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Abstract
We study via Monte Carlo simulation a generalisation of the so-called vertex 
interacting self-avoiding walk (VISAW) model on the square lattice. The 
configurations are actually not self-avoiding walks but rather restricted self-
avoiding trails (bond avoiding paths) which may visit a site of the lattice twice 
provided the path does not cross itself: to distinguish this subset of trails we shall 
call these configurations grooves. Three distinct interactions are added to the 
configurations: firstly the VISAW interaction, which is associated with doubly 
visited sites, secondly a nearest neighbour interaction in the same fashion as 
the canonical interacting self-avoiding walk (ISAW) and thirdly, a stiffness 
energy to enhance or decrease the probability of bends in the configuration.

In addition to the normal high temperature phase we find three low 
temperature phases: (i) the usual amorphous liquid drop-like ‘globular’ phase, 
(ii) an anisotropic ‘β-sheet’ phase with dominant configurations consisting of 
aligned long straight segments, which has been found in semi-flexible nearest 
neighbour ISAW models, and (iii) a maximally dense phase, where the all sites 
of the path are associated with doubly visited sites (except those of the boundary 
of the configuration), previously observed in interacting self-avoiding trails.

We construct a phase diagram using the fluctuations of the energy parameters 
and three order parameters. The β-sheet and maximally dense phases do 
not seem to meet in the phase space and are always separated by either the 
extended or globular phases. We focus attention on the transition between the 
extended and maximally dense phases, as that is the transition in the original 
VISAW model. We find that for the path lengths considered there is a range 
of parameters where the transition is first order and it is otherwise continuous.
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1.  Introduction

There are many lattice models of a single polymer in solution that take account of different 
physical scenarios and capture different aspects of such a system, for example by modelling 
the inclusion of hydrogen bonding or stiffness. Importantly, a closer analysis of the behav-
iour of different lattice models has shown that details in the modelling of polymers, such as 
excluded volume and interactions, affect the phase structure and the universality class of the 
transitions between different phases. In this work we consider a general model which contains 
many of these aspects within one single model.

The first ingredient in all these models is the type of lattice path that is considered. The sim-
plest example is the unrestricted random walk, which is a lattice path that may visit sites and 
bonds of the lattice multiple times. On the other hand the classical model of polymers is based 
on the self-avoiding walk, which is a lattice path that cannot visit either bonds or sites of the 
lattice more than once. There are however several configuration systems used that lie between 
these two extremes. One commonly used for modelling polymers is the self-avoiding trail, 
which is a lattice path that is bond avoiding but may visit sites multiple times. Importantly, this 
path may both touch at a site, or may cross.

Consider the subset, n n⊆G T , of n-step trails nT  on the square lattice with the added restric-
tion that no crossings are allowed. This is an important type of configuration since they appear 
in the high temperature expansion of the O(n) model on the square lattice (see [1] for a recent 
example). Let us call these configurations grooves. Given that the type of underlying configu-
rations seems to be related to different phase behaviour, we have used this new terminology 
to clearly distinguish this configuration type, which is intermediate between trails and walks. 
We note that grooves are the configurations found for a special multi-critical point of the O(n) 
model, known as the Blöte–Nienhuis point or BN-point [2].

The second ingredient in a lattice model of polymers in solution is the set of interactions 
that are associated with various combinatorial features of the configurations. Given a groove 

n nψ ∈ G , we associate the following set of Boltzmann weights: a weight τ for site interaction, 
i.e. for a site that the groove visits more than once, such as occuring in the interacting self-
avoiding trail model (ISAT), a weight p for every straight segment, which moderates stiffness 
in the polymer, and finally a weight ω for each nearest-neighbour interaction, i.e. for a pair of 
visited sites that are nearest-neighbours on the lattice but non sequential in the groove. This 
nearest-neighbour interaction occurs in the canonical interacting self-avoiding walk (ISAW) 
model of polymer collapse. Figure 1 shows an example of a configuration belonging to nG  and 
its associated weights.

There has been long term interest in special cases of this model over and above the canoni-
cal ISAW model, which has a weak second order phase transition between a high temperature 
expanded phase and a low-temperature phase. One can distinguish these phases for example 
by the different scaling of the size of the polymer as given by its radius of gyration. The asso-
ciated exponent takes the value 3 4/ν =  in the high-temperature phase and 1 2/ν =  in the low-
temperature phase. In the low temperature phase the polymer is disordered and dense, but not 
maximally dense: it has been described as a liquid-like disordered drop. The phase transition 
known as the θ-point is conjectured in two dimensions to have a cusp singularity in a conv
ergent specific heat with the associate finite length exponent 1 7/αφ = − . The size exponent at 
the transition is 4 7/ν = . The ISAW model is realised by letting 0τ =  and p  =  1.

A Bedini et alJ. Phys. A: Math. Theor. 50 (2017) 095003
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On the other hand setting 1ω =  and p  =  1 gives the so-called ‘vertex interacting self-
avoiding walk’ (VISAW), which is a misnomer since the configurations are actually grooves 
(as described above) and not self-avoiding walks. This model first arose as a specialisation 
of an integrable lattice model introduced by Blöte and Nienhuis in [2] related to the Izergin–
Korepin vertex model. In fact, that model included more generally a stiffness parameter p. The 
model was studied numerically [3, 4] for various values of p including p  =  1. It has also been 
studied as part of a generalisation of the interacting self-avoiding trail model (asymmetric 
ISAT) that distinguishes collisions from crossings, using transfer matrix calculations [5] and 
Monte Carlo simulations [6]. The Monte Carlo work [6] concluded that the transition in the 
VISAW p, , , 1, 1c( ) ( )τ ω τ=  would apparently seem to be a strong second order transition. The 
exponent describing the finite length singularity in the specific heat has been estimated [6] 
as 0.69αφ≈ , which is in accord with the divergence seen in the ISAT model of 0.68(5) [7], 
estimated from much longer configurations. The size exponent of VISAW has not been meas-
ured using Monte Carlo, though the ISAT model has 1 2/ν =  with a scaling form containing 
multiplicative logarithmic corrections: this clearly differs from the θ-point ISAW value of 4/7. 
In work on the asymmetric ISAT [6] the low temperature phase of VISAW (with p  =  1) was 
considered; it was found to have a similar structure to the low temperature phase in the ISAT 
model. This low temperature phase is not the same as the globular, liquid-like phase in the low 
temperature region of ISAW: for VISAW and ISAT the low temperature phase is maximally 
dense, i.e. every site of the path, apart from those on the outside of a dense ball, is associated 
with a doubly visited site of the lattice.

