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• A family 1D lattice walks called ℓ-Motzkin paths is introduced.
• Motzkin, Schröder and Dyck paths correspond to ℓ = 1, 2, ∞.
• The area-width scaling is analysed heuristically for all ℓ.
• The known Schröder path generating function is rederived.
• The scaling result for Schröder paths is verified rigorously.
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a b s t r a c t

We consider a generalised version of Motzkin paths, where horizontal steps have length ℓ,
with ℓ being a fixed positive integer. We first give the general functional equation for the
area-width generating function of this model. Using a heuristic ansatz, we then derive the
area-width scaling behaviour in terms of a scaling function in one variable for the special
cases of Dyck, (standard) Motzkin and Schröder paths, before generalising our approach to
arbitrary ℓ. We then rigorously derive the tricritical scaling of Schröder paths by applying
the generalised method of steepest descents to the known exact solution for their area-
width generating function. Our results show that for Dyck and Schröder paths, the heuristic
scaling ansatz reproduces the rigorous results.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Vesicles consist of a closed lipid membrane enclosing a fluid and act as containers for molecules inside of biological
cells [1]. Depending on parameters such as temperature and the osmotic pressure acting on the outside of the membrane,
they favour different conformations. In the case of a high external pressure, the vesicles tend to minimise their volume,
whereas more spatially extended configurations are typical in the case of low pressure.

Two-dimensional vesicles can be modelled as self-avoiding polygons (SAP), either in the continuum or on the lattice
[2–4]. In this case, the volume of the vesicle becomes the area of the polygon and the perimeter is the distance covered
when travelling around the polygon once. The partition function of vesicles, modelled as SAP on Z2 with fixed perimeterm,
zero bending rigidity and subject to an external pressure ϵ, is given by

Zm(q) =

∞
n=0

pm,nqn, (1)

where pm,n is the number of SAP of perimeterm and area n and q = exp(−ϵ).
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The corresponding area–perimeter generating function is defined as

P(t, q) =

∞
m=0

Zm(q)tm =

∞
m=0

∞
n=0

pm,ntmqn, (2)

and can be interpreted physically as the grand-canonical partition function of the model, where both area and perimeter
of the vesicle can fluctuate. The shape of the phase diagram of this ensemble has been discussed in [4]. In particular, it was
shown that the radius of convergence tc(q) of P(t, q), seen as a series in t , is positive for q ≤ 1 and zero for q > 1. The point
(t, q) = (tc(1), 1) is called a tri-critical point [5].

Based on exact enumeration data, Richard, Guttmann and Jensen conjectured in [6] that the generating function of rooted
SAP, given by Pr(t, q) = t d

dt P(t, q) satisfies a q-functional equation of finite degree with polynomial coefficients. Subject to
this conjecture, they argued that in a region around the tri-critical point, the singular part of Pr(t, q) should obey the scaling
relation

Pr (sing)(tc(1) − zϵφ, 1 − ϵ) = ϵθF (z) + o(ϵθ ), (3)

where the critical exponents are θ = 1/3 and φ = 2/3, and

F(z) = b0
Ai′(b1z)
Ai(b1z)

. (4)

Here, Ai(z) is the Airy function [7], defined for z ∈ C and c± = e±iπ/3 as

Ai(z) =
1

2π i

 c+∞

c−∞

exp

u3

3
− zu


du, (5)

and b0 and b1 are constants.
From the scaling function, interesting statistical properties of the model, such as the distribution of areas in the infinite

perimeter ensemble, can then be deduced [8].
Despite extensive research however, there are almost no rigorous results concerning the enumeration of SAP [2].

Therefore, a mathematical validation of the conjecture made in [6] appears to be currently out of reach.
Progress in understanding the problem can be made by considering directed subclasses of SAP, for which a functional

equation for the area–perimeter generating function is known. Examples for suchmodels are Dyck paths, staircase polygons
and directed column-convex polygons. From the functional equation, it is possible to extract the tri-critical scaling behaviour
of the model, either by using a heuristic scaling ansatz [9] or by carrying out rigorous saddle point analysis on the exact
solution for the generating function. The latter method has been applied in [10,11] to the exact solutions for the generating
functions of staircase polygons and Dyck paths, which are known from [12,13]. For both models, it was shown that the
scaling function is given by Eq. (4), with model-dependent values of b0 and b1.

