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Universality of crossover scaling for the adsorption transition of lattice polymers
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Recently, it has been proposed that the adsorption transition for a single polymer in dilute solution, modeled
by lattice walks in three dimensions, is not universal with respect to intermonomer interactions. Moreover, it
has been conjectured that key critical exponents φ, measuring the growth of the contacts with the surface at
the adsorption point, and 1/δ, which measures the finite-size shift of the critical temperature, are not the same.
However, applying standard scaling arguments the two key critical exponents should rather be identical, hence
pointing to a potential breakdown of these standard scaling arguments. Both of these conjectures are in contrast
to the well-studied situation in two dimensions, where there are exact results from conformal field theory: these
exponents are both accepted to be 1/2 and universal. We use the flatPERM algorithm to simulate self-avoiding
walks and trails on the hexagonal, square, and simple cubic lattices up to length 1024 to investigate these claims.
Walks can be seen as a repulsive limit of intermonomer interaction for trails, allowing us to probe the universality
of adsorption. For each lattice model we analyze several thermodynamic properties to produce different methods
of estimating the critical temperature and the key exponents. We test our methodology on the two-dimensional
cases, and the resulting spread in values for φ and 1/δ indicates that there is a systematic error which can far
exceed the statistical error usually reported. We further suggest a methodology for consistent estimation of the
key adsorption exponents which gives φ = 1/δ = 0.484(4) in three dimensions. Hence, we conclude that in
three dimensions these critical exponents indeed differ from the mean-field value of 1/2, as had previously been
calculated, but cannot find evidence that they differ from each other. Importantly, we also find no substantive
evidence of any nonuniversality in the polymer adsorption transition.
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I. INTRODUCTION

The adsorption of single polymers in dilute solution onto
a substrate has been extensively studied for many years via
a variety of theoretical models and techniques [1–10]. The
critical phenomenon associated with this transition is a fun-
damental one in the landscape of statistical physics. In dilute
solutions at high temperatures the configuration of the polymer
is dominated by entropic repulsion, forming an expanded
phase where the polymer is desorbed from the surface. Of
particular interest is when there is also an attractive interaction
between the monomers and the surface. In this situation, the
configuration of the polymer is further influenced by energetic
considerations, and at low temperatures the polymer seeks to
lower its energy by staying close to the surface and is adsorbed.
The transition between these regions occurs at the adsorption
temperature Ta where the polymers display critical phenomena
[2]. Many generalizations have been studied, and aspects of
this behavior still attract much interest [6,8–10]. One fruitful
set of models use self-avoiding paths on a lattice to represent
the polymer.
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If we consider the thermodynamic limit of infinitely long
polymers, the internal energy per monomer u∞ associated
with contacts with a surface is expected to be zero for
temperatures above Ta and strictly positive below Ta. The
singular behavior for T → T −

a is given by the thermal
exponent α

u∞ ∼ (Ta − T )1−α, (1)

while the length scaling behavior of the finite length in-
ternal energy un per monomer defines an exponent usually
labeled φ

un = 〈m〉
n

∼ nφ−1, (2)

where 〈m〉 is the mean number of interactions (contacts with
the surface). This scaling implies that at Ta there is 〈m〉 ∼ nφ.

For high temperatures 〈m〉 is expected to be bounded, while
at low temperatures 〈m〉 is asymptotically linear in length
n so that a positive thermodynamic internal energy exists.
This broad behavior characterizes the adsorption transition.
Now the upper critical dimension for the adsorption transition
is expected to be du = 4, and the mean field value of φ is
1/2. Interestingly, in two dimensions exact results from both
directed models and the hexagonal lattice predict that φ = 1/2.
Careful simulations in three dimensions [6] have verified the
prediction of field theoretic expansions around d = du = 4
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that φ �= 1/2 in three dimensions. A value just below 1/2 was
estimated by Grassberger as 0.484(3) [6].

One can also consider the scaling around the adsorption
point in temperature and length together. We denote the expo-
nent controlling the crossover to be 1/δ in line with previous
works. Until recently it was accepted that 1/δ = φ (we detail
below one scaling argument for this correspondence). In fact,
in both mean field theory and in two dimensions 1/δ = 1/2.
Luo [8] suggested that in three dimensions they may be
different. Recently, it was further suggested by Plascak et al.
[10] that both exponents may not be universal: to be specific,
by adding monomer-monomer interactions to the model both
these exponents depend continuously on the strength of the
interaction even well away from any critical point induced
by the monomer-monomer interactions. It is well known
that when monomer-monomer interactions are sufficiently
positive (low temperatures) a collapse transition can occur.
They suggested that even repulsive interactions can induce a a
nonuniversality.

