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a b s t r a c t

Recently it has been shown that a two-dimensionalmodel of self-attracting polymers based
on attracting segmentswith the addition of stiffness displays three phases: a swollen phase,
a globular, liquid-like phase, and an anisotropic crystal-like phase. Here,we consider the at-
tracting segment model in three dimensions with the addition of stiffness. While we again
identify a swollen and two distinct collapsed phases, we find that both collapsed phases are
anisotropic, so that there is no phase in which the polymer resembles a disordered liquid
drop. Moreover all the phase transitions are first order.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

An isolated polymer in solution undergoes a collapse transition from a swollen coil to a collapsed globule as the
temperature is lowered and consequently the quality of the solvent is reduced. The canonical lattice model used to describe
this scenario is the model of Interacting Self-Avoiding Walks (ISAW) on a regular lattice, such as the square or simple cubic
lattice [1,2].

At high temperatures the self-avoiding walk is swollen, in that the fractal dimension of the walk df is less than the fractal
dimension of simple random walks. The exponent ν = 1/df describes the scaling of the size of the walk, as measured for
example by its radius of gyration, as a function of the length of the walk. It is known that ν = 3/4 in two dimensions [3]
and ν = 0.587597(7) in three dimensions [4].
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Fig. 1. A self-avoidingwalkwith the interactions of the attracting segment (AS)model shown as intertwined curves between bonds of thewalk on opposite
sides of the squares of the lattice. Also shown is an example of a stiffness segment pair which obtains a stiffness energy in our generalisation.

At low temperatures the self-avoiding walk is collapsed, in that the fractal dimension of the walk df is equal to the
dimension d of the ambient space. The transition between the swollen coil and the collapsed globule happens at a particular
temperature, called the θ-temperature.

In the standard description of the coil–globule transition, the transition is a tricritical point related to the N → 0 limit of
the ϕ4–ϕ6 O(N) field theory [5–7]; there is a second-order phase transition with a specific heat exponent conjectured to be
−1/3 in two dimensions [8] and 0 in three dimensions with a logarithmic divergence of the specific heat. In two dimensions
the fractal dimension of thewalk is expected to be df = 7/4 [8] and df = 2with logarithmic corrections in three dimensions.

The canonical model of interacting self-avoiding walks fits this scenario. In this model one expects the low-temperature
state to be a liquid drop, i.e., the polymer is compact but disordered.

In stark contrast to this scenario, there is another simple interacting polymermodel, the Interacting Hydrogen-Bondmodel
(IHB) [9–11], where a pair of sites on the self-avoiding walk acquires a hydrogen-like bond potential if the sites are (non-
consecutive) nearest neighbours, as in the ISAW model, and each site lies on a straight section of the walk. This model has
been introduced in the context of biopolymers where hydrogen bonding plays an important role [12]. In contrast to ISAW,
this model displays a first-order collapse transition in both two and three dimensions. Here, the low-temperature state is
an anisotropic compact phase described as a polymer crystal.

Another model introduced to account for hydrogen bonding is the Attracting Segments model (AS) [13–15] (also known
as ‘interacting bonds’). It is a lattice model based on self-avoiding walks where an attractive potential is assigned to bonds
of the walk that lie adjacent and parallel on the lattice (though not consecutive along the walk), see Fig. 1. On the square
lattice, this model seems to have two phase transitions, one of which is identified as the θ-point [15].

If one introduces stiffness into the ISAW model, one arrives at the semi-flexible ISAW model [16–19]. In addition to the
nearest-neighbour site interaction of ISAW, one introduces a stiffness energy associated with consecutive parallel bonds of
the walk. This was studied on the cubic lattice by Bastolla and Grassberger [16], where it was shown that depending on the
energetic weighting of straight segments one finds a single first-order transition from a swollen coil to a crystalline state for
a strong energetic preference for straight segments, or a soft θ-transition from a swollen coil to a liquid globule, followed by
a first-order transition to a crystalline state. In two dimensions, a similar scenario has been found [20], the main difference
being that the transition between the globule and the frozen state becomes second-order.