It is natural to try to generalise the scaling result for Dyck paths to other one-dimensional directed lattice walks, such as
Motzkin and Schröder paths [14]. In this case, it is easier to consider the width, i.e. the distance between the start and the
end point of the path rather than the perimeter. For Motzkin paths, which are closely related to RSOS configurations, the
solution for the area-width generating function has been derived in [15], and for Schröder paths, the area-width generating
function was derived in [16]. However, no corresponding scaling forms have been extracted yet.

Out of thismotivation,wehere analyse the scaling behaviour of amodel called ℓ-Motzkin paths,with steps (1, 1), (1, −1)
and (ℓ, 0), where ℓ is a fixed positive integer. This model has been studied previously in the combinatorics literature with a
focus on bijections [17]. Motzkin and Schöder paths are included in this family of walks and correspond to the cases ℓ = 1
and 2, respectively, whereas Dyck paths can be identified with the limiting case ℓ = ∞ [18].

After defining the model of ℓ-Motzkin paths, we will re-derive the scaling behaviour for Dyck paths known from [11] by
heuristically inserting a single-variable scaling ansatz into the functional equation for the generating function. This approach
will then be extended to the cases of (standard) Motzkin and Schröder paths, the scaling behaviour of which has not been
analysed yet. Then we will generalise our results to ℓ-Motzkin paths with arbitrary ℓ.

As a further result, we give an alternative derivation of the exact solution for the area-width generating function of
Schröder paths, which can be expressed in terms of a quotient of basic hypergeometric series, similar to the well-known
expression for Dyck paths [13]. From this we obtain the associated scaling form by rigorous saddle point analysis.

Our results show that the heuristic scaling ansatz reproduces the rigorous results for Dyck and Schröder paths. Moreover,
we obtain the same scaling form for all values of ℓ, and therefore in particular for Motzkin paths.
We will begin by precisely defining the model we consider.

2. The model of ℓ-Motzkin paths

Given ℓ ∈ N and s ∈ Z≥0, we define an ℓ-Motzkin path of s steps to be a lattice walk (xi, yi)si=0 on Z2
≥0 such that

(x0, y0) = (0, 0) and from any point (x, y) on the path, the walker can either step towards (x + 1, y + 1), (x + 1, y − 1) or
towards (x+ ℓ, y), corresponding to an up-, down- or horizontal step, respectively. Moreover, the path needs to end on the

http://dlmf.nist.gov/9
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Fig. 1. A Schröder path of width 12, with two horizontal steps of length two, three (2 × 1)-rectangles below these steps (hatched), four pairs of up/down
steps, area 12 below these steps, and thus total area 18.

Fig. 2. Graphical interpretation of Eq. (7). An ℓ-path either consists of zero steps, or it starts with a horizontal step, followed by an ℓ-path, or it starts with
an up-step, followed by an ℓ-path, followed by a down-step, followed by another ℓ-path.

horizontal line, i.e. (xs, ys) = (m, 0), wherem is thewidth of the ℓ-Motzkin path. Fig. 1 shows an example trajectory for the
case ℓ = 2. Since we will only consider ℓ-Motzkin paths in this paper, we will shortly refer to them as ℓ-paths from now on.
For given ℓ ∈ N, we define the generating function

G(s, u, p, q) =

∞
k=0

∞
l=0

∞
v=0

∞
w=0

ck,l,v,w sk ul pv qw, (6)

where ck,l,v,w is the number of pathswith k horizontal steps, l
2 pairs of up- and down-steps, v (ℓ×1)-rectangles under all the

horizontal steps, and w unit squares under all the up- and down-steps (including the half unit squares directly underneath
these steps). Thus theweight u is associated to the total number of up- anddown-steps, q corresponds to the area under these
steps, measured in unit squares of the lattice, and s and pweight the number of horizontal steps and the number of (ℓ× 1)-
rectangles underneath these steps, respectively. For example, the weight of the trajectory shown in Fig. 1 is s2u4p3q12. Note
that there is no explicit ℓ-dependence in G(s, u, p, q). Instead, the area-width generating functions for ℓ-paths of different
ℓ are obtained by choosing appropriate values for s and p, as will be explained below.