To investigate the numerical validity of these claims we
have simulated a range of models in both two and three
dimensions. We consider self-avoiding walks (SAWs) on the
hexagonal, square, and simple cubic lattices and self-avoiding
trails (SATs) on the square and simple cubic lattices. Although
well studied, we include the square and hexagonal lattice
models as a useful benchmark for our methods since there
is little dispute about the adsorption transition scaling in two
dimensions. In particular, the case of self-avoiding walks on the
hexagonal lattice has been solved, and the critical exponents,
transition temperature, and connective constant are known
exactly [11]. We do not consider explicit monomer-monomer
interactions in the model but note that the strongly repulsive
limit of interacting SATs is in fact the SAW model: In the
interacting SAW model monomer-monomer interactions are
introduced via nearest-neighbor interactions, while in the
interacting SAT they are introduced via site occupancy. Thus,
we are effectively considering two important limiting regimes
of the interacting SAT model. While the collapse point due
to attractive monomer-monomer interactions is different for
interacting SAW and interacting SAT, away from the collapse
transition (weakly attractive and repulsive regimes) these
models are believed to be in the same universality class in
all dimensions with the same dominant finite-size scaling
exponents.

For all of these lattice models, we use a variety of methods
of analysis designed to estimate the key critical exponents
including those used by Plascak et al. [10]. Even in the two-
dimensional lattice models it is apparent that the systematic
error inherent in all these methods often swamps the statistical
error. Moreover, the spread of the results gives a much better
correlation with the correct values for the critical temperature
and exponents φ = 1/δ = 1/2 than any individual estimate.
With this in mind, we find that in the three-dimensional case
the central estimates agree with Grassberger’s estimate [6] that
φ < 1/2. However, we find no evidence that 1/δ and φ are
different in the models we consider. Moreover, we find the
values for SAWs and SATs to be numerically equivalent and
so find no evidence of any nonuniversality.

We finally provide our own estimate of φ = 1/δ = 0.484(4)
in three dimensions.

(a) (b)
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z

FIG. 1. Self-avoiding walk on (a) the hexagonal lattice and self-
avoiding trails on (b) the square lattice and (c) the simple cubic lattice,
in the presence of an impermeable adsorbing surface. Sites in contact
with the surface, other than the origin, are marked blue. Walks on
the square and simple cubic lattices are the same with respect to the
surface, but multiply visited sites, marked red, are forbidden.

II. THE MODELS

A self-avoiding trail (SAT) is a lattice path with the restric-
tion that no two bonds between consecutive steps may overlap.
A self-avoiding walk (SAW) has the additional restriction that
lattice sites cannot be occupied more than once. The set of
SAWs is a subset of the set of SATs.

The impermeable adsorbing surface is represented by re-
stricting trails/walks to xd � 0 for a d-dimensional lattice
with coordinate system xi , for i = 1, . . . d. Figure 1 shows
fragments of a SAW on (a) the hexagonal lattice and a SAT
on (b) the square lattice and (c) the simple cubic lattice, near
an impermeable boundary layer. In particular, note that on
the hexagonal lattice, only every second site is considered on
the surface. The surface-monomer interaction is modeled by
assigning an energy −ε to any monomer on the surface xd = 0.
This does not include the initial point at the origin fixing the
path to the surface.

A. Thermodynamic quantities

A trail (or walk) ψn of length n with one end fixed to
the surface and with m contacts with that surface has total
interaction energy −mε and corresponding Boltzmann weight
κm, where κ = exp(ε/kBT ). Thus, the partition function of the
set Tn of walks/trails of length n is

Zn(κ) =
∑

ψn∈Tn

κm. (3)

The (reduced) finite-size free energy is

fn(κ) = −1

n
log Zn(κ), (4)
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while the thermodynamic limit is given by

f∞(κ) = lim
n→∞ fn(κ). (5)

A general thermodynamic quantity is

〈Q〉(κ) = 1

Zn(κ)

∑

ψn∈Tn

κmQ(ψn). (6)

In particular, we are interested in the internal energy

un(κ) = 〈m〉
n

, (7)

which, considered as the fraction of the walk or trail that is
adsorbed to the surface, serves as our order parameter.

The other quantity of interest is the mean-squared end-to-
end radius R2

n. In the presence of an interacting surface we dis-
tinguish between the parallel and perpendicular components,
with respect to the surface. For a d-dimensional system these
components are defined as

R2
‖,n(κ) =

d−1∑

i=1

〈
xi,n

2
〉
, (8)

R2
⊥,n(κ) = 〈

x2
d,n

〉
, (9)

where xi,n is the ith coordinate of the nth step of the path.
Recall that for the simple cubic lattice the adsorbing surface is
the (x1,x2) plane at x3 = 0 and in two dimensions the surface
is the x1 axis at x2 = 0.

B. Scaling laws and critical temperatures

The exponent φ, usually expected to be universal, deter-
mines the scaling of the order parameter at the critical point for
long chains: un ∼ nφ−1. For the finite values of n considered in
numerical simulations, it is necessary to also include finite-size
correction terms. From finite-size scaling theory we have

un ∼ nφ−1f (0)
u (x)

[
1 + n−�f (1)

u (x) + · · · ], (10)

where the f (i)
u are finite-size scaling functions of the scaling

variable x = (Ta − T ) n1/δ and � � 1 is the first correction-
to-scaling term. The exponent 1/δ therefore describes the
crossover around the adsorption critical point. It can also be
described as the shift exponent associated with the deviation
of temperature from the critical point; that is, the finite-length
critical temperature differs from the infinite-length critical
temperature according to

T (n)
a ∼ Ta + n−1/δf

(0)
T (x)

[
1 + n−�f

(1)
T (x) + · · · ]. (11)