In contrast, setting p  =  0 excludes the possibility of straight segments and by also setting 
1ω =  the model is known as interacting self-avoiding trails on the L-lattice ( LSAT). Note that 

by setting p  =  0 the trails do not cross themselves and so are actually grooves. The model can 
also be mapped onto ISAW on the Manhattan lattice [8]. A kinetic growth algorithm that pro-
duces long L-lattice trails maps to configurations with Boltzmann weights p, , 2, 1, 0( ) ( )τ ω = : 
an analysis of simulations of very long configurations [9] has shown that the transition is 
θ-like with a weak second order transition with an exponent conjectured to be the same as 
the θ-point value of 1 7/αφ = − . The scaling of the size of the polymer given by the radius of 
gyration or similar is described by the exponent 4 7/ν = . Interestingly, the low temperature 
phase of the LSAT model has not been previously considered. Of course it has been implicitly 
assumed that it would be like the ISAW model, i.e. disordered and dense but not maximally 
dense.

The parameter space of the semi-flexible VISAW model ( 1ω = ) also includes the spe-
cial multi-critical point of the O(n) model found in [2], known as the Blöte–Nienhuis 
point or BN-point. The location of this point is given by p p, , , 1,BN BN( ) ( )τ ω τ=  with 
p 0.275 899BN = …, and 2.630 986BNτ = …. Recently there have been various investigations 

τ

p

Figure 1.  An example of a groove of n  =  18 steps with one (c  =  1) collision, five (s  =  5) 
straight segments, and four (m  =  4) nearest neighbours. There are v1  =  17 singly visited 
sites and v2  =  c  =  1 doubly visited sites. The total weight of this configuration is p5 4τ ω .

A Bedini et alJ. Phys. A: Math. Theor. 50 (2017) 095003
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of the BN-point itself [3, 10]. In the Monte Carlo work [10] the size exponent was estimated 
as close to 4 7/ν =  in agreement with earlier work [3]. The specific heat exponent was not 
estimated and since the study looked at just that point the low temperature phase was not con-
sidered. Very recently, a theoretical framework for the BN-point has been elucidated where 
it has been proposed that this point is related to a particularly unusual conformal field theory 
with continuous exponents [11].

So while the semi-flexible VISAW model has been studied previously by Monte Carlo 
at several values of p, there are clearly some outstanding gaps in our knowledge. To gain a 
wider perspective, the generalised model we study here allows us to interpolate between the 
semiflexible VISAW model and the canonical interacting self-avoiding walk (ISAW) model 
directly. The set of n-step self-avoiding walks nS  is a subset of grooves, n n⊆S G . Hence, if we 
set 0τ =  we suppress all multiple visits to sites and recover self-avoiding walks as configura-
tions. We are now left with two Boltzmann weights ω and p which gives us the semi-flexible 
interacting self-avoiding walk model or semi-flexible ISAW model. This model was studied 
on the square lattice in [12].

To present a phase diagram that can be readily compared to the data we describe below, we 
present the schematic phase diagram for semi-flexible ISAW. This has been obtained from our 
own data and is in accord with the phase diagram elucidated in [13] previously. In figure 2 we 
see a density plot of a generalised specific heat and a schematic phase diagram as per [13].

The data in figure 2 is a slice obtained from the dataset 3P by fixing 0τ =  (see table 1). 
There are three phases: two that occur in the canonical ISAW model, that is the extended and 
globular phases, and a third which is an anisotropic collapsed phase that can be described 
as β-sheets. These two-dimensional β-sheets are actually parallel lines of polymer in the x 
or y directions. The extended and globular collapsed phases are separated by a line of weak 
second-order transitions. The θ-point lies on this line and the conjecture is that the entire line 
belongs to the θ-universality class. On the other hand the extended phase and β-sheet-like 
phase are separated by a line of first order transition points. According to [13], the β-sheet-like 

Figure 2.  A density plot of the largest eigenvalue of fluctuations of the semi-flexible 
ISAW model ( 0τ = ) and a schematic phase diagram inferred from this that is in 
accord with previous work. Darker shades indicate larger values of the fluctuations. 
Later we shall see that appropriate order parameters/indicator variables reinforce these 
conclusions. There are three phases: extended, collapsed (globular) and β-sheet-like. 
Solid lines represent the approximate location of a second-order phase transitions. The 
dashed line indicates first order behaviour.

A Bedini et alJ. Phys. A: Math. Theor. 50 (2017) 095003
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phase and the collapsed phase are separated by a line of second-order phase transitions associ-
ated with a positive αφ-exponent (around 0.4) and therefore a diverging specific-heat.

As can be seen from this summary of the models that are contained within our model 
there are very different transitions and different collapsed low temperature phases. This mir-
rors experimental evidence that physical polymers can have different low temperature phases 
[14–16]. Here we investigate our generalised model filling in the gaps in our knowledge and 
providing a coherent picture of how the transitions and where the different low temperature 
phases exist.