The semi-flexible AS model, in which both straight segments and interacting segments carry an energy, as shown in
Fig. 1, has been studied in two dimensions in Ref. [21], where it was found that it has a phase structure in common with the
semi-flexible ISAWmodel.

In this paper, we discuss the semi-flexible AS model in three dimensions. While we again identify a swollen and two
distinct collapsed phases, we find that both collapsed phases are anisotropic, so that there is no phase in which the polymer
resembles a disordered liquid drop. The transitions between the swollen and each of the collapsed phases and between the
two collapsed phases are first order. The three lines of transitions in parameter space meet at a triple point.

2. Our study

2.1. Semi-flexible attracting segments model

Our semi-flexible attracting segments model (semi-flexible AS model) is a self-avoiding walk on the simple cubic lattice,
with self-interactions as in the ASmodel [13–15] and a stiffness (or equivalently bend energy) added. Specifically, the energy
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of a single chain (walk) consists of two contributions (see Fig. 1): the energy −εas for each attracting segment pair, being a
pair of occupied bonds of the lattice that are adjacent and parallel on the lattice and not consecutive along the walk; and
an energy −εss for each stiffness segment pair, being a pair of bonds consecutive along the walk that are parallel. A walk
configuration ϕn of length n has total energy

En(ϕn) = −mas(ϕn) εas − mss(ϕn) εss, (2.1)

where mas denotes the number of attracting segment pairs and mss denotes the number of stiffness segment pairs. The
partition function is defined then as

Zn(βas, βss) =


mas,mss

Cn,mas,msse
βasmas+βssmss , (2.2)

where βas = εas/kBT and βss = εss/kBT for temperature T and Boltzmann constant kB. The density of states, Cn,mas,mss , has
been estimated by means of Monte Carlo simulations.

2.2. Simulations

On the cubic lattice we performed simulations using the FlatPERM algorithm [22], estimating the density of states up
lengths for n = 128 over the two parameters mas and mss. We use averages for the density of states from five independent
runs.Moreover,wehave simulated thedensity of states inmas atβss = ±1.0 and inmss atβas = 1.0 for lengths up ton = 256.

The density of states allows us to calculate the internal energy and the specific heat, or equivalently, themean values and
the fluctuations of mas and mss, respectively. This allows us to locate phase transitions through the possible divergences in
the specific heat. To detect orientational order, we estimated an anisotropy parameter [16].

3. Results

3.1. Phase diagram

From the density of states for 128-step walks, we compute the expected number of attracting segment pairs and stiff
segment pairs, shown in Fig. 2 as a function of βas and βss. There are three distinct regions recognisable. For small values
of βas both ⟨mas⟩ and ⟨mss⟩ are small, with ⟨mss⟩ increasing slowly as βss increases. Upon increasing βas, there is a sharp
transition to large values of ⟨mas⟩, indicative that the walks are collapsed on average. For large βas the density of straight
segments, ⟨mss⟩, is small for negative values of βss, but increases sharply as βss increases. This indicates that there are two
distinct phases when βas is large (collapsed region).

Putting this broad information together it seems to indicate that there is a region in which the walk forms a swollen
coil (the non-interacting SAW at βas = βss = 0.0 lies in this region), and that there are two regions in which the walk is
collapsed. For one of the collapsed regions with negative βss, ⟨mas⟩ is very small (in fact smaller than in the swollen region
for the same values of βas), whereas for the other collapsed region with positive βss, ⟨mas⟩ is large.

The fluctuations σ 2(mas) and σ 2(mss), also shown in Fig. 2, confirm this scenario. The fluctuations of mas sharply peak
upon increasing βas. This peak is stronger for positive values of βss, where it is matched by a peak in the fluctuations ofmss.
For negative values, it is weaker, and there is no matching peak in the fluctuations of mss. This indicates that there are two
different transitions from the swollen region to the collapsed region. Moreover, within the collapsed region we find a sharp
peak in the fluctuations inmss upon increasing βss, which is not matched by a peak in the fluctuations ofmas.

We thus have three clearly defined regions in the βas, βss-plane, delineated by rather sharp peaks in fluctuations. The
presence of these fluctuations leads us to identify these regions with thermodynamic phases, so that we have a swollen
globular phase, and two collapsed phases, one of which is rich in straight segments, and one of which is rich in bends. The
conjectured phase diagram is shown in Fig. 3. This phase diagram also indicates that the transition lines are first-order, and
that the collapsed phases have in fact a crystalline structure. We will provide evidence for this in the next two sections.