Somewhat confusingly in the literature, the exponent φ is
often referred to as the crossover exponent since it has, until
recently, been accepted that there is a crossover scaling variable
x = (Ta − T ) nφ describing the scaling around the adsorption
point. Below we provide a scaling argument that connects
φ and 1/δ [1,12]. The argument starts with the scaling of
the partition function. At any fixed temperature the partition
function scales as

Zn(κ) ∼ Aμnnγ (1)−1, (12)

where γ (1) is the entropic exponent that takes on one value
at high temperatures and different values at the adsorption

point and at low temperatures. Let us denote the value at
the adsorption point as γ (1)

a . The connective constant μ(κ) =
log f −1

∞ is temperature dependent and directly related to the
thermodynamic limit of the free energy. Following the same
standard scaling hypothesis as above, one expects

Zn(κ) ∼ A μn
a nγ

(1)
a −1Z(tn1/δ), (13)

for κ near κa, where μa = μ(κa) and t = Ta − T . This form
can be deduced from a similar ansatz for the scaling of the
corresponding generating function. The (reduced) finite-size
free energy therefore scales as

fn(κ) ∼ −1

n
log

(
Anγ

(1)
a −1

) + f∞(κa) + 1

n
F(tn1/δ), (14)

where the first terms are temperature independent. The key
point is that the internal energy is given, up to a multiplicative
constant, by the temperature derivative of the free energy, so
this form immediately implies that

un ∼ n1/δ−1F ′(tn1/δ). (15)

Comparing Eq. (15) to Eq. (10) yields φ = 1/δ .
A related argument concerns the crossover from the tem-

perature scaling of the internal energy in Eq. (1) to the length
scaling in Eq. (2) via the crossover form in Eq. (10). The scaling
function should behave as

f (0)
u (x) ∼ x(1−φ)δ, (16)

which eliminates the length dependence and leads to

1 − α = (1 − φ)δ. (17)

If we also accept the previous argument that φ = 1/δ, then this
implies that

α = 2 − δ = 2 − 1

φ
. (18)

Despite these arguments, Luo [8] conjectured that φ and
1/δ may be different in three dimensions. One way to extract
1/δ separately rather than by calculating the temperature shift
directly is to consider the log derivative of un,


n(κ) = d log un

dT
= (log κ)2 〈m2〉 − 〈m〉2

〈m〉 . (19)

As a second derivative of the free energy, we expect a critical
scaling form

max 
n ∼ n1/δf
(0)

 (x)

[
1 + n−�f

(1)

 (x) + · · · ]. (20)

By Eq. (19), 
n is related to the specific heat. The peaks of the
specific heat are often used to locate the collapse transition of
trails in the bulk, but this approach is inaccurate for locating the
adsorption transition [12]. Nevertheless, it is usually assumed
that x is small enough to use Eq. (20) to determine 1/δ.

III. METHODS

The key to estimating φ and 1/δ is to accurately locate the
finite-size critical temperatures T (n)

a . We explore four methods
of calculating T (n)

a , illustrated in Fig. 2 using data for SAWs
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FIG. 2. The four methods for obtaining T (n)
a , illustrated with

data for SAWs on the square lattice. For clarity, error bars
of thermodynamic quantities have been omitted, and only n =
128, 256, 512, 1024 are shown. Black circles mark (a) 
: positions of
max 
n, (b) BC: intersections of U4 at various n with U4 at n = 128,
(c) R2: intersections of R2 exponents ν⊥ with ν‖, and (d) ratio:
intersections of φ(ni ) with φ(ni+1).

on a square lattice as an example. First, the simplest but least
accurate is to consider the locations of max 
n as estimates of
T (n)

a ; this method is labeled “
.” Despite the issues relating to
the specific heat, it is a useful comparison to the other methods.

Second, we calculate the Binder cumulant

U4(κ) = 1 − 1

3

〈m4〉
〈m2〉2

, (21)

a quantity that, for large n, tends toward a universal constant
value at the critical point [13]. Thus, intersections of curves of
U4 at different n with the curve at fixed nmin = 128 are used
to locate the finite-size critical temperatures. This method is
labeled “BC.”

The third method, labeled “R2,” looks at the scaling of each
component of the mean-squared end-to-end radius. For either
component i,

R2
i,n ∼ n2νi , (22)

where i =⊥ , ‖ and the Flory exponent νi depends on the
phase and dimension of the system and is calculated by simply
inverting Eq. (22):

νi = 1

2
log2

R2
i,n

R2
i,n/2

. (23)

At high temperatures, the polymers are desorbed, and both
perpendicular and transverse components of R2 scale as per
the d-dimensional bulk. Below the adsorption temperature,
the polymers’ extent away from the surface vanishes and
thus R2

⊥ → 0 (or ν⊥ → 0). The polymers are adsorbed to
the surface to become a quasi-(d − 1)-dimensional system

and ν
(d)
‖ → ν

(d−1)
bulk . At some intermediate temperature the

components of ν cross, and in fact the intersections locate the
finite-size critical temperatures T (n)

a .
In view of Eq. (23), the fourth method, labeled “ratio,” is

to calculate the exponent φ directly as the leading order of the
order parameter; that is,

φ = 1 + log2
un

un/2
(24)

is calculated over a range of n. As a function of temperature, it
is known that, in addition to a value of 1/2 at the critical point,
the scaling exponent of the internal energy vanishes at high
temperatures and tends to unity at low temperature. For SAWs
on a square lattice this is borne out in Fig. 2(d). Then, as with
the R2 and BC methods, we can locate the critical temperatures
T (n)

a from the intersections of curves of Eq. (24) for successive
values of {ni,ni + 1}.