2. The model

2.1.  Quantities

Given an n-step groove n nψ ∈ G  with c collisions, s straight segments and m nearest neigh-
bours, we assign to this groove a Boltzmann weight pc m sτ ω . Summing over all n-step grooves, 
we arrive at the partition function

Z p p, , .n
c m s

n n

( )  ∑τ ω τ ω=
ψ ∈G

� (2.1)

If we denote the number of singly visited sites of the path as v1 and the number of doubly 
visited sites by v2 we can infer their values from n and c by observing that n v v1 21 2+ = + . 
We find that v2  =  c and v1  =  n  +  1  −  2c.

The average of any quantity Q over the ensemble set of grooves nG  is given generically by

Q p
Z p

Q p, ,
1

, ,
.n

n
n

c m s

n n

⟨ ⟩ ( )
( )

( )∑τ ω
τ ω

ψ τ ω=
ψ ∈G

� (2.2)

In this paper we are interested in the following quantities. We calculate a measure of the size 
of the polymer, R n

2⟨ ⟩ , by using the mean end-to-end distance Re n
2⟨ ⟩  defined as follows: Letting 

any n-step path nψ  on a lattice by a sequence r r r, , , n0 1 …  of vector positions of the vertices of 
that path the average-square end-to-end distance is given by

R r r ,e n n n
2⟨ ⟩ ⟨ ⟩= ⋅� (2.3)

In the above formulae we use r 00≡ .
We are actually more interested in analysing the polymer density which is given by

n

R
.n 2

ρ =� (2.4)

As noted in the introduction one of the phases we have is anisotropic so to assist in identifying 
such a phase we define an anisotropy by

n n

n n
,

x y

x y

2⎛

⎝
⎜

⎞

⎠
⎟ζ =

−

+
� (2.5)

where nx and ny are the number of bonds parallel to the x-axis and y-axis, respectively. The 
number of singly visited sites per unit length is given by

v n
c

n
1 2

1
.1⟨ ⟩( ) ⟨ ⟩

( )
= −

+
� (2.6)
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2.1.1.  Scaling.  The size of the polymer defined above is expected to scale as

R C n ,n R
2 2∼ ν� (2.7)

where the amplitude CR is non-universal and temperature dependent, while ν is expected to be 
universal, depending only on the phase.

For high temperature it is always expected that 3 4/ν =  which is the value for non-interacting  
self-avoiding walks and self-avoiding trails so

n1 ,n
1 2/ /ρ ∼� (2.8)

which goes to zero in the extended phase. For each of the low temperature phases we expect 
1 2/ν =  so that ρ will attain a non-zero positive value in the thermodynamic limit.

The scaling of the peak value of the specific heat cn or indeed any similar measure such as the 
largest eigenvalue of the fluctuations matrix at the collapse transition is expected to behave as

c An C ,n x
peak∼ +αφ� (2.9)

assuming the transition is second order. The need to consider the background constant Cx 
depends on whether αφ is positive or negative.

For any isotropic phase one expects that

n C n
C

C
n

1
,x a y

a

a
∼ ∼

+
� (2.10)

so that ζ will converge to a constant less than one. If it is fully isotropic Ca  =  1 and, moreover,

Table 1.  Summary of flatPERM simulations. The simulations range from uniform 
sampling across all four parameters n, c, m, s with the length of configurations restricted 
by a maximal length of n  =  100 (data set 3P) to uniform sampling across only two 
parameters, with Boltzmann weights for the other parameters at fixed values. For 
example in the data set NN-2, two Boltzmann weights are fixed at 0.5τ =  and p  =  1, 
and uniform sampling is performed across n and m. This enables simulations for longer 
lengths, allowing to sample up to n  =  1024.

Name Weight Parameters Iterations
Max 
length

Samples at 
max length

Eff. samples  
at max length

3P c, m, s ⋅9.8 105 100 1.5 1010⋅
SF 1ω = c, s 2.5 106⋅ 256 1.3 1011⋅ 2.9 109⋅
SF-NN 5τ = m, s 3.0 105⋅ 256 8.6 1010⋅ 1.2 109⋅

VI 0.5ω = , p pBN= c 1.3 106⋅ 1024 5.7 109⋅ 2.8 107⋅
VI-2 1ω = , p  =  1 c 1.8 107⋅ 1024 4.6 1010⋅ 5.2 108⋅
VI-3 1ω = , p pBN= c 5.6 106⋅ 1024 2.5 1010⋅ 1.3 108⋅
VI-4 0.5ω = , p  =  1 c 4.3 106⋅ 1024 1.5 1010⋅ 1.2 108⋅

VI L-lattice 1ω = , p  =  0 c 5.3 103⋅ 1000 1.3 1010⋅ 4.5 108⋅

VI-2 L-lattice 0.5ω = , p  =  0 c 2.3 106⋅ 1000 7.6 109⋅ 8.3 107⋅

VI-NN L-lattice p  =  0 c, m 2.0 106⋅ 256 1.1 1011⋅ 3.0 109⋅

VI-NN p pBN= c, m 2.2 106⋅ 256 1.5 1011⋅ 2.3 109⋅

VI-NN-2 p  =  1 c, m 6.3 106⋅ 256 3.0 1011⋅ 7.9 109⋅
NN 1τ = , p  =  7 m 103 512 6.0 106⋅ 2.7 104⋅

NN-2 0.5τ = , p  =  1 m 1.6 106⋅ 1024 1.6 1010⋅ 8.6 107⋅

A Bedini et alJ. Phys. A: Math. Theor. 50 (2017) 095003
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n n o n .x y ( )− ∼� (2.11)

so that ζ converges to zero in the thermodynamic limit.
On the other hand for a fully anisotropic phase one expects that

n n o nmin , ,x y( ) ( )=� (2.12)

so that

n n nx y∥ ∥− ∼� (2.13)

and ζ will converge to one in such a phase.
For a maximally dense phase one may expect that

v n o n .1 ( ) ( )=� (2.14)