A functional equation for G(s, u, p, q) can be obtained by noting that for a given ℓ, the set of all ℓ-paths can be divided
into the following three subsets. In Fig. 2 we graphically illustrate this decomposition. The first subset only contains the
trajectory of zero steps, which has weight 1. The second subset consists of all paths which start with a horizontal step,
followed by a path (possibly of zero steps). The weight of a path in this set is thus the weight s of the horizontal step at the
beginning, times the weight of the path attached to this initial step. Finally, the third subset contains all the ℓ-paths which
start with an up-step. Their weight is given by the weight u of this initial up-step times the weight u of its complimentary
down-step, times the weight of the path in between these two steps, times the weight of the path following the down-step.
Moreover, the two triangular regions below the initial up-step and the corresponding down-step together contribute one
unit of area to the total area underneath the diagonal steps, which is accounted for by a factor of q. Since the path between
the initial up-step and its complimentary down-step is elevated by one, each up- or down-step in between generates one
further area of unit size, weighted by q, and each horizontal step generates an (ℓ × 1)-rectangle, weighted by p. Summing
over the weights of the paths in all three subsets, this leads to the functional equation

G(s, u, p, q) = 1 + s G(s, u, p, q) + qu2G(ps, qu, p, q)G(s, u, p, q). (7)

Note that by iteration of Eq. (7), we obtain the continued fraction representation

G(s, u, p, q) =
1

1 − s −
qu2

1−ps− q3u2

1−p2s− q5u2

1−p3s−...

, (8)

which can be used to approximate G(s, u, p, q) numerically.
In the following, we will consider the generating function

G(ℓ)(a, t, q) =

∞
k=0

∞
l=0

∞
m=0

pk,m,naktmqn, (9)

where pk,m,n is the number of paths with 2k diagonal steps, width m and total area n enclosed between the trajectory and
the bottom line, counted in units of lattice cells. We will refer to G(ℓ)(a, t, q) as the area-width generating function. Since
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each horizontal step of an ℓ-path increases the width of the path by ℓ and each (ℓ × 1)-rectangle increases the total area,
measured in units of lattice cells, by ℓ, we have the identity

G(ℓ)(a, t, q) = G(tℓ,
√
at, qℓ, q). (10)

Substituting Eq. (10) into Eq. (7), we obtain the functional equation

G(ℓ)(a, t, q) = 1 + tℓG(ℓ)(a, t, q) + aqt2G(ℓ)(a, qt, q)G(ℓ)(a, t, q). (11)

For q = 1, Eq. (11) is solved by

G(ℓ)(a, t, 1) =
1 − tℓ −


(1 − tℓ)2 − 4at2

2at2
, (12)

and setting a = 1 in Eq. (12), we obtain the generating functions of the Motzkin numbers for ℓ = 1 and the large Schröder
numbers for ℓ = 2 ([19,20] and A001006 and A006318 in [21]).

For given ℓ ∈ N and real a > 0, we denote the smallest positive value forwhich the discriminant (1−tℓ)2−4at2 vanishes
by tc and define Gc = G(ℓ)(a, tc, 1). From Eq. (12) it follows that

Gc =
1 − tℓc
2at2c

=
1

√
atc

. (13)

If |t| < 1 and we let ℓ tend to infinity, then the weight tℓ associated to horizontal steps becomes zero, thus G(∞)(a, t, q) =

G(0,
√
at, 0, q) satisfies the functional equation

G(∞)(a, t, q) = 1 + aqt2G(∞)(a, qt, q)G(∞)(a, t, q). (14)

In this case, the parameter t only appears in powers of the product at2 and therefore a can be set equal to one without
loss of generality. We write G(∞)(t, q) ≡ G(∞)(1, t, q). Eq. (14) is then readily identified as the functional equation for the
area-width generating function of Dyck paths [13]. If q = 1, it is solved by the generating function of the Catalan numbers
([22] and A000108 in [21]), and for general q, the solution was given in [13].

In the next section,we are nowgoing to analyse the scaling behaviour ofG(ℓ)(a, t, q) around the point (a, t, q) = (a, tc, 1)
by using a heuristic ansatz. We will begin by treating the case of Dyck paths (ℓ = ∞), for which the scaling function has
been extracted rigorously via the method of steepest descents in [11]. Then we will apply the same approach to Motzkin
and Schröder paths (ℓ = 1 and ℓ = 2), for which no scaling form has been derived yet in the literature, before generalising
our approach to arbitrary ℓ.