While finite-size scaling methods are the main focus, we
can also consider other ways of estimating exponents. To that
end, we consider that as well as the intersections for the ratio
method locating the critical temperatures, Eq. (24) is a direct
estimate of φ. This “direct” method provides a set of finite-size
estimates, φ(n), which, in the limit n → ∞, extrapolate to
an alternative estimate of φ without reference to the scaling
form Eq. (10) and its dependence on locating the critical
temperatures.

A. Numerical simulation

Trails and walks are simulated using the flatPERM algo-
rithm [14], an extension of the pruned and enriched Rosenbluth
method (PERM) [15]. The simulation works by growing a walk
or trail on a given lattice up to some maximum length Nmax. At
each step the cumulative Rosenbluth and Rosenbluth weight
[16] is compared with the current estimate of the density of
states Wn,m, of walks or trails of length n with m contacts with
the surface. If the current state has relatively low weight (i.e.,
by being trapped or reaching the maximum length) the walk or
trail is “pruned” back to an earlier state. On the other hand, if the
current state has relatively high weight, then microcanonical
quantities are measured and Wn,m is updated. The state is then
“enriched” by branching the simulation into several possible
further paths (which are explored when the current path is
eventually pruned back). When all branches are pruned a new
iteration is started from the origin.

FlatPERM enhances this method by altering the prune or
enrich choice such that the sample histogram is flat in the
microcanonical parameters n and m. Further improvements
are made to account for the correlation between branches that
are grown from the same enrichment point, which provides an
estimate of the number of effectively independent samples. We
also run 10 completely independent simulations for each case
to estimate the statistical error.

The main output of the simulation is the density of states
Wn,m for all n � Nmax. Thermodynamic quantities are then
given by the weighted sum

〈Q〉(κ) =
∑

m QmκmWn,m∑
m κmWn,m

. (25)
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TABLE I. Details of flatPERM simulations. In all cases the
number of samples and effectively independent samples is the average
of 10 independent runs.

Walks/ Max Samples at Ind. samples
Lattice trails length Iterations max length max length

hex SAW 4096 1.8 × 107 2.3 × 109 1.0 × 107

hex SAW 1024 5.5 × 105 2.0 × 1010 2.6 × 108

squ SAW 1024 3.7 × 105 3.9 × 1010 3.2 × 108

squ SAT 1024 3.7 × 105 3.9 × 1010 3.1 × 108

sc SAW 1024 4.4 × 105 3.5 × 1010 5.4 × 108

sc SAT 1024 4.4 × 105 3.4 × 1010 5.9 × 108

For example, the qth order moments needed for the thermody-
namic quantities in Sec. II A are calculated directly as

〈mq〉 =
∑n

m=0 mqκmWn,m∑n
m=0 κmWn,m

. (26)

Other microcanonical quantities r2
⊥,n and r2

‖,n are also calcu-
lated during the simulation.

In this work we used the flatPERM algorithm to simulate
walks and trails on the square and simple cubic lattices up
to length 1024, and walks on the hexagonal lattice at the
exact adsorption transition, κa = 1 + √

2, up to length 4096
and without fixed weight up to length 1024. Details of the
simulations run in this work are summarized in Table I. Note
that flatPERM is generally an athermal simulation, but in the
case of walks on the hexagonal lattice at the exact critical
temperature, a fixed weight κa is applied at each step by altering
the usual Rosenbluth and Rosenbluth weight . That is, the term
κmWn,m in Eq. (25) is calculated during the simulation (at fixed
κ = κa), and the density of states is output as Wn; the sample
histograms are not flattened with respect to m. This both saves
memory and reduces equilibration time so that longer lengths
can be simulated.

IV. RESULTS AND DISCUSSION

To understand the analysis, we will look at the case of
SAWs on a square lattice in some detail before presenting the
combined results for all lattices. First, some general remarks
that apply to all cases. In all finite-size scaling fits, we assume
that the scaling variable x is constant with respect to n so
that the f (i)(x) may be treated as constants. This is readily
verified to be true, although x is not necessarily small in all
cases. We find that the correction-to-scaling term is always
necessary for a good fit, and after considering the case of square
SAWs we do not report the power-law-only results. Finally,
even with a correction-to-scaling term, we always consider
n = 128, . . . ,1024 since n < 100 is too far from the scaling
regime.

A. SAWs on square lattice

As discussed in Sec. III and following Ref. [10], the
canonical method to estimate the exponents is as follows.
The first step is to calculate 1/δ from 
n. A log-log plot of
max 
n for n = 128, . . . ,1024 is shown in Fig. 3(a) (blue,
left) along with fits to Eq. (20). We get 1/δ = 0.5264(12)

FIG. 3. For SAWs on the square lattice, (a) log-log plot of 
n

vs n and un vs n. The latter are calculated using the extrapolated
values of Ta from the BC, R2, and ratio methods. Solid curves are
appropriate fits with correction-to-scaling term. Power-law-only fits
are also shown as dotted lines, where visible. (b) Plot of φ(n) calculated
directly from ratios of un, vs 1/

√
n, and extrapolated to large n. (c)

Estimates of the exponents using the various approaches discussed in
the text. For specific values see Table III.

for a power-law-only fit and 1/δ = 0.51528(86) by including
a correction-to-scaling term. Although there is not a lot of
difference between the fits on this scale, given the known
value of 1/δ = 1/2 in two dimensions, it is clear that the
correction-to-scaling term is significant.