3.  Simulation and methodology

We studied our generalised model for various slices of the three-dimensional parameter space 
p, ,( )τ ω  using Monte Carlo simulations.
Our simulations were based on the flatPERM algorithm [17] which is a flat histogram ver-

sion of the pruned and enriched Rosenbluth method (PERM) developed in [18]. The PERM 
algorithm generates a polymer configuration kinetically, which is to say that each growth step 
is selected at random from all possible growth steps. During this process the algorithm keeps 
track of a weight factor to correct the sample bias. At each growth step, configurations with 
very high weight relative to other configurations of the same size are duplicated (or enriched) 
while configurations with low weight or that cannot be grown any further (i.e. because they 
are ‘trapped’ or because they have reached a limit length) are discarded (or pruned). A sin-
gle iteration is then concluded when all configurations have been pruned. The total number 
of samples generated during each iteration depends on the specifics of the problem at hand 
and on the details of the enriching/pruning strategy. This simple mechanism produces valid 
configurations with many steps very efficiently but introduces correlation between samples 
which are grown from a same smaller configuration. We keep account of these correlations in 
two ways: first, we count ‘effective’ samples by the fraction of independent steps, and second, 
we run around 10 completely independent runs for each simulation to obtain an a posteriori 
measure of the statistical error.

FlatPERM extends this method by cleverly choosing the enrichment and pruning steps to 
generate for each polymer size n a quasi-flat historgram in some choosen micro-canonical 
quantities k k kk , , ,1 2( )= … �  and producing an estimate Wn k,  of the total weight of the walks of 
length n at fixed values of k. From the total weight one can access physical quantities over a 
broad range of temperatures through a simple weighted average, e.g.

ρ
ρ

ρ
=
∑ ∏

∑ ∏
O

O W

W
.n

n j j
k

n

j j
k

n

k k k

k k

, ,

,

j

j

( )
( )〈 〉 ( )� (3.1)

The quantities kj may be any subset of the physical parameters of the model. For the results 
presented in this paper, we have run different simulations with different choices for the micro-
canonical quantites k depending on region of the parameter space of interest. We point out that 
the number of micro-canonical quantities has a dramatic impact on the memory requirement 
of algorithm which might need to keep in memory many multi-dimensional histograms like 
Wn k,  and n k,O . The complete list of our simulation runs is provided in table 1.
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From a simulation with micro-canonical quantities, it is possible to obtain a mixed distri-
bution that is canonical in one of the quantities by fixing its associated weight. For example: 
from Wn k k k, , ,1 2 3 we can obtain ‘a slice’ at fixed value of 3ρ  by computing

W W .n k k
k

k
n k k k, , 3 , , ,1 2

3

3
1 2 3

˜  ∑ ρ=

The normalisation of the distribution is irrelevant.
To obtain a landscape of possible phase transitions, we compute the largest eigenvalue of 

the matrix of second derivatives of the free energy with respect to ρ effectively measuring the 
strength of the fluctuations and covariance in k. E.g. given the flatPERM weights Wn k, , we first 
compute the partition function:

Z W ,n
j

j
k

n
k

k,
j( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ ∏ρ ρ=� (3.2)

and then we find the maximum eigenvalue of the Hessian matrix

H
flog

,ij
n

i j

2 ( )ρ
ρ ρ

=
∂
∂ ∂

� (3.3)

where f Zlogn n( ) ( )ρ ρ=  is the free energy.
More explicitedly, in the diagrams where p is fixed the remaining parameters are ,( )ρ τ ω=  

and we plot the eigenvalue of the matrix defined by

τ τ ω

τ ω ω

=

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

H

f f

f f
.

2

2

2

2 2

2

� (3.4)

In the diagrams where ω is fixed the remaining parameters are p,( )ρ τ=  and we plot the 
eigenvalue of the matrix defined by

τ τ

τ

=

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

H

f f

p

f

p

f

p

.

2

2

2

2 2

2

� (3.5)

Finally, when τ is fixed, the remaining parameters are p,( )ρ ω=  and we plot the eigenvalue 
of the matrix defined by

ω

ω ω

=

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

H

f

p

f

p

f

p

f
.

2

2

2

2 2

2

� (3.6)

We caution that the landscape of possible phase transitions obtained in such a way is a 
pseudo-phase diagram for finite-size systems, so some care needs to be taken when extrapo-
lating to the thermodynamic limit, in particular to distinguish crossover regions from actual 
phase transitions. Also, phase boundaries are expected to shift when increasing the system 
size. To support our conclusions, we therefore investigate supplemental information, such as 
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the finite-size scaling of the specific heat in boundary regions. Where boundary regions meet, 
we expect to find higher-order critical points. The precise location of these points, let alone 
their nature, is difficult to determine from our simulations.

4.  Semi-flexible VISAW: (ω =  1)

We started our new investigation by examining the semi-flexible VISAW model for all values 
of stiffness p. This would allow us to see how the BN point belongs to a critical line. To do so, 
we simulated a VISAW model with additional stiffness.

A density plot of the largest eigenvalue of fluctuations of a semi-flexible VISAW model is 
shown in figure 3. We found that the BN point seems to lie on a line of second-order phase 
transitions that extends from the L-lattice trails point to high value of τ and p, connecting the 
BN point and the VISAW critical point. For some high value of τ the transition seems to turn 
first order. The L-lattice trails point is known to be in the θ-point universality class, while the 
critical VISAW has a strongly divergent specific-heat, as it was reported in [6]. Therefore 
along the line the transition starts weak and becomes stronger and stronger until it turns first 
order.