3.2. Phase transitions

In order to study the order of the three transitions, we consider the behaviour of the system on the straight lines
βss = 1.0, βss = −1.0, and βas = 1.8, which have been chosen to cut across the three different phase transition lines.
In Fig. 4 we show the scaled fluctuations σ 2(mas)/n2 and σ 2(mss)/n2, which behave according to the finite-size scaling of
the first order transition [23,24]. The scaling has been chosen such that the peak height should tend to a constant if the
transition is first-order. Clearly all three lines show strong transitions, and to clarify whether they are really first-order we
consider the distribution of the appropriate microcanonical parameters.

In Fig. 5 we show the distribution ofmas at the peak of its fluctuation in βas along the lines βss = 1.0 and βss = −1.0, and
the distribution ofmss at the peak of its fluctuation in βss along the line βas = 1.8. The distribution along βss = 1.0 is clearly
bimodal with the distance between the double peaks slightly widening as n changes from 128 to 256. This confirms the
first-order nature of that transition, and also explains why the fluctuation peak grows super-linearly in Fig. 4. Along the line
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Fig. 2. Expected value of the number of attracting segments pairs mas (top left) and stiff segment pairs mss (top right) and their fluctuations σ 2(mas)

(bottom left) and σ 2(mss) (bottom right) for 128-step walks as a function of βas and βss .

βss = −1.0we also find an emerging double peak, albeit developing atmuch longer lengths. Finally, along the line βas = 1.8
we find a bimodal distribution with one peak located very closely tomss = 0. (Since we have not performed simulations for
bigger systems for the line βas = 1.8 we use the data from the simulations for n up to 128.) Hence, we conclude that the
transitions between all three phases are first-order.

3.3. Nature of the collapsed phases

We now turn to the investigation of the two collapsed phases. As in Ref. [21], it will be helpful to consider an anisotropy
parameter. In three dimensions, denoting the number of bonds parallel to the x-, y-, and z-axes by nx, ny, and nz , respectively,
we define

ρ = 1.0 −
min(nx, ny, nz)

max(nx, ny, nz)
(3.1)

to be the anisotropy parameter. In a system without orientational order, this quantity tends to zero as the system size
increases. A non-zero limiting value less than one of this quantity indicates weak orientational order with nmin ∝ nmax,
while a limiting value of one indicates strong orientational order, where nmax ≫ nmin.

We first consider the change of the anisotropy parameter as the phase boundaries are crossed along the same three lines
investigated earlier. This is shown in Fig. 6 for βss = 1.0, in Fig. 7 for βss = −1.0, and in Fig. 8 for βas = 1.8, together with
the corresponding changes of the density of interacting segments ⟨mas⟩ and straight segments ⟨mss⟩.

In addition to the change in ⟨mas⟩ and ⟨mss⟩ described above, one sees that the anisotropy parameter decreases in the
swollen phase, but jumps to a significantly larger value in the collapsed phases. There is a small difference in the value of
the anisotropy parameter in both collapsed phases, but the change of ρ as the length of the walk increases is such that ρ
might in fact tend to the same limiting value of one in the thermodynamic limit.

To test this, we now display the finite-size scaling behaviour at two points in the different collapsed phases. The values
⟨mss⟩/n, ⟨mas⟩/n and ρ are shown as functions of n−2/3 for βas = 1.4 and βss = 1.0 in Fig. 9 and for βas = 1.8 and βss = −1.0
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Fig. 3. A sketch of the conjectured phase diagram, showing the swollen globular phase and the two crystalline phases. The three phase transition lines
(dashed blue) are all first-order and meet in a common critical point (red).