3. Heuristic scaling ansatz

Given the known scaling behaviour of Dyck paths, the heuristic approach consists of assuming that in the vicinity of the
point (a, t, q) = (a, tc, 1), also the area-width generating functions of other ℓ-paths satisfy a similar scaling relation. More
precisely, we expect that there is a value z− < 0 such that for z ∈ (z−, ∞) and ϵ → 0+,

G(ℓ)

a, t(z, ϵ), 1 − ϵ


= Gc + ϵθF0(a, z) + ϵ2θF1(a, z) + O(ϵ3θ ) (15)

where t(z, ϵ) = tc−z ϵφ; θ andφ are positive, non-integer critical exponents, and F0(a, z) and F1(a, z) are analytic functions
for z ∈ (z−, ∞). The function F0(a, z) is the scaling function.

The heuristic approach is non-rigorous since it makes the assumption that G(ℓ)

a, t(z, ϵ), 1 − ϵ


admits an expansion of

the form (15). Note, however that the method of dominant balance used below forms part of a rigorous method for deriving
the area limit distribution of two-dimensional polygon models [8].

For better readability, we omit the dependence of a from now on and write F0(a, z) ≡ F(z). We define

G(ℓ)
sc (a, z, ϵ) = Gc + ϵθF(z) + ϵ2θF1(z). (16)

By setting z = τϵ−φ with 0 < τ < tc , it follows from the positivity of the coefficients of the generating function
G(ℓ)(a, t, z) that for a > 0,

lim
z→∞

F(z) = −∞. (17)

Following [9], we now insert the RHS of Eq. (15) into the functional equation (11). Using a dominant balance argument,
this uniquely determines the values of θ and φ and leads to an ODE for the function F(z).

Wewill begin by validating the heuristic approach by reproducing the result for the scaling function of Dyck paths, known
from [11].

https://oeis.org/A001006
https://oeis.org/A006318
https://oeis.org/A000108
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3.1. Dyck paths (ℓ = ∞)

The area-width generating function of Dyck paths satisfies Eq. (14), where, as explained above, a can be set to onewithout
loss of generality. Substituting a = 1 and tℓ = 0 into the solution for q = 1 given in Eq. (12), we obtain the critical values

tc =
1
2

and Gc = 2. (18)

Now we define the function

Φ∞(z, ϵ) =1 − G(∞)
sc (z, ϵ) + (1 − ϵ) t(z, ϵ)2 G(∞)

sc (z + tcϵ1−φ
− zϵ, ϵ)G(∞)

sc (z, ϵ),

where G(∞)
sc (z, ϵ) ≡ G(∞)

sc (1, z, ϵ) is given by Eq. (16), with an unknown function F(z). Under the assumption that Eq. (15)
holds, it follows from Eq. (14) that

Φ∞(z, ϵ) = O(ϵ3θ ) (ϵ → 0+). (19)

Expanding Φ∞(z, ϵ) into a series in ϵ, we obtain

Φ∞(z, ϵ) = (1 − Gc + t2c G
2
c ) + ϵθ


(2t2c Gc − 1)F(z)


+ ϵ2θ 

(2t2c Gc − 1)F1(z) + t2c F(z)2

+ ϵφ


−2tcG2

c z


+ ϵ1−φ+θ (t3c GcF ′(z)) + ϵ1−φ+2θ (t3c (F(z)F ′(z) + GcF ′

1(z))) + ϵφ+θ (−4ztcGcF(z)) + O(ϵ3θ ).

The constant coefficient and the one of order ϵθ are zero by virtue of Eq. (18). For Eq. (19) to hold, the coefficient of the order
of ϵ2θ in the above equation needs to be cancelled by another coefficient, hence one of the other exponents needs to equal
2θ . If 2θ = φ + θ , thus θ = φ, then the term of order ϵφ in the above equation could not be cancelled by any other term
unless θ = 1, which is impossible by the assumption that θ is not an integer. Likewise, it is impossible that 2θ = 1−φ+2θ ,
since φ is assumed to be non-integer. The third possibility is that 2θ = φ, in which case the only way to obtain a solution
F(z) analytic at zero is to also have 2θ = 1 − φ + θ . The critical exponents hence necessarily satisfy the equations

2θ − φ = 0 and θ + φ = 1,

and thus θ = 1/3 and φ = 2/3. Inserting these exponents, the above equation simplifies to

Φ∞(z, ϵ) =


1
4
F ′(z) +

1
4
F(z) − 4z


ϵ2/3

+ O(ϵ).