The next step is to consider the critical temperatures.
Figure 4(b) shows the finite-size critical temperatures, T (n)

a , for
SAWs on the square lattice, using the four methods discussed
in Sec. III. Using the (correction-to-scaling) value of 1/δ just
found, we also show fits according to Eq. (11) for each of these
sets. Solid lines are fits with correction-to-scaling term, and
dotted lines are power-law only. Extrapolating the power-law-
only fits to n → ∞ obtains Ta = 1.74548(70), 1.74001(49),
1.74429(76), 1.7517(15) for the 
, R2, BC, and ratio methods,
respectively. Using correction-to-scaling fits instead obtains
Ta = 1.74292(54), 1.7399(19), 1.74151(69), 1.7510(57) for
the 
, BC, R2, and ratio methods, respectively.

The Ta from each method appear to have good agreement,
yet a few points should be made. First, although it may not
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FIG. 4. Finite-size critical temperatures for two-dimensional lattice models (a) SAWs on the hexagonal lattice and (b) SAWs and (c) SATs
on the square lattice. For each of the four methods the solid lines are fits with correction to scaling and dotted lines are power-law only.

be clear from just the reported values for the case of square
lattice SAWs, the correction-to-scaling fits are generally better
than using power-law only. The R2 method is the best for
locating the T (n)

a , having much less variation over this range of
n, and having much smaller error bars for each T (n)

a than other
methods. The small error bars are in due in part to the fact
that the method relies on intersections of near-perpendicular
curves, as opposed to the near-parallel curves of the ratio
method. This more than counteracts the lack of correction-
to-scaling terms in the R2 method compared to the rest of the
analysis.

The BC method, via the Binder cumulant, presents the most
difficulty. Notice that the T (n)

a deviate from the trend at large n.
We note that the correction-to-scaling term cannot account for
this kink, and even if it could the extrapolation n → ∞ would
be significantly different from the other methods. Instead, we
account for this by only using data up to n � 600 in the fits,
where the scaling law fits well. This cutoff was determined to
be the point where the error in the fitting parameters started to
diverge as data for larger n were added to the fit.

As to why this kink is present, we hypothesize that it is a
limitation of finite simulations. While our data are equilibrated
to a high degree, the fourth-order moment 〈m4〉 that appears in
Eq. (21) is more susceptible to error as n, and therefore max-
imum possible values of m, increase. It would take orders of
magnitude more samples to ensure that fourth-order moments
are equilibrated. Of course, we cannot rule out that it is a quirk
of the flatPERM algorithm and other simulation methods may
not have this issue. However, we note that our simulation is up
to the reasonably long length of 1024, and the kink occurs at
greater lengths than those considered in previous works that
use the Binder cumulant [10].

The ratio method of determining Ta also has some flaws. The
individual T (n)

a are closer to the R2 method than the others, yet
the individual error bars are much larger, and the extrapolated
value Ta does not agree with the other three methods. However,
the latter point is not a general observation for all lattice models.

Last, the 
 method is interesting because at first glance
the extrapolated value of Ta appears to agree with the other
methods. This is in contrast to the obvious difference between
this method and the others at finite n, as clearly visible in
Fig. 4(b). This gap is indicative of the fact that the locations
of the peaks of 
n are not claimed to properly approximate

the critical temperatures. In fact, the scaling variable, x =
(Ta − T ) n1/δ , is significantly greater than unity for the 


method. Attempting to use this method anyway is fraught due
to the relation to the specific heat, as mentioned earlier. It
is also a distinctly different approach to the other methods,
which all have the common aspect that curves for different
n should intersect near the critical temperature, representing
the existence of a universal value of the given thermodynamic
quantity at the critical temperature. Furthermore, although not
necessarily clear for SAWs on the square lattice, on closer
inspection the values of Ta for the 
 method are generally off
compared to the other three methods. Given these concerns, we
thus record the extrapolated value of the critical temperature
for the 
 method but will not go on to use it to calculate un and
thus φ. Even without this argument, the resulting values of φ

are consistently off compared to the other three valid methods.
Turning to φ, a log-log plot of un(Ta) for n = 128, . . . ,1024

is shown in Fig. 3(a) (right) along with fits to Eq. (10).
Since the Ta estimates are so close together for this lat-
tice model the curves of un overlap strongly on this scale.
For the three valid finite-size scaling methods, BC, R2,
and ratio, and using power-law-only fits, this obtains φ =
0.5325(17), 0.5292(23), and 0.5094(35), respectively. Includ-
ing the correction-to-scaling term gives φ = 0.52062(24),
0.51493(87), and 0.4849(21), respectively. Here the correction
to scaling is a clear improvement for the R2 method, marginal
for the BC method, and questionable for the ratio method.