As done in [6] we considered the fraction of sites visited only once as an order parameter. 
In figure 4 we show that number of singly visited sites per unit length in the maximally dense 
phase goes to zero as length diverges. This indicates the existence of the maximally dense 
phase where all but surface sites are involved in collisions and so are doubly visited by the 
polymer.

In figure 5 we show a density plot of the fraction of singly visited sites indicating that the 
maximally dense region extends all the way to the line of second order phase transitions.

Inspecting typical configurations at various parameter values further confirms this sce-
nario. In figure 6 we show three configurations for 1ω =  and p  =  0 at 1τ =  (swollen), 2τ =  
(critical) and 4τ = . (Note that the choice of p  =  0 forces a right-angle turn after every single 
step, so these are configurations on the L-lattice.) One clearly sees the typical characteristics 

Figure 3.  A density plot of the largest eigenvalue of fluctuations of the semi-flexible 
VISAW model ( 1ω = ) and a schematic phase diagram inferred from this and the order 
parameters/indicator variables of polymer density and singly visited sites. Darker 
shades indicate larger values of the fluctuations. There seems to be only two phases: 
extended and maximally dense. The solid line (red) represents the estimated location of 
second order phase transitions. Data is obtained from the dataset SF.
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of a swollen chain for 1τ = , and observes a clear difference between this configuration and 
the configuration at 2τ = , which is critical. In contrast, the configuration for 4τ =  is close to 
maximally dense with only a few small internal defects.

5. The full model

Our model has three Boltzmann weights and so three parameters that can be varied. The mod-
els of previous focus have been two parameter slices of the space, namely the semi-flexible 
ISAW that is defined by 1τ =  and the semi-flexible VISAW that is defined by 1ω = . Because 
simulations of longer lengths can be made when we fix certain Boltzmann weights we have 
analysed our model in slices. To analyse the phase diagram in a slice we have used three 

Figure 4.  A plot of the number of singly visited sites per unit length versus n−1/2 for 
p  =  0 and 1ω =  and for several values of τ. For 4τ =  and 6τ = , this quantity goes 
to zero as n diverges. This indicates the existence of the maximally dense phase where 
all but surface sites are involved in collisions and so are doubly visited by the polymer. 
Data is obtained from the dataset VI L-lattice.

Figure 5.  A density plot of the number of singly visited sites per unit length indicating 
the region that is maximally dense for 1ω = . The solid line (red) shows the approximate 
location of second order phase transitions. Data is obtained from the dataset SF.
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main pieces of information. Firstly we have used the appropriate Hessian and considered the 
landscape of the largest eigenvalue of that matrix: this gives us an indication of divergences 
in appropriate fluctuations, equivalently specific heats. We have looked at scaling of those 
possible divergences. When we suspect a first order transition inferred from linear or super 
linear scaling of the divergence we consider the distribution of the appropriate micro-canon-
ical quantity so look for emerging bimodality. We have also considered the order parameters 
associated with the known phases in the semi-flexible ISAW and VISAW models to indi-
cate which phases occur in which regions of the parameter space. Finally we have looked at  
‘typical’ (random) configurations to re-enforce our conjectures.

In the following sections we consider two-dimensional slices of the parameter space, first 
by fixing τ, then by fixing ω, and finally by fixing the stiffness p.

The first key observation to make is that the order parameters clearly indicate that the three 
low temperature phases from the semi-flexible ISAW and VISAW models occur in different 
parts of the three dimensional phase space and so that there are at least three low temperature 
phases.

5.1.  τ slices

Before looking at the range of τ slices we consider 5τ = , first to see how the phase diagram 
changes from 1τ =  when we fix at a value of τ that should induce the maximally dense phase 
in some part of the phase diagram but also to demonstrate the method we are using to conjec-
ture phase diagrams.

5.1.1.  τ = 5.  In figure 7 a plot of the maximum eigenvalue of the matrix of fluctuations is 
given for the slice 5τ = . Darker shades indicate larger values of the fluctuations. There is 
clearly a strong peak in these fluctuations for large p separating regions of small and large ω. 
We then identify this transition to be between an extended phase and a β-sheet phase given 
schematically by the dashed phase boundary drawn for p  >  5: the two phases are identified 
using the order parameter plots seen in figure 8. We have then verified that the divergence 
of the fluctuations is at least linear in length and that at least at some point along that line 
the distribution of nearest neighbour contacts m is bimodel. The other lines are all seen to 
be second order transitions. We find that a maximally dense phase does exist for very small 
p and moderately small ω in the bottom left corner of the diagram. Not all the conjectured 

Figure 6.  Some typical configurations for 1ω =  and p  =  0 at 1τ = , 2τ =  (at 
the location of the transition) and 4τ = . We see that the low temperature ( 4τ = ) 
configuration appears to be almost maximally dense. Data is obtained from the dataset 
VI L-lattice.
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phase boundaries are equally well delineated, with the extended—collapsed boundary the 
least defined: this is not to be unexpected as the transition should be in the θ-universality class 
which has a convergent specific heat singularity. In general this phase boundary is the most 
difficult to estimate. Finally to re-enforce our identification of phases we have considered 
typical configurations. In figure 9 we show a typical configuration in the part of the phase dia-
gram we label as β-sheets (actually for p  =  7 in this instance): it clearly shows the anisotropic 
structure we expect.

One key observation to make is the maximally dense phase and the β-sheet phase never 
meet and that there are only ever three phases meeting at a point in the phase diagram.

5.1.2.  All τ.  Starting with the semi-flexible ISAW model again at 0τ =  we now compare how 
the phase diagram changes with changing τ. We specifically consider 0, 1, 2, 3, 4, 5τ =  and 8. 
The associated density plots of the largest eigenvalue are shown in figure 10. The extended, 
β-sheet and collapse (globular) phases exist at each value of τ and exist for roughy in the 
same regions of parameter space: the β-sheet phase always exists when p and ω are both large 
enough. For large enough τ a region of the maximally dense phase appears for small p and 
small ω. This region increases in size with increasing τ.