From Eq. (19) we thus get the Riccati type ODE

F ′(z) = Az − BF(z)2, (20)

where A = 16 and B = 1. In order to solve Eq. (20), we linearise it by using the ansatz

F(z) = b0
f ′(b1z)
f (b1z)

,

where

b0 =


A
B2

1/3

and b1 =

AB

1/3
. (21)

This leads to the second order ODE

f ′′(z) − zf (z) = 0, (22)

the general solution of which is given by

f (z) = λ1 Ai(z) + λ2 Bi(z), (23)

where λ1, λ2 ∈ R, the Airy function Ai(z) is defined in Eq. (5) and

Bi(z) = e−iπ/6 Ai(ze−2iπ/3) + eiπ/6 Ai(ze2iπ/3). (24)

Inserting the solution (23) into Eq. (21), we obtain the general solution of Eq. (20) as

F(z) = b0
(λ + 1)Ai′ (b1z) + (λ − 1) Bi′ (b1z)
(λ + 1)Ai (b1z) + (λ − 1) Bi (b1z)

, (25)

where λ ∈ R. It now follows from the asymptotic behaviour of Ai(z), Bi(z) and their derivatives (Section 9.7 in [7]) that the
only possibility to satisfy condition (17) is to set λ = 1. Thus, F(z) has the form given in Eq. (4), and inserting the values
A = 16 and B = 1 into Eq. (21), we obtain

b0 = b1 = 24/3. (26)

http://dlmf.nist.gov/9.7
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Note that this result is not given explicitly in [11], since a different parametrisation was used in this reference. More
precisely, the generating function G(t, q) analysed there is related to the one discussed here by the relation G(t, q) =

G(∞)
√

t/q,
√
q

, and therefore in [11], b0 = 2 and b1 = 4. However, one verifies that both expressions are equivalent

by substituting t → qt2 and q → q2 into the above result.
We now repeat the same analysis for Motzkin and Schröder paths, for which the scaling behaviour has not yet been

studied in the literature.

3.2. Motzkin paths (ℓ = 1)

Setting ℓ = 1 and q = 1 in Eq. (12), we get the critical values for standard Motzkin paths as

Gc =
1 + 2

√
a

√
a

and tc =
1

1 + 2
√
a
. (27)

Analogous to the case of Dyck paths, we define Φ1(z, ϵ) from Eq. (11) as

Φ1(a, z, ϵ) = 1 − G(1)
sc (a, z, ϵ) + t(z, ϵ)G(1)

sc (a, z, ϵ)

+ a(1 − ϵ) t(z, ϵ)2 G(1)
sc (a, z + tcϵ1−φ

− zϵ, ϵ)G(1)
sc (a, z, ϵ).

Again, assumption (15) implies that Φ1(a, z, ϵ) = O(ϵ3θ ) and requires the critical exponents to be θ = 1/3 and φ = 2/3.
From the expansion

Φ1(a, z, ϵ) =

aGc t4c F

′(z) + at3c F(z)2 − z(2aG2
c t

2
c + Gc)


ϵ2/3

+ O(ϵ),

we are then lead to the same ODE (20) as for Dyck paths, with the coefficients now being

A =
2Gc

t2c
+

1
at3c

and B =
√
a. (28)

The final form of the scaling function is given by Eq. (4) with

b0 =


2
√
a + 1
a2t3c

1/3

and b1 =
√
a b0. (29)

3.3. Schröder paths (ℓ = 2)

For Schröder paths, the critical values are given by

tc =


1 + 2 a − 2


a(a + 1) and Gc =

1
√
atc

. (30)

As for Dyck and Motzkin paths, we define

Φ2(a, z, ϵ) = 1 − G(2)
sc (a, z, ϵ) + t(z, ϵ)2 G(2)

sc (a, z, ϵ)

+ a(1 − ϵ) t(z, ϵ)2 G(2)
sc (a, z + tc ϵ1−φ

− zϵ, ϵ)G(2)
sc (a, z, ϵ),

and assumption (15) determines θ = 1/3 and φ = 2/3. Expanding Φ2(a, z, ϵ) in ϵ gives with these critical exponents and
the above values for tc and Gc ,