There is also an alternative approach whereby we evaluate
un(T (n)

a ) at each different T (n)
a , rather than the single extrap-

olated Ta. This is similar to the calculation of 1/δ where the
maxima of 
n occur at different temperatures for each n. Us-
ing the correction-to-scaling fits, this obtains φ = 0.527(11),
0.5142(60), and 0.481(21). The choice of whether to use Ta or
the set of T (n)

a is not a priori clear, but the resulting values of
φ have much larger errors and spread between methods. They
are shown in Fig. 3(c) as a comparison, but it is clear that using
the single Ta to obtain φ is a better approach.

The last estimate ofφ comes from the ratio method which, as
explained in Sec. III, estimatesφ more directly by extrapolating
the φ(n) at the critical points to n → ∞, as shown in Fig. 3(b).
We assume the ansatz

φ(n) = φ + C√
n

+ · · · , (27)
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TABLE II. Valid results for all lattice models and methods. All
values are from fits with correction-to-scaling terms.

Method 1/δ Ta φ φ [T (n)
a ]

hex 
 0.4851(11) 1.14014(51) − −
SAW BC − 1.13465(40) 0.51014(76) 0.5137(55)

R2 − 1.13566(44) 0.5058(13) 0.5077(46)
Ratio − 1.1374(19) 0.4960(16) 0.499(12)
Direct − − 0.5002(20) −

Fixed κ 0.5060(12) 1.13459. . . 0.496(10) −
squ 
 0.50525(40) 1.74292(51) − −
SAW BC − 1.7399(19) 0.52062(24) 0.527(11)

R2 − 1.74151(69) 0.51493(87) 0.5142(60)
Ratio − 1.7510(57) 0.4849(21) 0.481(21)
Direct − − 0.5097(37) −

squ 
 0.50393(39) 1.6978(14) − −
SAT BC − 1.6887(15) 0.51172(67) 0.516(12)

R2 − 1.69201(74) 0.50127(17) 0.5029(56)
Ratio − 1.6975(34) 0.4839(10) 0.482(10)
Direct − − 0.4973(23) −

sc 
 0.47911(56) 3.5504(73) − −
SAW BC − 3.5146(83) 0.4887(19) 0.500(15)

R2 − 3.5271(36) 0.4799(24) 0.4691(54)
Ratio − 3.519(20) 0.4847(21) 0.474(31)
Direct − − 0.4907(19) −

sc 
 0.48368(40) 3.7557(85) − −
SAT BC − 3.707(12) 0.4927(12) 0.493(14)

R2 − 3.7294(53) 0.4745(25) 0.4717(52)
Ratio − 3.726(11) 0.4800(18) 0.482(21)
Direct − − 0.4865(16) −

where C is a constant, obtaining φ = 0.5097(37). In total,
we thus obtain four estimates of φ for SAWs on a square
lattice—three from valid finite-size scaling methods and one
from the direct method—and one estimate of 1/δ, All are listed
in Table II, and we will discuss how to combine these values
in the next section.

B. Two dimensions

We now present the results for the other two-dimensional
lattice models and discuss how to combine the results. For
each lattice model, the intermediate quantities 
n, un and φ(n)

and much of the details of the calculations are qualitatively
identical to that of square SAWs discussed in the preceding
section. In fact, the results of square SAWs tend to have larger
errors, and some of the issues are less of a problem in the other
lattice models. As such we skip to presenting temperature and
exponent results for the other cases. Furthermore, we also saw
in the last section that fitting to the scaling forms is generally
improved by the addition of a correction-to-scaling term, and
this is more true for the other lattice models. Henceforth we
report only the correction-to-scaling results, where applicable.

Figure 4 shows the critical temperatures for the two-
dimensional lattice models. The results of extrapolating the
fits to Ta are reported in Table II, along with all estimates of
exponents 1/δ and φ. Additionally, we visualize the exponents
in Fig. 5. For these plots, the horizontal axis has no meaning
except to cluster the results for each lattice model.

FIG. 5. Exponents for two-dimensional simulations. Black is the
special case of SAWs on hexagonal lattice simulated at fixed exact
critical temperature up to n = 4096. The dashed gray line marks the
expected value of the two-dimensional crossover exponent φ = 1/2.

In addition to all the methods discussed so far, for the case
of SAWs on the hexagonal lattice, we have the further benefit
of knowing the exact critical temperature κa = 1 + √

2 [11].
Incorporating this weight directly into the simulation greatly
reduces equilibration time and allowed us to simulate SAWs
on the hexagonal lattice up to length n = 4096 in the same
time as the full simulations up to length 1024. In this case
we do not need to locate the finite-size critical temperatures
T (n)

a ; the exponents are determined directly from 
n and un,
obtaining 1/δ = 0.5060(12) and φ = 0.496(10). Note that the
former comes from the scaling of 
n(κc) rather than max 
n, an
inverse of the 
 method for the other lattice models, potentially
with similar limitations to estimating 1/δ. However, the value
of φ is shown in Fig. 5 (black) for comparison to other lattice
models and methods. Despite the ability to simulate much
larger chains, the statistics of this simulation are not the same
as the others, and so these values should be considered a
benchmark only. Nevertheless, it is a good test of the accuracy
of the flatPERM algorithm and the significance of corrections
to scaling in our methods. It also validates using Ta over the
set of T (n)