5.2.  ω slices

We now compare how the phase diagram changes from the one shown above for the semi-
flexible VISAW model ( 1ω = ) by considering different slices of fixed ω: see figure 11.

Recalling that for 1ω =  we conjecture just two phases being extended and maximally 
dense we can now see how the other phases emerge. For 1ω<  there are only these two phases. 
It is worth noting that for 0ω =  the extended to maximally dense transition appears to be first 
order for all p but as ω is increased a region of second order transition appears for small p. 
For 1ω>  we can first see the emergence 1.5ω =  of the β-sheet phase for large p from the 
extended phase. This is in accord with the semi-flexible ISAW diagram and other τ slices 

Figure 7.  Plot of the maximum eigenvalue of the matrix of fluctuations for 5τ = . 
Peaks in this plot can be used to infer the phase diagram. Darker shades indicate larger 
values of the fluctuations. Solid lines show the approximate location of second order 
phase transitions and dashed lines indicate first order behaviour. As indicated by the 
arrow, the phase transition turns first-order as it approaches the vertical axis. The data 
for this plot is obtained from the dataset SF-NN.

A Bedini et alJ. Phys. A: Math. Theor. 50 (2017) 095003



13

Figure 8.  For 5τ =  we plot three order parameter/indicator variables that can be used 
to re-enforce the conclusions regarding the phase diagram made from the peaks in the 
fluctuations. In the top diagram the anisotropy parameter is plotted: it is clearly large 
for large p and ω—this is a good indicator for the β-sheet phase. In the middle diagram 
the density is plotted: it is clearly small (tending to zero) in the extended phase for 
small ω excluding very small p. In the bottom diagram the fraction of singly visited 
sites is plotted: in the maximally dense phase is elected to go to zero. These plots are all 
obtained from the same dataset SF-NN.
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discussed above. Again in accord with these τ-slices we see that for 2ω =  and 2.5ω =  the 
extended phase has been completely replaced with the collapsed and β-sheet phases. Also we 
note that as ω is increased the maximally dense phase retreats to large values of τ and smaller 
values of p. This highlights the competition of the doubly-visited site and nearest-neighbour 
interactions: they favour different and competing low temperature phases. We also note that 
for 1.5⩾ω  the extended to maximally dense phase transition is completely second order for 
the range of p and τ considered in these diagrams.

5.3.  p slices

Finally we consider fixing the stiffness p. There are important values of the stiffness, namely 
p p0, , 1BN=  that are worth considering first.

5.3.1.  p  =  0.  When p  =  0 all the configurations bend at each step and so effectively exist on 
the L-lattice. In particular, this slice contains the LSAT model for 1ω = . See figure 12 for the 
density plot of the largest eigenvalue of the fluctuations and a conjecture phase diagram.

The phase diagram is seen to contain three phases: extended, collapsed (globular) and 
maximally dense, see figure 13. This is as expected since the β-sheet phase exists only for suf-
ficiently large stiffness. The demarcation of the maximally dense phase is fairly well defined 
but the boundary between the extended and globular phases is very difficult to ascertain: the 
fluctuation data and the order parameter data given quite different phase boundaries. We have 
conservatively conjectured a boundary that does not change much as τ changes but we have 
weak evidence that this is correct.

The key observation to be made here is that the low temperature phase of the LSAT model 
is maximally dense! This is completely unexpected and we do not have a explanation for this. 
The LSAT model has a collapse transition that is expected to be in the θ universality class and 
not the ISAT/VISAW one and yet its low temperature collapsed phase seems to coincide with 
those models: recall that collapse transition has a strongly divergent specific heat in those 
models. We confirm that as ω is varied that the low temperature phase is indeed maximally 
dense: see figure 14.

Figure 9.  Here are some typical configurations in the plane 1τ =  at p  =  7. Of particular 
interest is the β-sheet type configuration. These configurations come from the dataset 
NN.
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Figure 10.  For values of τ ranging from 0τ =  (top left) to 8τ =  (bottom) a density 
plot of the larger eigenvalue is displayed. Information from this has been combined with 
the three order parameter indicator variables mentioned above to infer a phase diagram 
schematically drawn in each diagram. We could not determine the phase boundary 
between the extended and collapsed phases for 2τ>  with much accuracy: it could move 
to smaller values of ω especially for small p. As in figure 7 the phase transition turns 
first-order as it approaches the vertical axis. These plots come from an appropriate slice 
of the dataset 3P, except the phase diagram at 5τ =  which comes from dataset SF-NN.
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For non-zero ω we see that the extended to maximally dense transition is second order and 
only at 0ω =  might it turn to first order. This is in accord with the LSAT model at 1ω =  of 
course.

5.3.2.  p  =  pbn.  We now consider fixing the stiffness to the BN-point value pBN so as to con-
sider how the BN-point sits in the wider phase space varying ω and τ: see figure 15. The 
semi-flexible VISAW model along the line p pBN=  is shown in figure 15 as the line 1ω = . 
The analysis here is done analogously to the one above for the LSAT model (p  =  0). One can 

Figure 11.  First- and second-order transitions are shown respectively as dashed and 
solid lines. At 0ω =  the extended to maximally dense transition is always first order 
except possibly at p  =  0. For other values of ω there seems to be a special value of 

bω ω=  that signals a change from second to first order in that transition: second order 
for small p and first order for large p. The extended to β sheet transition is expected to 
be first order while the collapse to β sheet transition is expected to be second order in 
line with previous work. The extended to collapsed phase is the canonical θ-transition 
that is weakly second order. These plots come from an appropriate slice of the dataset 
3P, except the phase diagram at 1ω =  which comes from dataset SF.
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see that in common with the LSAT model the low temperature phase is maximally dense, as 
demonstrated in figure 16, which shows diagrams for the relevant order parameters. From the 
scaling of the number of singly visited sites (figure 17) and typical configurations (figure 18) 
it follows that the low temperature phase is indeed maximally dense.