Φ2(a, z, ϵ) =

aGc t4c F

′(z) + at3c F
2(z) − z


2aG2

c t
2
c + 2Gc tc


ϵ2/3

+ O(ϵ),

which again leads to Eq. (20), where the coefficients are now

A =
2Gc

t2c
+

2
at2c

and B =
√
a. (31)

Thus, also for Schröder paths, the scaling function is given by Eq. (4), with

b0 =


2
√
a + 2 tc
a2t3c

1/3

and b1 =
√
a b0. (32)

In the next section we now generalise the results obtained so far to general ℓ.
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3.4. The case of general ℓ

Now we assume ℓ to be any positive integer. In this general case, it is not possible to give an expression for the critical
value tc as a function of a.
As in the special cases, we define

Φℓ(a, z, ϵ) = 1 − G(ℓ)
sc (a, z, ϵ) + t(z, ϵ)ℓG(ℓ)

sc (a, z, ϵ)

+ a(1 − ϵ)t(z, ϵ)2 G(ℓ)
sc


a, z + tcϵ1−φ

− zϵ, ϵ

G(ℓ)
sc (a, z, ϵ) , (33)

and from the assumption that Φℓ(a, z, ϵ) = O(ϵ3θ ) one obtains θ = 1/3 and φ = 2/3. Expanding the RHS of Eq. (33) in ϵ
we get

Φℓ(s, z, ϵ) =

aGc t4c F

′(z) + at3c F(z)2 − (2aG2
c t

2
c + ℓGc tℓ−1

c )z

ϵ2/3

+ O(ϵ),

which leads to Eq. (20) with

A =
2Gc

t2c
+

ℓ tℓ−4
c

a
and B =

√
a. (34)

The solution of this equation is given in Eq. (4) with parameters

b0 =


2
√
a + ℓ tℓ−1

c

a2t3c

1/3

and b1 =
√
a b0. (35)

In the next sectionwe are going give a quick derivation of the solution for the generating function of Schröder pathswhich
is alternative to the one given in [16]. This will make it possible to analyse the scaling behaviour of G(2)(a, t, q) rigorously by
means of themethod of steepest descents, and compare the rigorous resultwith the one obtained heuristically in Section 3.3.

4. Exact solution for Schröder paths (ℓ = 2)

The exact solution for the area-width generating function of Schröder paths (ℓ = 2) has been derived in Eq.(4.41) of [16]
by using the Enumerating Combinatorial Objects (ECO) method, and in this reference also a refined model with additional
weights corresponding to the number of contacts of the walker with the line y = 0 was considered. Here we give an
alternative derivation of this result.

Substituting ℓ = 2 into Eq. (11), we obtain the functional equation

1 − t2G(2)(a, t, q) + aqt2G(2)(a, qt, q)G(2)(a, t, q) = 0 (36)

for the area-width generating function of Schröder paths. Inserting the ansatz

G(2)(a, t, q) =
H(a, qt2, q)
H(a, t2, q)

(37)

into Eq. (36) for ℓ = 2, we get the linearised functional equation

aqt2H(q2t2) + (t2 − 1)H(qt2) + H(t2) = 0, (38)

where we have abbreviated H(t2) ≡ H(a, t2, q) for convenience. The fact that t only appears quadratic in Eq. (38) makes
this equation easier to solve than the linearised functional equation for standard Motzkin paths. Namely, Eq. (38) is solved
by a basic hypergeometric series [23], defined as

H(t) =

∞
n=0

(−aq; q)n
(q; q)n

q(
n
2 )(−t)n =1 φ1


−aq
0 ; q, t


, (39)

where the q-Pochhammer symbol is given by (Section 17.2 in [7])

(z; q)n = (1 − z) · (1 − q z) · · · (1 − qn−1 z). (40)

This result can be verified by straightforward substitution. For a = 1, G(2)(a, t, q) generates a q-deformation of the large
Schröder numbers as defined in [24].
As an aside, we note that

G(2)


1
(h − 1) q

, t

q(h − 1), q


= Gp(h, t, q), (41)

where Gp(h, t, q) is the generating function of Dyck paths, with weights h, t and q associated to the number of peaks, width
and area, respectively. Here, a peak is called any up-step followed by a down-step. To verify Eq. (41), it suffices to see that via

http://dlmf.nist.gov/17.2#i
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a factorisation argument similar to the one used in the derivation of Eq. (7), it follows that Gp(h, t, q) satisfies the functional
equation

1 +

(h − 1)qt2 − 1


Gp(t) + qt2Gp(qt)Gp(t) = 0, (42)

whereGp(t) ≡ Gp(h, t, q). FromEq. (7) it follows that the LHS of Eq. (41) satisfies the same functional equation, and therefore
both functions are identical. Since for a Dyck path, the number of valleys equals the number of peaks minus one, the weight
of peaks corresponds physically to the bending rigidity of the vesicle membrane, as it is incorporated in more realistic
models [25].