a .
Regarding the critical temperatures, we immediately see

that several features mentioned in the analysis of square SAWs
are common to all lattice models. As mentioned earlier, the 


method is the worst at estimating the critical temperature at
finite lengths and is known to be an unreliable method. So,
while the temperatures from the 
 method have been shown,
this method is not used in any further results. The R2 method
appears to be the best at locating the critical temperature,
given that the errors in T (n)

a are the smallest for this method,
and the trend as n → ∞ displays the smallest correction to
finite-size scaling. The values of T (n)

a from the ratio method are
very close to those of the R2 method for most lattice models,
yet the errors are much larger due to the way curves of φ(n)
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intersect. Nevertheless, resulting Ta and φ estimates from the
ratio method are good.

One exception is for the BC method on the hexagonal lattice,
where the deviation from trend at larger n does not occur like
the square lattice models. However, for consistency, we make
the same restriction to n � 600. A more general issue with the
BC method is that it is parameter dependent, namely, due to
the minimum value of n used as the common interceptor with
curves of U4 at larger n. We use n = 128 as the minimum,
intending that the range of n is consistent with other methods,
and thus the finite-size temperatures for the BC method are
comparable to the R2 and ratio methods. If a larger range of n

is considered by using a smaller value for the minimum, then
the temperatures are much closer to the 
 method, which we
have already noted as unreliable. We find our range of n to be
a good tradeoff between minimizing the effect of corrections
to scaling from smaller n and having enough data to achieve
a good fit to the scaling form. Note that altering the minimum
value of n does not alter the value of n where the kink starts.

Despite these cautions, it is not plausible to conclude that,
say, the R2 method is better than the others and should always
be used for these kind of calculations. Even if it appears to
be the best way to determine Ta, it is not overwhelmingly
better than the other methods. The issues with the BC and ratio
methods are technical and should be retained as valid. Thus,
despite omitting some methods as invalid or too imprecise, we
still have a spread in the valid estimates for the exponents,
as seen in Fig. 5. Rather than relying on the statistical errors
reported so far, we instead view the variance in results as
evidence of a larger systematic error.

Regarding the different exponents, it is further clear from
Fig. 5 that 1/δ falls within the spread of the φ estimates. One
can compare 1/δ to φ for a specific method to find a pattern, or
omit certain values that appear to be outliers or unreliable, but
generally, across all lattice models, this does not hold. We are
forced to consider that 1/δ is not distinct from φ. Moreover,
we could even say that the calculation of 1/δ from the scaling
of max 
n is yet another method for estimating the crossover
exponent of the adsorption transition, equally valid as using
the three finite-size scaling methods or calculating φ directly
from ratios of un.

Arguably, the main reason that the statistical error is so small
is that it arises from the very small errors in the calculated
thermodynamic functions, which are in turn due to being
averaged over the 10 independent simulations for each lattice.
The better statistics of the shorter length simulations cover
the fact that we are not able to find the critical temperature
as accurately due to correction-to-scaling effects and the
differences in methodologies. Compare this to the simulation
of n = 4096 SAWs on the hexagonal lattice, where the error
in φ is also statistical, but we have complete confidence in
knowing the exact temperature. It is therefore striking that the
black error bar in Fig. 5 is so comparable in magnitude to the
spread of exponent estimates for the n = 1024 simulations.
Given the issues with reported statistical errors, when making
these averages we omit statistical errors beyond the third
decimal place as being too far removed from the systematic
spread in values.

The final task is therefore to combine the results for all
lattice models into results for two dimension, which we will

TABLE III. Best results for the adsorption temperature and the
finite-size scaling estimates of φ for each lattice model. Bold values
are the combined result for the crossover exponent for each lattice
model and dimension.

Tc FSS φ φ [= 1/δ]

hex 4096 1.13459... 0.496(10)
hex SAW 1.136(1) 0.504(7) 0.496(10)
squ SAW 1.744(6) 0.507(19) 0.507(2)
squ SAT 1.693(4) 0.499(14) 0.500(3)
2D 0.501(2)
sc SAW 3.520(6) 0.484(4) 0.485(6)
sc SAT 3.720(12) 0.482(9) 0.484(2)
3D 0.484(4)

apply to three dimensions in the next section. While it is not
possible to pick out one method over another, we note that
they are not all equivalent. The R2, BC, and ratio methods are
similar in that they first estimate the critical temperature, which
is then used to find φ from the finite-size scaling of un. In order
to compare to 1/δ and the direct estimates of φ we average the
values of φ for the three finite-size scaling methods, obtaining
φ(FSS), listed in Table III for each lattice model. Also listed are
the critical temperatures of each lattice model, averaged from
the three finite-size scaling methods.

The φ(FSS) value is now comparable to φ(direct), which is
from un but without finite-size-scaling, and to 1/δ, which
comes from a different, but related, thermodynamic quantity.
We average these three values equally to obtain the exponent
for each lattice model, also listed in Table III. Recall that
the values for 1/δ and the direct estimate for φ are listed in
Table II. Finally, the exponents are averaged over all lattice
models in each dimension. Thus, for two dimensions we obtain
φ = 0.501(2), in agreement with the known value of 1/2. The
uncertainty in this value is due to the spread from the different
methods and models rather than the statistical error in those
values. There is still some spread in the value of this final
exponent for the two-dimensional lattice models.

