (9

dz, (16)

where the prefactor A is independent of k, and the contour C connects the points —ioco and ico
such that all zeros of (z; ¢) lie to the right of the contour and all zeros of z* (Hi;ll (W;/7; @)oo

lie to the left of the contour. Substituting an asymptotic expression for the g-Pochhammer
symbol [20], the above integral satisfies

A 1
g0 ~ 5 /C exp (gf(Z)) 89D 4 g=e o1, (a7)

Z
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where the functions are

-~ g( )?
f(z) = log(x)log(z) — + Lix(2) + 12_: Lip ( . )

[ 2
g(z)z((l_ Il - wj>> ’

and where Liy(z) is the Euler dilogarithm [13]. The saddle points of f(z) are the zeros of the
polynomial

/-1
X(@) = x Hz—wj -1 -2

J=1

¢
1
:zf+l<1——+%+f w_:) (z # 0).
S e

Comparing the bracket in the last expression with equation (11), we see that the solution of
equation (11) for g = 1 is equal to the inverse of a saddle point of f(z). If we set the weights for
2 < k < {to the ones given in equation (10), then ¢ + 1 saddle points coalesce in the point z =
(¢ + 1)~! for x = (£ + 1)~!. To obtain an asympotic expression for ®(g*x), we apply a method
devised in [21], based on a theorem from [22], from which it follows that if the parameters
of the function f(z) are close to the critical values given in equation (10), then there exists a
mapping T : u — z(u), which is analytic and bijective in the vicinity of the pointz = (£ 4 1)},
such that

fz(u) = g - Za,uf—p(u) (18)

Moreover, the coefficients (a)_, are analytic functions of (w;)_, and x in the region around
the point of coalescence of the saddle points. Using the transformation 7, the integral in
equation (17) can be rewritten as

A

O(gx) = — - Si(u) du, 19
(¢"0) zm/c,eXP 73 Za, () du (19)
where g = e — 17, C' is the image of the contour C under 7' and S;(u) = Z((ZIE‘)‘L)) & Now

one writes

¢
Sty = Y PP+ paHw). 20
=0

where the (P;k))ﬁzo are analytic functions of the (w j)§:2 and x, and H(u) is some analytic func-
tion of u. Substituting equation (20) into equation (19), one arrives at the asymptotic expression

141 2

14
- ,
(g ) =AY Pg.")ezﬁ@;f)(ale*M, e T, e T2), 21
j=0



J. Phys. A: Math. Theor. 53 (2020) 265003 N Haug and T Prellberg

where @;0) = Oy and @2’) = —%@g for 1 < j < ¢; see equation (6) for the definition of ©,.
By substituting equation (21) intoj equation (12) for k = 0 and k = 1, we obtain an asymptotic
expression for Gy(w,, . . .,wy, x,q) which is valid uniformly with respect to the parameters
(w j)§:2 and x, in particular in the vicinity of the multicritical point at which ¢+ 1 sad-
dle points of the function f(z) coalesce. Close to the multicritical point, the singular part of

Gy(wa, . .., wy, x, q) satisfies the scaling relation

G (wy, . .., we,x,e”) = Flae ..., ape %), (22)
where F is expressible via ©(sy, ..., s¢),0 = H#z, and the ¢; = ¢;(¢) are given by equation (5).
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