In order to validate our results from Section 3.3, wewill now analyse the scaling behaviour of G(2)(a, t, q) by carrying out
rigorous saddle point analysis. The same technique has been applied before to area–perimeter weighted staircase polygons
and area-width-weighted Dyck paths [10,11].

5. Saddle point asymptotics for Schröder paths (ℓ = 2)

We are now going to analyse the asymptotic behaviour of the area-width generating function of Schröder paths
G(2)(a, t, q) around the tri-critical point (a, t, q) = (a, tc, 1) of the model by using the method of steepest descents,
generalised to the case of two coalescing saddle points. To this purpose, we use the exact solution for G(2)(a, t, q), which
has been derived in the last section. We will first derive the asymptotics of the functions H(t2) and H(qt2) defined in Eq.
(39), and then use Eq. (37) to obtain the leading asymptotic behaviour of G(2)(a, t, q). The calculation is analogous to the one
carried out for staircase polygons and Dyck paths in [10,11], therefore we will only outline the essential steps here. We will
further assume that a > 0.

The first step is to write the series H(t2) as a contour integral. Using the formula

(−1)n+1q(
n
2 )

(q; q)n(q; q)∞
= Res


(z; q)−1

∞
; z = q−n , (43)

valid for n ∈ N, one obtains the expression

H(t2) = lim
N→∞

A
2π i


CN

z−2 logq(t)

(−aq/z; q)∞(z; q)∞
dz (44)

where logq denotes the logarithm with base q, A = (q; q)∞(−aq; q)∞ and the contour CN surrounds exactly the N leftmost
zeros of (z; q)∞. By estimating the integral in Eq. (44), one then shows that in the limit N → ∞, the contour CN can be
exchanged by a straight line running from ρ − i∞ to ρ + i∞, where 0 < ρ < 1. The two q-products in the denominator of
the integrand in Eq. (44) can be estimated by using the formula [10]

ln(z; q)∞ =
1

ln(q)
Li2(z) +

1
2
ln(1 − z) + ln(q)R(z, q), (45)

where Li2(z) is the Euler dilogarithm (Eq. 25.12.1 in [7]) and the remainder is sufficiently bounded in the relevant region of
the C plane if q → 1−. Inserting Eq. (45) into Eq. (44), we obtain the asymptotic expression

H(t2) =
A

2π i

 ρ+i∞

ρ−i∞
exp


1
ϵ
f (z)


g(z)


1 + O(ϵ)


dz, (46)

as q → 1−, where ϵ = − ln(q),

f (z) = 2 ln(t) ln(z) + Li2(z) + Li2(−a/z), and (47)

g(z) =


z

(1 − z)(z + a)
. (48)

The function f (z) has the two saddle points

z1 =
1
2


1 − t2 −

√
d


; z2 =
1
2


1 − t2 +

√
d


(49)

where d = (1 − t2)2 − 4 a t2. For d = 0, the saddles coalesce in zm = (1 − t2)/2. It is now possible to apply the method of
steepest descents to the integral on the RHS of Eq. (46) (see e.g. [26] for a general introduction).
From Theorem 1 in [27] it follows that there exists a transformation u → z(u) which is regular in a domain containing z1
and z2 if d is sufficiently close to zero, such that

f (z) =
1
3
u3

− α u + β = p(u). (50)

http://dlmf.nist.gov/25.12#E1
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The polynomial p(u) has saddle points u1,2 = ±
√

α. Since the transformation is regular, it necessarily maps these saddle
points onto the two saddle points of f (z), given in Eq. (49). From Eq. (50) we therefore obtain that

α =


3
4


f (z1) − f (z2)

2/3

and β =
1
2


f (z1) + f (z2)


. (51)