Fig. 4. Scaled fluctuations in mss and mas on the line βss = 1.0 (top left and right, respectively), scaled fluctuations in mas on the line βss = 1.0 (bottom
left) and scaled fluctuations inmss on the line βas = 1.8 (bottom right).
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Fig. 5. The top two figures show the scaled distributions of mas for βss = 1.0 and βss = −1.0 (top left and right, respectively), for walk lengths n = 128
and n = 256, with the values of βas chosen such that the fluctuations in mas were maximal (for βss = 1.0, βas = 0.770 and 0.681 for n = 128 and 256,
respectively), and for βss = −1.0, βas = 1.382 and 1.254 for n = 128 and n = 256, respectively. The bottom figure shows the scaled distributions of mss
for βas = −1.8 for walk lengths n = 64 and n = 128, with the values of βss chosen such that the fluctuations in mss were maximal (βss = −0.420 and
−0.487 for n = 64 and n = 128, respectively).

Fig. 6. Line βss = 1.0. The scaled number of contacts ⟨mas⟩ and ⟨mss⟩ and anisotropy parameter as a function of βas for constant βss = 1.0 for three system
sizes n = 64, 128 and 256.
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Fig. 7. Line βss = −1.0. The scaled number of contacts ⟨mas⟩ and ⟨mss⟩ and anisotropy parameter as a function of βas for constant βss = −1.0 for three
system sizes n = 64, 128 and 256.

Fig. 8. Line βas = 1.8. The scaled number of contacts ⟨mas⟩ and ⟨mss⟩ and anisotropy parameter as a function of βss for constant βas = 1.8 for two system
sizes n = 64 and 128. The decrease of the anisotropy parameter close to βss = −0.6 is due the fluctuations at the phase transition.

in Fig. 10. If the corrections to scaling are due to surface effects, one should find asymptotic straight lines as n−2/3 tends to
zero.
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Fig. 9. Number of contacts ⟨mss⟩/n and ⟨mas⟩/n and anisotropy parameter, ρ, as function of the system size at βas = 1.4 and βss = 1.0. Importantly, the
anisotropy parameter, ρ, can be seen to converge to ρ = 1 for infinite n within error. The thermodynamic average of straight segments converges to a
value near 0.9 within error.

Fig. 10. Number of contacts ⟨mss⟩/n and ⟨mas⟩/n and anisotropy parameter, ρ, as function of the system size at βas = 1.8 and βss = −1.0. Importantly,
the anisotropy parameter, ρ, can be seen to converge to ρ = 1 for infinite n within error and the thermodynamic average of straight segments converges
to limn→∞⟨mss⟩/n = 0 within error.
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Fig. 11. Typical configurations of length 128 at the parameter values (βas, βss) = (1.4, 1.0) (left) and (βas, βss) = (1.8, −1.0) (right). The configuration
on the left is an array of long straight lines of monomers while the configuration on the right contains mainly bends.

Both figures confirm the presence of n−2/3-corrections, indicating a well-developed surface of the collapsed walk. The
anisotropy parameter tends to one in both phases in the thermodynamic limit, indicating crystalline order. However, in
one phase the density of straight segments tends to a limiting value close to one, whereas in the other phase this quantity
tends to zero, showing clear evidence of two structurally very different crystalline structures, each of which has a different
limiting density of attracting segments.

This scenario is confirmed by Fig. 11, which shows typical configurations at these two parameter values: in the straight-
rich phase, (βas, βss) = (1.4, 1.0), the typical configurations consist of straight lines of monomers while in the bend rich
phase, (βas, βss) = (1.8, −1.0), the typical configuration can be described as parallel sheets of two-dimensional configura-
tions consisting only of bends. The limiting value of ⟨mas⟩/n is equal to 2 in the former phase, and equal to 7/4 in the latter
phase, consistent with the numerical data shown in Figs. 9 and 10.

The bend-rich-crystal phase consists of two-dimensional sheets of bended chains which lie parallel to each other. While
the two dimensional sheets are isotropic. The ordering of those sheets induces the anisotropy of the phase. In general, the
difference in the behaviour of this model between dimensions lies to some extent in the freedom that three dimensions
afford the lattice polymer to form different crystalline structures. Transitions to such rigid structures tend to be first order.

In this article we have discussed a three-dimensional semi-flexible AS model. We have characterised one swollen and
two collapsed phases, and transition between them. In contrast to the two dimensional version of thismodel, both collapsed
phases are anisotropic, and none of them resemble the disordered liquid drop.
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