5.3.3.  p  =  1.  It is interesting to consider the fully-flexible case of our model (p  =  1). This 
model contains explicitly the fully flexible VISAW for 1ω =  and the standard ISAW model 
for 1τ = . See figure 19. Again the three phases of extended, globular and maximally dense 
occur. The region of the conjectured first order transition between the extended and maximally 
dense phase has increased significantly over p pBN= . It may be that in the thermodynamic 
limit that it ends at 1ω = —a question that deserves further consideration.

Figure 12.  The conjectured phase diagram for p  =  0 drawn on top of the density plot 
of the maximum eigenvalue of the fluctuations. For 1ω =  one obtains the LSAT model. 
There are three phases of maximally dense, extended and collapsed. The phase transition 
between the extended and maximally dense becomes first order as it approaches the 
vertical axis for small ω. Otherwise the transitions are second order. The data for this 
plot comes from dataset VI-NN L-lattice.

Figure 13.  Order parameters for p  =  0. The left diagram shows the frequency of 
singly-visited sites going to zero for large τ and small ω, and the right diagram shows a 
clearly demarcated region of extended configurations where the density is small. Taken 
together, these diagrams indicate the presence of three distinct phases. The data for this 
plot comes from dataset VI-NN L-lattice.
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It is worth considering the typical configurations along a line parallel in τ to the ISAW 
model. In figure 20 we have illustrated some typical configurations for the line 0.5τ = . At low 
temperature (large ω) we see a configuration from the globular collapsed phase which can be 
compared to the maximally dense and β-sheet phases.

5.3.4.  All p.  We now compare a fully range of p values in figure  21. We see that as one 
increases p the region of the maximally dense phase retreats to larger values of τ and smaller 
values of ω eventually disappearing from our diagrams’ range of τ and ω once p reaches 2. 
The other significant feature to note is the eventual appearance of the β-sheet phase for p  =  5 
at large values of ω.

Figure 14.  Evidence of the maximally dense phase at p  =  0. According to the phase 
diagram in figure 12, on the vertical line 0.5ω =  and for values of τ above 2, we are in 
the maximally dense phase. This is confirmed in the above plot which shows that the 
ratio of singly visited sites goes to zero. The plot on the left is obtained from dataset 
VI-NN L-lattice.

Figure 15.  The phase diagram for p pBN= , as obtained from dataset VI-NN. First- 
and second-order transitions are shown respectively as dashed and solid lines. There 
are three phases, as at p  =  0, with extended, collapsed and maximally dense phases 
existing.
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6.  Phase transitions

While there are several different transitions in our model we have concentrated our invest
igation to the extended to maximally dense transition as the least all understood but also 
assessable using our data. First let us consider the other transitions. The extended to globu-
lar transition has been well studied previously, see [19] and reference therein, as this is the 
canonical polymer collapse transition. We find no evidence that it changes with parameters of 
our model and we conjecture that it always lies in the θ-point universality class of the ISAW 
model. The extended to β-sheet transition has been studied previously [12] and a first order 
transition has been found. We confirm this and see it also is unchanged by the parameter varia-
tions in our model. The globular to β-sheet transition is a low temperature transition that is dif-
ficult to study. Nevertheless it has been studied in [12] and they found 0.4αφ≈ : a moderately 
strong divergence specific heat. We are unable to provide any further precision to the previous 
study. The transition between the collapsed phase and the maximally dense phase has not been 
studied previously and unfortunately our simulations are not long enough to elucidate this low 

Figure 16.  Order parameters for p pBN= . The left diagram shows the frequency of 
singly-visited sites going to zero for large τ and small ω, and the right diagram shows 
a clearly demarcated region of extended configurations where the density is going to 
zero. Taken together, these diagrams indicate the presence of three distinct phases. The 
data for this plot comes from dataset VI-NN.

Figure 17.  This plot shows that the ratio of singly visited sites goes to zero for large 
τ, suggesting that increasing τ leads to a collapsed phase that is maximally dense. This 
data comes from dataset VI.
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Figure 18.  Here are some typical configurations for p pBN=  along the line 0.5nnω =  
at 1.5τ = , 2.05τ =  (at the approximate location of the transition) and 4τ = . The low-
temperature phase is clearly compact. These configurations are obtained from dataset VI.

Figure 19.  The phase diagram for p  =  1. First- and second-order transitions are shown 
respectively as dashed and solid lines. This data comes from dataset VI-NN-2. The 
canonical ISAW model lies on the horizontal line 1τ = .

Figure 20.  Typical configurations for p  =  1 and 0.5τ = , at 1.6ω = , 1.9ω =  and 
4ω = . The low-temperature phase is globular: dense but with amorphous structure. 

These configurations come from the dataset NN-2.
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Figure 21.  First- and second-order transitions are shown respectively as dashed and solid 
lines. At p  =  0 the extended to maximally dense transition is always second order except 
possibly at 0ω = . In line with the previously discussed ω-slices there exists a special 
value of bω ω=  that signals a change from second to first order in that transition at other 
values of p. The first three plots come from datasets VI-NN L-lattice, VI-NN and VI-
NN-2 respectively. The remaining plots come from an appropriate slice of the dataset 3P.
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Figure 22.  On top is the specific heat on the vertical line p  =  1, 1ω =  as a function of 
τ. On the bottom is the scaling of the peak heights in length, which shows an exponent 
close to 0.68. These plots come from dataset VI-2.