Applying the transformation defined by Eq. (50), Eq. (46) can be rewritten as

H(t2) =
A

2π i

 c+∞

c−∞

exp

1
ϵ
p(u)


S(u)


1 + O(ϵ)


du, (52)

with S(u) = g(z(u))z ′(u) and c± = exp(± iπ/3). In order to obtain the leading term of the asymptotic expansion of H(t2),
we write

S(u) = p(0)
+ u q(0)

+ (u2
− α)S1(u), (53)

where S1(u) is a regular function of u, and the coefficients p(0) and q(0) can be determined by using that S(u1,2) =

p(0)
±

√
α q(0) and inserting the saddle point values into the second derivative of Eq. (50) to obtain z ′(u1,2). This gives

the expressions

p(0)
=


√

α

2


g(z2)

√
f ′′(z2)

+
g(z1)

√
−f ′′(z1)


, (54)

q(0)
=


1

2
√

α


g(z2)

√
f ′′(z2)

−
g(z1)

√
−f ′′(z1)


. (55)

Inserting Eq. (53) into Eq. (52) and using the coefficients given in Eqs. (54)–(55), we arrive for q → 1− at the asymptotic
expression

H(t2) ∼ A exp


β

ϵ

 
ϵ1/3p(0) Ai

 α

ϵ2/3


− ϵ2/3 q(0) Ai′

 α

ϵ2/3


. (56)

The asymptotic expression of H(q2t) has the same form as Eq. (56), with p(0) and q(0) replaced by the coefficients p(1) and
q(1), which are obtained by replacing g(z) by h(z) = g(z)/z in Eqs. (54)–(55). With this we arrive at the following result. For
q → 1−,

G(2)(a, t, q) ∼
p(1) Ai(αϵ−2/3) − q(1) Ai′(αϵ−2/3)ϵ1/3

p(0) Ai(αϵ−2/3) − q(0) Ai′(αϵ−2/3)ϵ1/3
, (57)

where ϵ = − ln(q). Note that this expression is uniform for a range of values of t and a including the critical point d = 0. In
particular, setting t = tc − zϵ2/3, Eq. (57) gives for ϵ → 0+,

G(2)(a, t, q) =
1
zm


1 +


q(0)

p(0)
−

q(1)

p(1)


Ai′(αϵ−2/3)

Ai(αϵ−2/3)
ϵ1/3

+ O

ϵ2/3 . (58)

Expanding the coefficients

q(0)/p(0)

− q(1)/p(1)

andα up to linear order around the critical point, we obtain the coefficients

given in Eq. (32), thereby confirming the validity of the heuristic scaling ansatz.
Fig. 3 shows the remarkable agreement of scaling function and partition function asymptotics for q close to one.

6. Summary and outlook

Weanalysed the scaling behaviour of the generating function of area-weightedDyck,Motzkin and Schröder paths around
the tri-critical point by using a heuristic ansatz and generalised this approach to ℓ-Motzkin pathswith arbitrary ℓ. The scaling
behaviour of Dyck paths had already been analysed in [11]. The result obtained is in agreement with the one derived in that
reference. For Motzkin and Schröder paths, no scaling function had been given yet in the literature.

We gave a derivation of the area-width generating function of Schröder paths alternative to the one in [16]. The exact
solution enabled us to obtain a rigorous result for the scaling behaviour of area-width weighted Schröder paths by applying
the saddle point method, thereby confirming the result obtained via the heuristic approach.

The solution for the area-width generating functions of Schröder paths and Dyck paths is possible because in both cases,
the parameter t only appears in one power in both corresponding functional equations. The generating function forMotzkin
paths has been obtained in [15], but the derivationwasmore involved and led to amuchmore complicated expression. Exact
solutions for the area-width generating functions for ℓ-Motzkinwith 2 < ℓ < ∞ are not known yet. This therefore presents
an open problem.

Another open question is whether there exists a rigorousmethod to obtain the scaling behaviour of a generating function
directly from the functional equation it satisfies, without having to know the exact solution. So far, the only rigorousmethod
known is by applying the method of steepest descents, which requires knowledge of the exact solution.
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Fig. 3. Plot of the scaling function F(z) given by Eq. (4) with coefficients (32) for a = 1 (black) against the approximation of the scaling function obtained
directly from the generating function G(2)(1, t, q) and fixed values ϵ = 10−3 and 10−4 (grey).
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