As a final remark, we note that an alternative approach is
to use the average Ta to calculate a single φ(FSS), but we found
no meaningful difference. It is well known that the value of
φ is sensitive to accurately knowing the critical temperature.
This alternative would require an estimate of the error in φ

by propagating the error in the average temperature, itself a
product of the spread in individual values Ta. By Eq. (10),
this is not a straightforward procedure. We found that any
reasonable attempt to do this produces an error in φ that is
the same magnitude as the spread in φ values from individual
methods as already reported. Thus the presence of a systematic
error is clear either way.

C. Three dimensions

Having verified our methodology on the two-dimensional
lattice models, we now turn to the three-dimensional simple
cubic lattice models. The critical temperatures for SAWs and
SATs on the simple cubic lattice are shown in Fig. 6, and the
exponents are visualized in Fig. 7 and listed in Table II.
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FIG. 6. Finite-size critical temperatures for three-dimensional lattice models (a) SAWs and (b) SATs on the simple cubic lattice. For each
of the four methods the solid lines are fits with correction to scaling and dotted lines are power-law only.

The main point where the analysis of the simple cubic lattice
models differs from the two-dimensional cases is with the kink
in critical temperatures from the BC method. In Fig. 6 we see
that at higher n the T (n)

a diverge faster than for the square lattice.
However, the point at which this kink begins is the same, so
we have the same range of n � 600 for this method. All other
methods proceed in the same manner as in the two-dimensional
analysis.

The final results for the critical temperatures and expo-
nents for the simple cubic lattice models are determined
in the same way as the two-dimensional case and are
summarized in Table III. For SAWs on the simple cubic
lattice we find, after averaging over the different finite-
size scaling methods, that φ(FSS) = 0.484(4), compared with
φ(direct) = 0.491(2) and 1/δ = 0.4791(6). Similarly, for SATs

FIG. 7. Exponents for three-dimensional (simple cubic) simu-
lations. The dashed gray line marks the average estimate of the
three-dimensional crossover exponent φ = 0.484(4).

we find φ(FSS) = 0.482(9), compared with φ(direct) = 0.487(2)
and 1/δ = 0.4837(4). As with the two-dimensional case, and
knowing the source of the error bars, these values are not
distinct enough to definitively separate them. Hence, assuming
equality of φ and 1/δ, we estimate φ = 0.485(6) for SAWs and
φ = 0.484(2) for SATs.

Averaging over the values of both three-dimensional models
gives our best estimate φ = 0.484(4). Even given the magni-
tude of the potential systematic error, we conclude that for
three dimensions φ does deviate from the mean-field value
of 1/2. However, we find that there is not a clear difference
between SAWs and SATs, nor do we find evidence for 1/δ

being different from φ.

V. CONCLUSION

We have performed a comprehensive study of self-avoiding
walks and trails on two- and three-dimensional lattices with
an adsorbing boundary. Numerical simulations up to polymer
length of 1024 provide a wealth of data for studying the
adsorption transition. A variety of analyses were used to
estimate the critical temperature and scaling exponents of this
transition. Using both the square and hexagonal lattices, and
in the latter case also using exact results, we confirm the
mean-field value of the crossover exponent φ = 1/2 (also
obtained from exact solution methods and conformal field
theory) with our own estimate of φ = 0.501(2). What is not
apparent in this final result is that applying individually valid
methods to each of the lattice models produces a large spread
in estimates. This suggests a significant systematic error in any
individual estimate greater than the statistical error intrinsic to
the numerical analysis.

Applying the same methodology, averaging over several
estimates, to the three-dimensional lattice models of SAWs
and SATs on the simple cubic lattice, we provide a final
estimate φ = 0.484(4). This is in agreement with other recent
works that suggest a deviation from the mean-field value
in three dimensions, and thus that the crossover exponent
is not super-universal. However, as with two dimensions,
there is systematic error across the different methodologies
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which does not allow for a distinction between the crossover
exponent φ and the shift exponent 1/δ. In fact, we suggest
that direct estimates of the shift exponent are yet another way
of estimating the crossover exponent, and not of estimating a
distinct quantity.

As well as variety in the analysis of thermodynamic quan-
tities, we have considered walks and trails equally for the
square and simple cubic lattices. As the SAW model can be
considered as the strongly repulsive limit of the interacting
SAT model, the agreement of our results for the two models
also indicates that the universality of the critical exponent
is not broken by (repulsive) monomer-monomer interactions.
Of course, this constitutes only two data points on the scale
of variable monomer-monomer interaction strength, but as-
suming universality raises the possibility of more accurate
exponent estimates: Considering both the interacting walk and
interacting trail models one may be able to achieve greater

accuracy in locating the critical temperature by varying the
monomer-monomer interactions to minimize corrections-to-
scaling in quantities such as the end-to-end distance scaling,
which has had some previous success [17]. Additionally, it
raises the question of studying the general interacting SAT
model with strongly attractive interactions, known to be in a
different universality class to the interacting SAW model at its
collapse point.
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