Figure 23.  A plot of the effective value of the exponent ν when 1ω =  and p  =  1, that 
for the VISAW model, against τ for different values of length. The different lines cross 
at a point close to the expected transition temperature indicating the critical value of ν 
to be close to the θ-value of 4/7. This plot comes from dataset VI-2.
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temperature transition. The only comment we can make is that we do not see evidence that it 
is first order.

6.1.  Extended to maximally-dense

The transition in the VISAW model, and as we have seen it is apparently the one in the LSAT 
model, is the transition between the extended to maximally dense phases. Since analysis of 
the VISAW model has previously found a diverging specific hear with 0.69αφ≈  (we confirm 
this earlier estimate in figure 22) while LSAT has a conjectured negative exponent value of 

1 7/αφ = −  in common with the θ-point there is no consistent value in the literature we can 
attribute to this transition.

The analysis by Blöte–Nienhuis [2] of the semiflexible VISAW model and the subsequent 
numerical work by Foster and Pinettes [3] find a variety of phase transition including first 

Figure 24.  Top: the specific heat as a function of τ on the vertical line p  =  0, 1.0ω = . 
Bottom: the scaling of the specific heat peak with respect to the size of the walk. These 
plots come from dataset VI L-lattice. We believe this critical point belongs to a line 
of phase transitions in the Θ universality class, which is know to feature a convergent 
specific-heat. Therefore we interpret the low effective exponent 0.22 as the result of 
strong finite-size corrections to a converging specific-heat.

A Bedini et alJ. Phys. A: Math. Theor. 50 (2017) 095003



24

order behaviour, which indicates this transition has a richer structure that depends on model 
parameters. In fact we have found that there is a region where it is first order and a region 
where it is second order. Importantly our second order transition does not have exponents that 
are consistent. While it is possible that the scenario is the same as in the triangular ISAT model 
where it has been conjectured that a first order line ends in an ISAT universality class point fol-
lowed by a line of θ-like transitions, our data is not precise enough to confirm this. However, 
that scenario would be the simplest: it begs the question of what happens at the point where 
the maximally dense globular and extended phases meet. It is also confused by at least one set 
of data, which is shown in figure 23. If the fully flexible VISAW model is in the ISAT univer-
sality class, we should find a size exponent of 1 2/ν =  with logarithmic corrections. However, 
the plot of the effective exponent seems to indicate that 4 7/ν =  would be a compatible value. 
This confuses any possible simple conjecture.

It is worthwhile noting that the estimation of the exponents for the convergent θ-like trans
itions can be deceptive. In figure 24 we show an effective exponent estimate for αφ directly 
from the fluctuations which gives a positive value of around 0.22. However, knowing that a 
negative exponent is likely, an estimate of the exponent using

Figure 25.  This is the specific heat on the vertical line p pBN= , 1.0ω = . The scaling 
of the peak heights in length shows an exponent close to 0.47. These plots come from 
dataset VI-3.
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(a)

(b)

(c)

Figure 26.  (a) The specific heat as a function of τ on the vertical line p pBN= , 0.5ω = . 
(b) The scaling of the specific heat peak with respect to the size of the walk. (c) The 
distribution of site interactions near the specific heat peak has a single mode. All plots 
come from dataset VI.
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(a)

(b)

(c)

Figure 27.  (a) The specific heat as a function of τ on the vertical line p  =  1, 0.5ω = . 
(b) the scaling of the specific heat peak with respect to the size of the walk. The scaling 
is super-linear, which is a clear indication of a first-order phase transition. (c) The 
distribution of site interactions near the specific heat peak presents two clear peaks. 
These plots come from dataset VI-4.
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gives a value of around  −0.06 at the lengths considered, which are up to n  =  1000. We are 
aware from earlier work that good estimates of αφ in these problems require polymer lengths 
of many thousands [20]. A very similar picture is produced at 0.5ω =  suggesting the trans
ition to the maximally dense phase looks θ-like when p  =  0 regardless of ω.

Of interest has been the BN-point value of the stiffness pBN, and in figure 25 we plot the 
specific heat at 10ω =  where we obtain 0.47αφ≈ .

However, at 0.5ω =  we see in figure 26 that an estimate of 0.71 is obtained, compatible 
with the ISAT universality class. It could be that at 0.5ω =  there are just very strong finite size 
effects and a negative value will eventually be reached for sufficiently long lengths.

To demonstrate that the extended to maximally dense phase transition can also display first 
order characteristics we consider now 0.5ω =  with p  =  1. In figure 27 we plot the specific 
heat and the distribution of doubly visited sites which is clearly bimodal. The specific heat 
looks like it is diverging super-linearly (impossible in the large length limit) which is the 
indication of the finite size early build up of a first-order transition. Finally, we estimate, using 
from simulations of short walks (up to length 100), the extent of the first order region for  
different values of p: this is given in figure 28.

7.  Discussion

We have considered a generalised model of polymer collapse in two dimensions that contains 
several well know models as subcases. We have found three low temperature phases as well as 
the normal high temperature extended phase that is dominated by the excluded volume effect. 
The three low temperature phases can be described as globular, which occurs in the canoni-
cal polymer collapse models, maximally dense, and as an anisotropic crystal phase, that has 

Figure 28.  We identified a two-dimensional region of first-order phase transitions. This 
plot shows, for each value of ω and p, the lowest value of τ for which we detected 
a double peak in the energy distribution. These lines have been obtained from the 
very short walks (n  =  100) in the dataset 3P and therefore these numbers are to be 
considered upper bounds (e.g. in the thermodinamic limit the lines would extend further 
on the right).
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typical configurations analogous to a three-dimensional β-sheet. The β-sheet phase and maxi-
mally dense phase do not meet. The phase transition between the extended and maximally 
dense phase is the most complicated and displays first order or second order characteristics 
depending on the parameters. More work needs to be done to fully elucidate the transitions 
but we now have an overall picture in a larger parameter space of the how these phases arise.
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